-
1Academic Journal
Authors: S. G. Scherbak, D. A. Vologzhanin, D. V. Gladyshev, O. S. Glotov, A. S. Golota, Т. A. Kamilova, D. V. Lantukhov, S. A. Kovalenko, D. G. Lisovets, А. M. Sarana, С. Г. Щербак, Д. А. Вологжанин, Д. В. Гладышев, О. С. Глотов, А. С. Голота, Т. А. Камилова, Д. В. Лантухов, С. А. Коваленко, Д. Г. Лисовец, А. М. Сарана
Contributors: Russian Science Foundation, grant No. 14-50-00069, Российский научный фонд, грант №14-50-00069
Source: Surgery and Oncology; Том 7, № 4 (2017); 20-30 ; Хирургия и онкология; Том 7, № 4 (2017); 20-30 ; 2949-5857 ; 10.17650/2220-3478-2017-7-4
Subject Terms: клинические исследования, prognostic biomarker, intratumoral heterogeneity, genetic heterogeneity, epigenetic heterogeneity, adjuvant therapy, oncogene, tumor suppressor gene, mutation, hypermethylation, microRNA, oncogenesis, clinical trials, прогностический биомаркер, внутриопухолевая гетерогенность, генетическая гетерогенность, эпигенетическая гетерогенность, адъювантная терапия, онкоген, ген-супрессор опухоли, мутация, гиперметилирование, микроРНК, онкогенез
File Description: application/pdf
Relation: https://www.onco-surgery.info/jour/article/view/231/192; Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016;66(1):7–30. DOI:10.3322/caac.21332.; Cuyle P.J., Prenen H. Current and future biomarkers in the treatment of colorectal cancer. Acta Clin Belg 2017;72(2):103–15. DOI:10.1080/17843286.2016.1262996.; Tu C., Mojica W., Straubingeret R.M. et al. Quantitative proteomic profiling of paired cancerous and normal colon epithelial cells isolated freshly from colorectal cancer patients. Proteomics Clin Appl 2017;11(5–6). DOI:10.1002/prca.201600155.; Yu J., Feng Q., Wong S.H. et al. Metagenomic analysis of faecal microbiomeas a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 2017;66(1):70–8. DOI:10.1136/gutjnl-2015-309800.; Mohammadi A., Mansoori B., Baradaran B. The role of microRNA in colorectal. Biomed Pharmacother 2016;84(4):705–13. DOI:10.1016/j.biopha.2016.09.099.; Van Kessel A.G., Venkatachalam R., Kuiper R.P. et al. Colorectal cancer. Genomic and personalized medicine (2nd edn.) 2013;69(5):722–32.; Punt C.J., Koopman M., Vermeulen L. From tumor heterogeneity to advances in precision treatment of colorectal cancer. Nat Rev Clin Oncol 2017;14(4):235–46. DOI:10.1038/nrclinonc.2016.171.; Bigagli E., de Filippo C., Castagnini C. et al. DNA copy number alterations, gene expression changes and disease-free survival in patients with colorectal cancer: a 10 years’ follow-up. Cell Oncol 2016;39(6):545–58. DOI:10.1007/s13402-016-0299-z.; Tariq K., Ghias K. Colorectal cancer carcinogenesis: a review of mechanisms. Cancer Biol Med 2016;13(1):120–35. DOI:10.28092/j.issn.2095-3941.2015.0103.; Müller M.F., Ibrahim A.E., Arends M.J. Molecular pathological classification of colorectal cancer. Virchows Arch 2016;469(2):125–34. DOI:10.1007/s00428-016-1956-3.; Kudryavtseva A.V., Lipatova A.V., Zaretsky A.R. et al. Important molecular genetic markers of colorectal cancer. Oncotarget 2016;7(33):53959–83. DOI:10.18632/oncotarget.9796.; Kozak M.M., von Eyben R., Pai J. et al. Smad inactivation predicts for worse prognosis and response to fluorouracil-based treatment in colorectal cancer. J Clin Pathol 2015;68(5):341–5. DOI:10.1136/jclinpath-2014-202660.; Van Cutsem E., Lenz H.J., Kohne C.H. Fluorouracil, leucovorin and irinotecan plus cetuximab treatment and RAS mutations in colorectal cancer. J Clin Oncol 2015;33(7):692–700. DOI:10.1200/JCO.2014.59.4812.; Allegra C.J., Rumble R.B., Schilsky R.L. Extended RAS gene mutation testing in metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy: American Society of Clinical Oncology Provisional Clinical Opinion Update 2015. J Сlin Oncol Pract 2016;34(2):179–85. DOI:10.1200/JCO.2015.63.9674.; Bokemeyer C., Köhne C.H., Ciardiello F. et al. FOLFOX4 plus cetuximab treatment and RAS mutations in colorectal cancer. Eur J Cancer 2015;51(10):1243–52. DOI:10.1016/j.ejca.2015.04.007.; Van Cutsem E., Cervantes A., Adam R. et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol 2016;27(9):1386–422. DOI:10.1093/annonc/mdw235.; Barras D., Missiaglia E., Wirapati P. et al. BRAF V600E-mutant colorectal cancer subtypes based on gene expression. Clin Cancer Res 2017;23(1):104–15. DOI:10.1158/1078-0432.CCR-16-0140.; Mikhailenko D.S., Efremov G.D., Safronova N.Y. Detection of rare mutations by routine analysis of KRAS, NRAS and BRAF oncogenes. Bull Exp Biol Med 2017;162(3):375–8. DOI:10.1007/s10517-017-3619-z.; Zhu L., Dong C., Cao Y. et al. Prognostic role of BRAF mutation in stage II/III colorectal cancer receiving curative resection and adjuvant chemotherapy: a metaanalysis based on randomized clinical trials. PLoS One 2016;11(5):154–9. DOI:10.1371/journal.pone.0154795.; Moretto R., Cremolini C., Rossini D. Location of primary tumor and benefit from anti-epidermal growth factor receptor monoclonal antibodies in patients with RAS and BRAF wild-type metastatic colorectal cancer. Oncologist 2016;21(8):988–94. DOI:10.1634/theoncologist.2016-0084.; Corcoran R.B., Atreya C.E., Falchook G.S. et al. Combined BRAF and MEK inhibition with dabrafenib and trametinib in BRAF V600 mutant colorectal cancer. J Clin Oncol 2015;33(34):4023–31. DOI:10.1200/JCO.2015.63.2471.; Lech G., Slotwinski R., Slodkowski M. et al. Colorectal cancer tumor markers and biomarkers: recent therapeutic advances. World J Gastroenterol 2016;22(5):1745–55. DOI:10.3748/wjg.v22.i5.1745.; Shen Y., Han X., Wang J. et al. Prognostic impact of mutation profiling in patients with stage II and III colon cancer. Sci Rep 2016;6(2):243–50. DOI:10.1038/srep24310.; Stintzing S., Stremitzer S., Sebio A. et al. Predictive and prognostic markers in the treatment of metastatic colorectal cancer (mКРР). Hematol Oncol Clin North Am 2015;29(1):43–60.; Thorvaldsen T.E., Pedersen N.M., Wenzel E.M. et al. Differential roles of AXIN1 and AXIN2 in tankyrase inhibitorinduced formation of degradasomes and β-catenin degradation. PLoS One 2017;12(1):170–75. DOI:10.1371/journal.pone.0170508.; Gustavsson B., Carlsson G., Machover D.A. A review of the evolution of systemic chemotherapy in the management of colorectal cancer. Clin Colorectal Cancer 2015;14(1):1–10. DOI:10.1016/j.clcc.2014.11.002.; Dalerba P., Sahoo D., Paik S. CDX2 as a prognostic biomarker in stage II and stage III colon cancer. N Engl J Med 2016;374(3):211–22. DOI:10.1056/NEJMoa1506597.; Kandioler D., Mittlböck M., Kappel S. et al. TP53 mutational status and prediction of benefit from adjuvant 5-fluorouracil in stage III colon cancer patients. EBioMedicine 2015;2(8):825–30. DOI:10.1016/j.ebiom.2015.06.003; Kunicka T., Prochazka P., Krus I. et al. Molecular profile of 5-fluorouracil pathway genes in colorectal carcinoma. BMC Cancer 2016;16(1):795. DOI:10.1186/s12885-016-2826-8.; Phelip J.M., Mineur L., de la Fouchardière C. et al. High resectability rate of initially unresectable colorectal liver metastases after UGT1A1-adapted highdose irinotecan combined with LV5FU2 and cetuximab: a multicenter phase ii study (ERBIFORT). Ann Surg Oncol 2016;23(7):2161–6. DOI:10.1245/s10434-015-5072-4; Sartore-Bianchi A., Trusolino L., Martino C. et al. Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERACLES): a proof-of-concept, multicentre, open-label, phase 2 trial. Lancet Oncol 2016;17(6):738–46. DOI:10.1016/S1470-2045(16)00150-9.; Schmoll H.J. Targeting HER2: precision oncology for colorectal cancer. Lancet Oncol 2016;17(6):685–6. DOI:10.1016/S1470-2045(16)30039-0.; Graham D.M., Coyle V.M., Kennedy R.D., Wilson R.H. Molecular subtypes and personalized therapy in metastatic colorectal cancer. Curr Colorectal Cancer Rep 2016;12(6):141–50. DOI:10.1007/s11888-016-0312-y.; Boissière-Michot F., Frugier H., Ho-PunCheung H. et al. Immunohistochemical staining for p16 and BRAF V600E is useful to distinguish between sporadic and hereditary (Lynch syndrome-related) microsatellite instable colorectal carcinomas. Virchows Arch 2016;469(2):135–44. DOI:10.1007/s00428-016-1958-1.; Andre T., de Gramont A., Vernerey D. et al. Adjuvant fluorouracil, leucovorin and oxaliplatin in stage II to III colon cancer: updated 10-year survival and outcomes according to BRAF mutation and mismatch repair status of the MOSAIC study. J Clin Oncol 2015;33(35):4176–87. DOI:10.1200/JCO.2015.63.4238.; Tougeron D., Mouillet G., Trouilloud I. et al. Efficacy of adjuvant chemotherapy in colon cancer with microsatellite instability: a large multicenter AGEO study. J Nat Cancer Inst 2016;108(7):76–81. DOI:10.1093/jnci/djv438.; Caritg O., Navarro A., Moreno I. et al. Identifying high-risk stage II colon cancer patients: a three-microRNA-based score as a prognostic biomarker. Clin Colorectal Cancer 2016;15(4):175–82. DOI:10.1016/j.clcc.2016.04.008.; Okugawa Y., Grady W.M., Goel A. Epigenetic alterations in colorectal cancer: emerging biomarkers. Gastroenterology 2015;149(5):1204–25. DOI:10.1053/j.gastro.2015.07.011.; Pelosof L., Yerram S., Armstrong T. et al. GPX3 promoter methylation predicts platinum sensitivity in colorectal cancer. Epigenetics 2017;12(7):540–50. DOI:10.1080/15592294.2016.1265711.; Sazanov A.A., Kiselyova E.V., Zakharenko A.A. et al. Plasma and saliva miR-21 expression in colorectal cancer patients. J Appl Genet 2017;58(2):231–7. DOI:10.1007/s13353-016-0379-9.; Kerimis D., Kontos C.K., Christodoulou S. et al. Elevated expression of miR-24-3p is a potentially adverse prognostic factor in colorectal adenocarcinoma. Clin Biochem 2017;50(6):285–92. DOI:10.1016/j.clinbiochem.2016.; Kingham P.T., Nguyen H.C., Zheng J. et al. MicroRNA-203 predicts human survival after resection of colorectal liver metastasis. Oncotarget 2017;8(12): 18821–31. DOI:10.18632/oncotarget.13816.; Okugawa Y., Toiyama Y., Toden S. et al. Clinical significance of SNORA42 as an oncogene and a prognostic biomarker in colorectal cancer. Gut 2017;66(1):107–17. DOI:10.1136/gutjnl-2015-309359.; Cruz-Correa M., Pérez-Mayoral J., Dutil J. et al. Hereditary cancer syndromes in Latino populations: genetic characterization and surveillance guidelines. Hered Cancer Clin Pract 2017;15(3):3. DOI:10.1186/s13053-017-0063-z.; Nimptsch K., Aleksandrova K., Boeing H. et al. Association of CRP genetic variants with blood concentrations of C-reactive protein and colorectal cancer risk. Int J Cancer 2015;136(5):1181–92. DOI:10.1002/ijc.29086.; Linnekamp J.F., Wang X., Medema J.P., Vermeulen L. Colorectal cancer heterogeneity and targeted therapy: a case for molecular disease subtypes. Cancer Res 2015;75(2):245–9. DOI:10.1158/0008- 5472.CAN-14-2240.
-
2Academic Journal
Authors: S. A. Rakul, T. A. Kamilova, A. S. Golota, S. G. Shcherbak, С. А. Ракул, Т. А. Камилова, А. С. Голота, С. Г. Щербак
Source: Cancer Urology; Том 13, № 4 (2017); 111-121 ; Онкоурология; Том 13, № 4 (2017); 111-121 ; 1996-1812 ; 1726-9776 ; 10.17650/1726-9776-2017-13-4
Subject Terms: микроРНК, biomarker, tumoural heterogeneity, oncogene, gene-tumor suppressor, mutation, hypermethylation, microRNA, биомаркер, опухолевая гетерогенность, генетическая гетерогенность, эпигенетическая гетерогенность, онкоген, ген-супрессор опухолей, мутация, гиперметилирование
File Description: application/pdf
Relation: https://oncourology.abvpress.ru/oncur/article/view/776/725; Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2015. CA Cancer J Clin 2015;65(1):5–29. DOI:10.3322/caac.21254. PMID: 25559415.; Torre L.A., Bray F., Siegel R.L. et al. Global cancer statistics, 2012. CA Cancer J Clin 2015;65(2):87–108. DOI:10.3322/caac.21262. PMID: 25651787.; Saad F., Latour M., Lattouf J.B. et al. Biopsy based proteomic assay predicts risk of biochemical recurrence after radical prostatectomy. J Urol 2017;197(4):1034–40. DOI:10.1016/j.juro.2016.09.116. PMID: 27725152.; Zhang Y., Zhang P., Wan X. et al. Downregulation of long non-coding RNA HCG11 predicts a poor prognosis in prostate cancer. Biomed Pharmacother 2016;83:936–41. DOI:10.1016/j.biopha.2016.08.013. PMID: 27522256.; Attard G., Parker C., Eeles R.A. et al. Prostate cancer. Lancet 2016;387(10013):70–82. DOI:10.1016/S0140-6736(14)61947-4. PMID: 26074382.; Hjelmborg J.B., Scheike T., Holst K. et al. The heritability of prostate cancer in the Nordic Twin Study of Cancer. Cancer Epidemiol Biomarkers Prev 2014;23(11): 2303–10. DOI:10.1158/1055-9965.EPI-13-0568. PMID: 24812039.; Al Olama A.A., Kote-Jarai Z., Berndt S.I. et al. A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nat Genet 2014;46(10):1103–9. DOI:10.1038/ng.3094. PMID: 25217961.; Eeles R., Goh C., Castro E. et al. The genetic epidemiology of prostate cancer and its clinical implications. Nat Rev Urol 2014;11(1):18–31. DOI:10.1038/nrurol.2013.266. PMID: 24296704.; Li L.C., Hsieh A.C., Ruggero D. et al. Molecular basis of prostate cancer. Ch. 38. The molecular basis of cancer. Eds.: J. Mendelsohn, P.M. Howley, M.A. Israel et al. 4th Edn. Philadelphia: Elsevier, 2015. 888 p.; Pritchard C.C., Mateo J., Walsh M.F. et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med 2016;375(5):443–53. DOI:10.1056/NEJMoa1603144. PMID: 27433846.; Genetics of Prostate Cancer. PDQ® Cancer Genetics Editorial Board. Bethesda, MD: NCI. Updated November 30, 2016. Available at: https://www.cancer.gov/types/prostate/hp/prostate-geneticspdq/.; Mononen N., Syrjäkoski K., Matikainen M. et al. Two percent of Finnish prostate cancer patients have a germ-line mutation in the hormone-binding domain of the androgen receptor gene. Cancer Res 2000;60(22):6479–81. PMID: 11103816.; Zheng S.L., Sun J., Wiklund F. et al. Cumulative association of five genetic variants with prostate cancer. N Engl J Med 2008;358(9):910–9. DOI:10.1056/NEJMoa075819. PMID: 18953706.; DePaolo J.S., Wang Z., Guo J. et al. Acetylation of androgen receptor by ARD1 promotes dissociation from HSP90 complex and prostate tumorigenesis. Oncotarget 2016;7(44):71417–28. DOI:10.18632/oncotarget.12163. PMID: 27659526.; Wadosky K.M., Koochekpour S. Molecular mechanisms underlying resistance to androgen deprivation therapy in prostate cancer. Oncotarget 2016;7(39):64447–70. DOI:10.18632/oncotarget.10901. PMID: 27487144.; Wong N., Major P., Kapoor A. et al. Amplification of MUC1 in prostate cancer metastasis and CRPC development. Oncotarget 2016;7(50):83115–33. DOI:10.18632/oncotarget.13073. PMID: 27825118.; Kumar A., Coleman I., Morrissey C. et al. Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nat Med 2016;22(4):369–78. DOI:10.1038/nm.4053. PMID: 26928463.; Wadosky K.M., Koochekpour S. Therapeutic rationales, progresses, failures, and future directions for advanced prostate cancer. Int J Biol Sci 2016;12(4):409–26. DOI:10.7150/ijbs.14090. PMID: 27019626.; Azad A.A., Volik S.V., Wyatt A.W. et al. Androgen receptor gene aberrations in circulating cell-free DNA: biomarkers of therapeutic resistance in castrationresistant prostate cancer. Clin Cancer Res 2015;21(10):2315–24. DOI:10.1158/1078-0432.CCR-14-2666. PMID: 25712683.; Antonarakis E.S., Lu C., Wang H. et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 2014;371(11):1028–38. DOI:10.1056/NEJMoa1315815. PMID: 26964769.; Hornberg E., Ylitalo E.B., Crnalic S. et al. Expression of androgen receptor splice variants in prostate cancer bone metastases is associated with castration-resistance and short survival. PLoS One 2011;6(4):e19059. DOI:10.1371/journal.pone.0019059. PMID: 21552559.; Turner A.R., Feng J., Liu W. et al. Prostate Cancer. Genomic and Personalized Medicine. 2nd Edn. Ch. 63. London: Academic Press, 2012. Pp. 733–741.; Haraldsdottir S., Hampel H., Wei L. et al. Prostate cancer incidence in males with Lynch syndrome. Genet Med 2014;16(7):553–7. DOI:10.1038/gim.2013.193. PMID: 24434690.; Robinson D., van Allen E.M., Wu Y.M. et al. Integrative clinical genomics of advanced prostate cancer. Cell 2015;161(5):1215–28. DOI:10.1016/j.cell.2015.05.001.; Ellingson M.S., Hart S.N., Kalari K.R. et al. Exome sequencing reveals frequent deleterious germline variants in cancer susceptibility genes in women with invasive breast cancer undergoing neoadjuvant chemotherapy. Breast Cancer Res Treat 2015;153(2):435–43. DOI:10.1007/s10549-015-3545-6. PMID: 26296701.; Leongamornlert D., Saunders E., Dadaev T. et al. Frequent germline deleterious variants in DNA repair genes in familial prostate cancer cases are associated with advanced disease. Br J Cancer 2014;110(6):1663–72. DOI:10.1038/bjc.2014.30.; Tarish F.L., Schultz N., Tanoglidi A. et al. Castration radiosensitizes prostate cancer tissue by impairing DNA double-strand break repair. Sci Transl Med 2015;7(312):312re11. DOI:10.1126/scitranslmed.aac5671. PMID: 26537259.; Polkinghorn W.R., Parker J.S., Lee M.X. et al. Androgen receptor signaling regulates DNA repair in prostate cancers. Cancer Discov 2013;3(11):1245–53. DOI:10.1158/2159-8290.CD-13-0172. PMID: 24027196.; Raison N., Elhage O., Dasgupta P. Getting personal with prostate cancer: DNA-repair defects and olaparib in metastatic prostate cancer. BJU Int 2017;119(1):8–9. DOI:10.1111/bju.13522. PMID: 27154575.; Kpetemey M., Dasgupta S., Rajendiran S. et al. MIEN1, a novel interactor of Annexin A2, promotes tumor cell migration by enhancing AnxA2 cell surface expression. Mol Cancer 2015;14:156. DOI:10.1186/s12943-015-0428-8. PMID: 26272794.; Rajendiran S., Gibbs L.D., van Treuren T. et al. MIEN1 is tightly regulated by SINE Alu methylation in its promoter. Oncotarget 2016;7(40):65307–19. DOI:10.18632/oncotarget.11675. PMID: 27589566.; Zhao S., Geybels M.S., Leonardson A. et al. Epigenome wide tumor DNA methylation profiling identifies novel prognostic biomarkers of metastatic-lethal progression in men with clinically localized prostate cancer. Clin Cancer Res 2017;23(1):311–19. DOI:10.1158/1078-0432.CCR-16-0549. PMID: 27358489.; Geybels M.S., Wright J.L., Bibikova M. et al. Epigenetic signature of Gleason score and prostate cancer recurrence after radical prostatectomy. Clin Epigenetics 2016;8:97. DOI:10.1186/s13148-016-0260-z. PMID: 27651837.; Epstein J.I., Zelefsky M.J., Sjoberg D.D. et al. A contemporary prostate cancer grading system: a validated alternative to the Gleason score. Eur Urol 2016;69(3):428–35. DOI:10.1016/j.eururo.2015.06.046. PMID: 26166626.; Singal R., Ramachandran K., Gordian E. et al. Phase I/II study of azacitidine, docetaxel, and prednisone in patients with metastatic castration-resistant prostate cancer previously treated with docetaxelbased therapy. Clin Genitourin Cancer 2015;13(1):22–31. DOI:10.1016/j.clgc.2014.07.008. PMID: 25178642.; Ayub S.G., Kaul D., Ayub T. Microdissecting the role of microRNAs in the pathogenesis of prostate cancer. Cancer Genet 2015;208(6):289–302. DOI:10.1016/j.cancergen.2015.02.010. PMID: 26004033.; Kojima S., Goto Y., Naya Y. The roles of microRNAs in the progression of castration-resistant prostate cancer. J Hum Genet 2017;62(1):25–31. DOI:10.1038/jhg.2016.69. PMID: 27278789.; Faruq O., Vecchione A. MicroRNA: diagnostic perspective. Front Med 2015;2:51. DOI:10.3389/fmed.2015.00051. PMID: 26284247.; Larne O., Östling P., Haflidadóttir B.S. et al. MiR-183 in prostate cancer cells positively regulates synthesis and serum levels of prostate-specific antigen. Eur Urol 2015;68(4):581–8. DOI:10.1016/j.eururo.2014.12.025. PMID: 25556023.; Chiyomaru T., Yamamura S., Fukuhara S. et al. Genistein inhibits prostate cancer cell growth by targeting miR-34a and oncogenic HOTAIR. PLoS One 2013;8(8):e70372. DOI:10.1371/journal.pone.0070372. PMID: 23936419.; Wang J., Shan M., Liu T. et al. Analysis of TRRAP as a potential molecular marker and therapeutic target for breast cancer. J Breast Cancer 2016;19(1):61–7. DOI:10.4048/jbc.2016.19.1.61. PMID: 27066097.; Gang X., Yang Y., Zhong J. et al. P300 acetyltransferase regulates fatty acid synthase expression, lipid metabolism and prostate cancer growth. Oncotarget 2016;7(12):15135–49. DOI:10.18632/oncotarget.7715. PMID: 26934656.; Blume-Jensen P., Berman D.M., Rimm D.L. et al. Development and clinical validation of an in situ biopsybased multimarker assay for risk stratification in prostate cancer. Clin Cancer Res 2015;21(11):2591–600. DOI:10.1158/1078-0432.CCR-14-2603. PMID: 25733599.; Shvartsur A., Bonavida B. TROP2 and its overexpression in cancers: regulation and clinical/therapeutic implications. Genes Cancer 2015;6(3–4):84–105. DOI:10.18632/genesandcancer.40. PMID: 26000093.; Trerotola M., Ganguly K.K., Fazli L. et al. Trop-2 is up-regulated in invasive prostate cancer and displaces FAK from focal contacts. Oncotarget 2015;6(16):14318–28. DOI:10.18632/oncotarget.3960. PMID: 26015409.; Ju X., Jiao X., Ertel A. et al. v-Src oncogene induces TROP2 proteolytic activation via cyclin D1. Cancer Res 2016;76(22);6723–34. DOI:10.1158/0008-5472.CAN-15-3327. PMID: 27634768.; Lin C.J., Nasr Z., Premsrirut P.K. et al. Targeting synthetic lethal interactions between Myc and the EIF-4F complex impedes tumorigenesis. Cell Rep 2012;1(4):325–33. DOI:10.1016/j.celrep.2012.02.010. PMID: 22573234.; Cencic R., Pelletier J. Hippuristanol – a potent steroid inhibitor of eukaryotic initiation factor 4A. Translation (Austin) 2016;4(1):e1137381. DOI:10.1080/21690731.2015.1137381. PMID: 27335721.; Malina A., Mills J.R., Pelletier J. Emerging therapeutics targeting mRNA translation. Cold Spring Harb Perspect Biol 2012;4(4):a012377. DOI:10.1101/cshperspect.a012377. PMID: 22474009.; Morad S.A., Schmid M., Büchele B. et al. A novel semisynthetic inhibitor of the FRB domain of mammalian target of rapamycin blocks proliferation and triggers apoptosis in chemoresistant prostate cancer cells. Mol Pharmacol 2013;83(2):531–41. DOI:10.1124/mol.112.081349. PMID: 23208958.; Nguyen P.L., Shin H., Yousefi K. et al. Impact of a genomic classifier of metastatic risk on postprostatectomy treatment recommendations by radiation oncologists and urologists. Urology 2015;86(1):35–40. DOI:10.1016/j.urology.2015.04.004. PMID: 26142578.; Ross A.E., Johnson M.H., Yousefi K. et al. Tissue-based genomics augments post-prostatectomy risk stratification in a natural history cohort of intermediateand high-risk men. Eur Urol 2016;69(1):157–65. DOI:10.1016/j.eururo.2015.05.04. PMID: 26058959.; https://oncourology.abvpress.ru/oncur/article/view/776