Showing 1 - 20 results of 69 for search '"эмбриональные стволовые клетки"', query time: 0.72s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
    Academic Journal

    Contributors: 1

    Source: Russian Journal of Infection and Immunity; Vol 12, No 6 (2022); 1061-1068 ; Инфекция и иммунитет; Vol 12, No 6 (2022); 1061-1068 ; 2313-7398 ; 2220-7619

    File Description: application/pdf

  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
    Academic Journal

    Source: Biological Products. Prevention, Diagnosis, Treatment; № 2 (2015); 36-45 ; БИОпрепараты. Профилактика, диагностика, лечение; № 2 (2015); 36-45 ; 2619-1156 ; 2221-996X ; undefined

    File Description: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/12/13; О биомедицинских клеточных продуктах. Проект Федерального закона № 717040-6 от 06.02.2015 г. [cited 2015 March 5]. Available from: http://asozd2.duma.gov.ru/main.nsf/%28SpravkaNew%29?OpenAgent&RN=717040-6&02.; Placzek M.R., Chung I.-M., Macedo H.M., Ismail S., Blanco T.M., Lim M. et al. Stem cell bioprocessing: fundamentals and principles. J. R. Soc. Interface 2009; 6: 209-32.; Sensebé L., Gadelorge M., Fleury-Cappellesso S. Production of mesenchymal stromal/stem cells according to good manufacturing practices: a review. Stem Cell Res. Therapy 2013; 4: 66-71.; Liras A. Future research and therapeutic applications of human stem cells: general, regulatory, and bioethical aspects. J. Transl. Med. 2010; 8: 131.; Rigotti G., Marchi A., Sbarbati A. Adipose-derived mesenchymal stem cells: past, present, and future. Aesthet Plast Surg. 2009; 33: 271-3.; Lombardo E., van der Poll T., DelaRosa O., Dalemans W. Mesenchymal stem cells as a therapeutic tool to treat sepsis. World J Stem Cells 2015; 7(2): 368-79.; Adipogenic differentiation and analysis of MSC. PromoCell GmbH. [cited 2015 March 5]. Available from: www.promocell.com.; Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8: 315-7.; Phinney D.G., Sensebé L. Mesenchymal stromal cells: misconceptions and evolving concepts. Cytotherapy 2013; 15: 140-5.; Pieternella S., Noort W.A., Scherjon S.A., Kleuburg-van der Keur G., Krusselbrink A.B., van Bezoouen R.L. et al. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. J Hematol. 2003; 88: 845-52.; Бурунова В.И. Проблемы стандартизации при получении клеточных культур мезенхимального происхождения: экспериментальный и теоретический анализ: автореф. дис. канд. биол. наук. М.; 2011.; Goodwin H.S., Bicknese A.R., Chien S.N., Bogucki B.D., Quinn C.O., Wall D.A. Multilineage differentiation activity by cells isolated from umbilical cord blood: expression of bone, fat, and neural markers. Biol Blood Marrow Transplant. 2001; 7(11): 581-8.; Gronthos S., Franklin D.M., Leddy H.A., Robey P.G., Storms R.W., Gimble J.M. Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol. 2001; 189(1): 54-63.; Viswanathan S., Keating A., Deans R., Hematti P., Prockop D., Stroncek D.F. et al. Soliciting strategies for developing cell-based reference materials to advance mesenchymal stromal cell research and clinical translation. Stem Cells Develop. 2014; 23(11): 1157-67.; Vater C., Kasten P., Stiehler M. Culture media for the differentiation of mesenchymal stromal cells. Acta Biomaterialia 2011; 7: 463-77.; Martins J.P., Santos J.M., de Almeida J.M., Filipe M.A., de Almeida M.V., Almeida S.C. et al. Towards an advanced therapy medicinal product based on mesenchymal stromal cells isolated from the umbilical cord tissue: quality and safety data. Stem Cell Res Ther. 2014; 5(1): 9. [cited 2015 March 25]. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4055140/pdf/scrt398.pdf.; Giardini M.A., Segatto M., da Silva M.S., Nunes V.S., Cano M.I. Telomere and telomerase biology. Prog Mol Biol Transl Sci. 2014; 125: 1-40.; Wang Y., Zhang Z., Chi Y., Zhang Q., Xu F., Yang Z. et al. Long-term cultured mesenchymal stem cells frequently develop genomic mutations but do not undergo malignant transformation. Cell Death and Disease. 2013; 4: e950. [cited 2015 March 25]. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877551/pdf/cddis2013480a.pdf.; Boxall S.A., Jones E. Markers for characterization of bone marrow multipotential stromal cells. Stem Cells Intern. 2012; Article ID 975871. [cited 2015 March 25]. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3361338/pdf/SCI2012-975871.pdf.; Chase L.G., Yang S., Zachar V., Yang Z., Lakshmipathy U., Bradford J. et al. Development and characterization of a clinically compliant xeno-free culture medium in good manufacturing practice for human multipotent mesenchymal stem cells. Stem Cells Transl. Med. 2012; 1: 750-8.; Kolkundkar U., Gottipamula S., Majumdar A.S. Cell therapy manufacturing and quality control: current process and regulatory challenges. J Stem Cell Res Ther. 2014; 4(9). Available from: http://omicsonline.org/open-access/cell-therapy-manufacturing-and-quality-control-current-process-and-regulatory-challenges-2157-7633.1000230.pdf.; Hirschel M., Wojciechowski R.J., Arneson K. Biomanufacturing suite and methods for large-scale production of cells, viruses, and biomolecules. App. WO № 2014/036187; 2014.; Чулкова Т.Ю., Курбанова Е.К., Новиков Ю.Н., Гусаров Д.А. Одноразовые системы. Плюсы и минусы использования. Решения для апстрим процесса (мини-обзор). Биофармацевтический журнал 2013; 5(1): 3-12.; Tarte K., Gaillard J., Lataillade J.J., Fouillard L., Becker M., Mossafa H. et al. Société Française de Greffe de Moelle et Thérapie Cellulaire: clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood 2010; 115: 1549-53.; Надлежащая практика производства медицинских иммунобиологических препаратов. Санитарно-эпидемиологические правила СП 3.3.2.1288-03. М., 2003.; Godara P., McFarland C.D., Nordon R.E. Design of bioreactors for mesenchymal stem cell tissue engineering. J Chem Technol Biotechnol. 2010; 83: 408-20.; Шустер А.М., Ручко С.В., Щукин М.В., Александров В.Н., Говоров И.В., Григорьева О.В. и др. Опыт создания промышленной линии для производства клеточных продуктов. Биопрепараты 2014; (4): 37-41.; Rowley J., Pattasseril J., Mohamed A. High yield method and apparatus for volume reduction and washing of therapeutic cells using tangential flow filtration. Pat. CA № 2787656; 2011.; Rowley J., Pattasseril J., Mohamed A. High yield method and apparatus for volume reduction and washing of therapeutic cells using tangential flow filtration. App. WO № 2011/091248; 2011.; Супотницкий М.В., Елапов А.А., Борисевич И.В., Климов В.И., Лебединская Е.В., Миронов А.Н., Меркулов В.А. Перспективные методические подходы к доклиническому исследованию биомедицинских клеточных продуктов и возможные показатели их качества. Биопрепараты 2015; (1): 36-44.; О внедрении в практику работы службы крови в Российской Федерации метода карантинизации свежезамороженной плазмы. Приказ Минздрава РФ от 07.05.2003 № 193 (ред. от 19.03.2010) [cited 2015 March 5]. Available from: http://www.transfusion.ru/2010/04-19-2.html.; https://www.biopreparations.ru/jour/article/view/12; undefined

  10. 10
    Academic Journal

    Source: Vavilov Journal of Genetics and Breeding; Том 21, № 7 (2017); 758-763 ; Вавиловский журнал генетики и селекции; Том 21, № 7 (2017); 758-763 ; 2500-3259

    File Description: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/1221/987; Boroviak K., Doe B., Banerjee R., Yang F., Bradley A. Chromosome engineering in zygotes with CRISPR/Cas9. Genesis. 2016;54(2): 78­85. DOI 10.1002/dvg.22915.; Bradley A., Evans M., Kaufman M.H., Robertson E. Formation of germ­line chimaeras from embryo­derived teratocarcinoma cell lines. Nature. 1984;309(5965):255­256.; Brinster R.L., Braun R.E., Lo D., Avarbock M.R., Oram F., Palmiter R.D. Targeted correction of a major histocompatibility class II E alpha gene by DNA microinjected into mouse eggs. Proc. Natl. Acad. Sci. USA. 1989;86(18):7087­7091.; Capecchi M. Altering the genome by homologous recombination. Science. 1989;244(4910):1288­1292.; Carbery I.D., Ji D., Harrington A., Brown V., Weinstein E.J., Liaw L., Cui X. Targeted genome modification in mice using zinc­finger nucleases. Genetics. 2010;186(2):451­459. DOI 10.1534/genetics.110.117002.; Chu V.T., Weber T., Graf R., Sommermann T., Petsch K., Sack U., Volchkov P., Rajewsky K., Kühn R. Efficient generation of Rosa26 knock­in mice using CRISPR/Cas9 in C57BL/6 zygotes. BMC Biotechnology. 2016;16(1):4. DOI 10.1186/s12896­016­0234­4.; Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L.A., Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819823. DOI 10.1126/science.1231143.; Dupont C., Loos F., Kong­A­San J., Gribnau J. FGF treatment of host embryos injected with ES cells increases rates of chimaerism. Transgenic Res. 2017;26(2):237­246. DOI 10.1007/s11248­016­9997­6.; Evans M.J., Kaufman M.H. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292(5819):154­156. DOI 10.1038/292154a0.; Gordon J.W., Scangos G.A., Plotkin D.J., Barbosa J.A., Ruddle F.H. Genetic transformation of mouse embryos by microinjection of purified DNA. Proc. Natl. Acad. Sci. USA. 1980;77(12):7380­7384.; Kawase Y., Iwata T., Watanabe M., Kamada N., Ueda O., Suzuki H. Application of the piezo­micromanipulator for injection of embryonic stem cells into mouse blastocysts. Contemp. Top. Lab. Anim. Sci. 2001;40(2):31­34.; Kraft K., Geuer S., Will A.J., Chan W.L., Paliou C., Borschiwer M., Harabula I., Wittler L., Franke M., Ibrahim D.M., Kragesteen B.K., Spielmann M., Mundlos S., Lupiáñez D.G., Andrey G. Deletions, inversions, duplications: engineering of structural variants using CRISPR/Cas in mice. Cell Rep. 2015;10(5):833­839. DOI 10.1016/j.celrep.2015.01.016.; Lin F.L., Sperle K., Sternberg N. Recombination in mouse L cells between DNA introduced into cells and homologous chromosomal sequences. Proc. Natl. Acad. Sci. USA. 1985;82(5):1391­1395.; Mali P., Yang L., Esvelt K.M., Aach J., Guell M., DiCarlo J.E., Norville J.E., Church G.M. RNA­guided human genome engineering via Cas9. Science. 2013;339(6121):823­826. DOI 10.1126/science.1232033.; Martin G.R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA. 1981;78(12):7634­7638.; Raveux A., Vandormael­Pournin S., Cohen­Tannoudji M. Optimization of the production of knock­in alleles by CRISPR/Cas9 microinjection into the mouse zygote. Sci. Rep. 2017;7:42661. DOI 10.1038/srep42661.; Smithies O., Gregg R.G., Boggs S.S., Koralewski M.A., Kucherlapati R.S. Insertion of DNA sequences into the human chromosomal beta­globin locus by homologous recombination. Nature. 1985; 317(6034):230­234.; Sung Y.H., Baek I.J., Kim D.H., Jeon J., Lee J., Lee K., Jeong D., Kim J.S., Lee H.W. Knockout mice created by TALEN­mediated gene targeting. Nat. Biotechnol. 2013;31(1):23­24. DOI 10.1038/nbt.2477.; Wang Z., Jaenisch R. At most three ES cells contribute to the somatic lineages of chimeric mice and of mice produced by ES­tetraploid complementation. Dev. Biol. 2004;275(1):192­201. DOI 10.1016/j.ydbio.2004.06.026.; Yang H., Wang H., Jaenisch R. Generating genetically modified mice using CRISPR/Cas­mediated genome engineering. Nat. Protoc. 2014; 9(8):1956­1968. DOI 10.1038/nprot.2014.134.; https://vavilov.elpub.ru/jour/article/view/1221

  11. 11
    Academic Journal

    Source: Vavilov Journal of Genetics and Breeding; Том 20, № 6 (2016); 930-944 ; Вавиловский журнал генетики и селекции; Том 20, № 6 (2016); 930-944 ; 2500-3259

    File Description: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/874/870; Bindra R.S., Goglia A.G., Jasin M., Powell S.N. Development of an assay to measure mutagenic non-homologous end-joining repair activity in mammalian cells. Nucl. Acids Res. 2013;41(11):e115-e115. DOI 10.1093/nar/gkt255.; Brinster R.L., Chen H.Y., Trumbauer M.E., Yagle M.K., Palmiter R.D. Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs. Proc. Natl. Acad. Sci. USA. 1985;82(13): 4438-4442.; Bryja V., Bonilla S., Arenas E. Derivation of mouse embryonic stem cells. Nat. Protoc. 2006;1(4):2082-2087. DOI 10.1038/nprot.2006.355.; Chari R., Mali P., Moosburner M., Church G.M. Unraveling CRISPRCas9 genome engineering parameters via a library-on-library approach. Nature Methods. 2015;12(9):823-826. DOI 10.1038/nmeth.3473.; Datta S., Roychoudhury S., Ghosh A., Dasgupta D., Ghosh A., Chakraborty B., Roy S., Gupta S., Santra A.K., Datta S., Das K. Distinct distribution pattern of hepatitis B virus genotype C and D in liver tissue and serum of dual genotype infected liver cirrhosis and hepatocellular carcinoma patients. PloS One. 2014;9(7):e102573. DOI 10.1371/journal.pone.0102573.; Fu Y., Foden J.A., Khayter C., Maeder M.L., Reyon D., Joung J.K., Sander J.D. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 2013;31(9): 822-826. DOI 10.1038/nbt.2623.; Golding S.E., Rosenberg E., Khalil A., McEwen A., Holmes M., Neill S., Povirk L.F., Valerie K. Double strand break repair by homologous recombination is regulated by cell cycle- independent signaling via ATM in human glioma cells. J. Biol. Chemistry. 2004; 279(15):15402-15410. DOI 10.1074/jbc.M314191200.; Hogan B., Beddington R., Costantini F., Lacy E. Manipulating the Mouse Embryo. A Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory Press, 1994.; Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816-821. DOI 10.1126/science.1225829.; Kistler K., Vosshall L., Matthews B. Genome engineering with CRISPR-Cas9 in the mosquito Aedes aegypti. Cell Report. 2015; 11(1):51-60. DOI 10.1016/j.celrep.2015.03.009.; Kouranova E., Forbes K., Zhao G., Warren J., Bartels A., Wu Y. CRISPRs for optimal targeting: Delivery of CRISPR components as DNA, RNA, and protein into cultured cells and single-cell embryos. Hum. Gene Ther. 2016;27(6):464-475. DOI 10.1089/hum. 2016.009.; Kulkarni A.S., Fortunato E.A. Stimulation of homology-directed repair at I-SceI-induced DNA breaks during the permissive life cycle of human cytomegalovirus. J. Virology. 2011;85(12):6049-6054. DOI 10.1128/JVI.02514-10.; Li K., Wang G., Andersen T., Zhou P., Pu W.T. Optimization of genome engineering approaches with the CRISPR/Cas9 system. PLoS One. 2014;9(8):e105779. DOI 10.1371/journal.pone.0105779.; Liu Y.G., Chen Y. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques. 2007;43(5):649-650,652,654.; Pierce A.J., Hu P., Han M., Ellis N., Jasin M. Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells. Genes & Development. 2001;15(24):3237-3242. DOI 10.1101/gad.946401.; Pierce A.J., Johnson R.D., Thompson L.H., Jasin M. XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes & Development. 1999;13(20):2633-2638.; Sakurai T., Kamiyoshi A., Kawate H., Mori C., Watanabe S., Tanaka M. A non-inheritable maternal Cas9-based multiple-gene editing system in mice. Sci. Reports. 2016;6:20011. DOI 101038/srep20011.; Sambrook J.F., Russell D.W. Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory Press, 2001.; Shchelkunov S.N. Geneticheskaya inzheneriya [Genetic Engineering]. Novosibirsk, 2004. (in Russian); Smirnov A.V., Yunusova A.M., Lukyanchikova V.A., Battulin N.R. CRISPR/Cas9: a universal tool for genomic engineering. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2016;20(4):493-510. DOI 10.18699/VJ16.175. (in Russian); Smith A.M., Takeuchi R., Pellenz S., Davis L., Maizels N., Monnat R.J., Stoddard B.L. Generation of a nicking enzyme that stimulates sitespecific gene conversion from the I-AniI LAGLIDADG homing endonuclease. Proc. Natl. Acad. Sci. 2009;106(13):5099-5104. DOI 10.1073/pnas.0810588106.; Windbichler N., Papathanos P.A., Catteruccia F., Ranson H., Burt A., Crisanti A. Homing endonuclease mediated gene targeting in Anopheles gambiae cells and embryos. Nucl. Acids Res. 2007;35(17): 5922-5933. DOI 10.1093/nar/gkm632.; Yang H., Wang H., Jaenisch R. Generating genetically modified mice using CRISPR/Cas- mediated genome engineering. Nat. Protocols. 2014;9:1956-1968.; https://vavilov.elpub.ru/jour/article/view/874

  12. 12
    Academic Journal

    Source: Vavilov Journal of Genetics and Breeding; Том 20, № 6 (2016); 770-778 ; Вавиловский журнал генетики и селекции; Том 20, № 6 (2016); 770-778 ; 2500-3259

    File Description: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/850/849; Babenko V.N., Kosarev P.S., Vishnevsky O.V., Levitsky V.G., Basin V.V., Frolov A.S. Investigating extended regulatory regions of genomic DNA sequences. Bioinformatics. 1999;15(7-8):644-653. DOI 10.1093/bioinformatics/15.7.644.; Babenko V.N., Matvienko V.F., Safronova N.S. 19 Implication of transposons distribution on chromatin state and genome architecture in human. J. Biomol. Struct. Dyn. 2015;33(1):10- 11. DOI 10.1080/07391102.2015.1032559.; Bieda M., Xu X., Singer M.A., Green R., Farnham P. Unbiased location analysis of E2F1- binding sites suggests a widespread role for E2F1 in the human genome. Genome Res. 2006;16(5):595-605. DOI 10.1101/gr.4887606.; Boeva V. Analysis of genomic sequence motifs for deciphering transcription factor binding and transcriptional regulation in eukaryotic cells. Front. Genet. 2016;7:24. DOI 10.3389/fgene.2016.00024.; Boyer L.A., Lee T.I., Cole M.F., Johnstone S.E., Levine S.S., Zucker J.P., Guenther M.G., Kumar R.M., Murray H.L., Jenner R.G., Gifford D.K., Melton D.A., Jaenisch R., Young R.A. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005; 122(6):947-956. DOI 10.1016/j.cell.2005.08.020.; Chen X., Xu H., Yuan P., Fang F., Huss M., Vega V.B., Wong E., Orlov Y.L., Zhang W., Jiang J., Loh Y.H., Yeo H.C., Yeo Z.X., Narang V., Govindarajan K.R., Leong B., Shahab A., Ruan Y., Bourque G., Sung W.K., Clarke N.D., Wei C.L., Ng H.H. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell. 2008;133(6):1106-1117. DOI 10.1016/j.cell.2008.04.043.; Goh W.S., Orlov Y., Li J., Clarke N.D. Blurring of high-resolution data shows that the effect of intrinsic nucleosome occupancy on transcription factor binding is mostly regional, not local. PLoS Comput. Biol. 2010;6(1):e1000649. DOI 10.1371/journal.pcbi.1000649.; Golosova O., Henderson R., Vas’kin Yu., Gabrielian A., Grekhov G., Nagarajan V., Oler A.J., Quiñones M., Hurt D., Fursov M., Huyen Y. Unipro UGENE NGS pipelines and components for variant calling, RNA-seq and ChIP-seq data analyses. Peer J. 2014;2:e644. DOI 10.7717/peerj.644.; Guo Y., Mahony S., Gifford D.K. High resolution genome wide binding event finding and motif discovery reveals transcription factor spatial binding constraints. PLoS Comput. Biol. 2012;8(8):e1002638. DOI 10.1371/journal.pcbi.1002638.; Han J., Yuan P., Yang H., Zhang J., Soh B.S., Li P., Lim S.L., Cao S., Tay J., Orlov Y.L., Lufkin T., Ng H.H., Tam W.L., Lim B. Tbx3 improves the germ-line competency of induced pluripotent stem cells. Nature. 2010;463(7284):1096-1100.; He X., Cicek A.E., Wang Y., Schulz M.H., Le H.-S., Ziv B.-J. De novo ChIP-seq analysis. Genome Biol. 2015;16(1):205. DOI 10.1186/s13059-015-0756-4.; Heinemeyer T., Wingender E., Reuter I., Hermjakob H., Kel A.E., Kel O.V., Ignatieva E.V., Ananko E.A., Podkolodnaya O.A., Kolpakov F.A., Podkolodny N.L., Kolchanov N.A. Databases on transcriptional regulation: TRANSFAC, TRRD and COMPEL. Nucleic Acids Res. 1998;26(1):362-367. DOI 10.1093/nar/26.1.362.; Heng J.C., Feng B., Han J., Jiang J., Kraus P., Ng J.H., Orlov Y.L., Huss M., Yang L., Lufkin T., Lim B., Ng H.H. The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells. Cell Stem Cell. 2010;6(2):167-174. DOI 10.1016/j.stem.2009.12.009.; Hutter B., Bieg M., Helms V., Paulsen M. Imprinted genes show unique patterns of sequence conservation. BMC Genomics. 2010;11:649. DOI 10.1186/1471-2164-11-649.; Ignatieva E.V., Podkolodnaya O.A., Orlov Yu.L., Vasiliev G.V., Kolchanov N.A. Regulatory genomics: Combined experimental and computational approaches. Rus. J. Genet. 2015;51(4):334-352. DOI 10.1134/S1022795415040067.; Ivanova N., Dobrin R., Lu R., Kotenko I., Levorse J., DeCoste C., Schafer X., Lun Yi., Lemischka I.R. Dissecting self-renewal in stem cells with RNA interference. Nature. 2006;442(7102):533-538. DOI 10.1038/nature04915.; Kuznetsov V.A., Orlov Yu.L., Wei C.L., Ruan Y. Computational analysis and modeling of genome-scale avidity distribution of transcription factor binding sites in chip-pet experiments. Genome Inform. 2007;19:83-94.; Kulakova E.V., Spitsina A.M., Orlova N.G., Dergilev A.I., Svichkarev A.V., Safronova N.S., Chernykh I.G., Orlov Yu.L. Programs for the analysis of genomic sequence data obtained by ChIP-seq, ChIA-PET, and Hi-C technologies. Programmnye Sistemy: Teoriya i Prilozheniya = Program Systems: Theory and Applications. 2015;6(2(25)):129-148. (in Russian); Kuznetsov V.A., Singh O., Jenjaroenpun P. Statistics of protein-DNA binding and the total number of binding sites for a transcription factor in the mammalian genome. BMC Genomics. 2010;11(1):S12. DOI 10.1186/1471-2164-11-S1-S12.; Kuzniewska B., Nader K., Dabrowski M., Kaczmarek L., Kalita K. Adult deletion of SRF increases epileptogenesis and decreases activity-induced gene expression. Mol. Neurobiol. 2015;1-16. DOI 10.1007/s12035-014-9089-7.; Lee K.L., Lim S.K., Orlov Y.L., Yit le Y., Yang H., Ang L.T., Poellinger L., Lim B. Graded Nodal/Activin signaling titrates conversion of quantitative phospho-Smad2 levels into qualitative embryonic stem cell fate decisions. PLoS Genet. 2011;7(6):e1002130. DOI 10.1371/journal.pgen.1002130.; Li G., Cai L., Chang H., Hong P., Zhou Q., Kulakova E.V., Kolchanov N.A., Ruan Y. Chromatin interaction analysis with Paired-End Tag (ChIA-PET) sequencing technology and application. BMC Genomics. 2014;15(12):S11. DOI 10.1186/1471-2164-15-S12-S11.; Loh Y.H., Wu Q., Chew J.L., Vega V.B., Zhang W., Chen X., Bourque G., George J., Leong B., Liu J., Wong K.Y., Sung K.W., Lee C.W., Zhao X.D., Chiu K.P., Lipovich L., Kuznetsov V.A., Robson P., Stanton L.W., Wei C.L., Ruan Y., Lim B., Ng H.H. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat. Genet. 2006;38(4):431- 440. DOI 10.1038/ng1760.; Orlov Yu.L. Computer-assisted study of the regulation of eukaryotic gene transcription on the base of data on chromatin sequencing and precipitation. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2014;18(1):193-206. (in Russian); Orlov Yu.L., Bragin A.O., Medvedeva I.V., Gunbin K.V., Demenkov P.S., Vishnevsky O.V., Levitsky V.G., Oshchepkov D.Y., Podkolodnyy N.L., Afonnikov D.A., Grosse I., Kolchanov N.A. ICGenomics: Software for analysis of symbol genomics sequences. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2012;16(4/1):732-741. (in Russian); Orlov Yu.L., Huss M.E., Joseph R., Xu H., Vega V.B., Lee Y.K., Goh W.S., Thomsen J.S., Cheung E.C., Clarke N.D., Ng H.H. Genome-wide statistical analysis of multiple transcription factor binding sites obtained by ChIP-seq technologies. Proc. 1st ACM Workshop on Breaking Frontiers of Computational Biology (Comp- Bio ‘09). ACM, New York. N.Y., 2009;11-18.; Orlov Yu.L., Levitskii V.G., Smirnova O.G., Podkolodnaya O.A., Khlebodarova T.M., Kolchanov N.A. Statistical analysis of nucleosome formation sites. Biofizika = Biophysics. 2006;51(4):608-614. (in Russian); Orlov Yu.L., Potapov V.N. Complexity: an internet resource for analysis of DNA sequence complexity. Nucleic Acids Res. 2004;32:W628-W633. DOI 10.1093/nar/gkh466.; Orlov Yu.L., Te Boekhorst R., Abnizova I.I. Statistical measures of the structure of genomic sequences: entropy, complexity, and position information. J. Bioinform. Comput. Biol. 2006;4:523-536. DOI 10.1142/S0219720006001801.; Orlov Yu., Xu H., Afonnikov D., Lim B., Heng J.C., Yuan P., Chen M., Yan J., Clarke N., Orlova N., Huss M., Gunbin K., Podkolodnyy N., Ng H.H. Computer and statistical analysis of transcription factor binding and chromatin modifications by ChIP-seq data in embryonic stem cell. J. Integr. Bioinform. 2012;9(2):211. DOI 10.2390/biecolljib-2012-211.; Panne D., Maniatis T., Harrison S.C. An atomic model of the interferonbeta enhanceosome. Cell. 2007;129(6):1111-1123. DOI 10.1016/j.cell.2007.05.019.; Polunin D.A., Shtaiger I.A., Efimov V.M. JACOBI 4 software for multivariate analysis of microarray data. Vestnik NGU. Ser. Informatsionnye tekhnologii = Novosibirsk State University Journal of Information Technologies. 2014;12(2):90-98. (in Russian); Putta P., Orlov Yu.L., Podkolodnyy N.L., Mitra C.K. Relatively conserved common short sequences in transcription factor binding sites and miRNA. Vavilov Journal Genetics and Breeding. 2011;15(4): 750-756.; Safronova N.S., Babenko V.N., Orlov Yu.L. 117 Analysis of SNP containing sites in human genome using text complexity estimates. J. Biomol. Struct. Dyn. 2015;33(1):73-74. DOI 10.1080/07391102.2015.1032750.; Sirito M., Lin Q., Deng J.M., Behringer R.R., Sawadogo M. Overlapping roles and asymmetrical cross-regulation of the USF proteins in mice. Overlapping roles and asymmetrical cross-regulation of the USF proteins in mice. Proc. Natl. Acad. Sci. USA. 1998;95(7):3758- 3763.; Spitsina A.M., Orlov Yu.L., Podkolodnaya N.N., Svichkarev A.V., Dergilev A.I., Chen M., Kuchin N.V., Chernych I.G., Glinskiy B.M. Supercomputer analysis of genomics and transcriptomics data revealed by high-throughput DNA sequencing. Programmnye Sistemy: Teoriya i Prilozheniya = Program Systems: Theory and Applications. 2015;6(1(23)):157-174. (in Russian); Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663-676. DOI 10.1016/j.cell.2006.07.024.; Vas’kin Yu., Khomicheva I.V., Ignatieva E.V., Vityaev E.E. Expert discovery and UGENE integrated system for intelligent analysis of regulatory regions of genes. In Silico Biol. 2011- 2012;11(3-4):97-108. DOI 10.3233/ISB-2012-0448.; Vas’kin Yu.Yu., Khomicheva I.V., Ignatieva E.V., Vityaev E.E. Sequence analysis of regulatory regions of genes with the Expert Discovery relational system built in package UGENE. Vestnik NGU. Ser. Informatsionnye tekhnologii = Novosibirsk State University Journal of Information Technologies. 2012;10(1):73-86. (in Russian); Vityaev E.E. Izvlechenie znaniy iz dannykh. Kompyuternoe poznanie. Modeli kognitivnykh protsessov [Data mining: Computerized cognition. Models of cognitive processes]. Novosibirsk: Novosibirsk State University Publ., 2006. (in Russian); Vityaev E.E., Orlov Yu.L., Vishnevsky O.V., Belenok A.S., Kolchanov N.A. Computer system “Gene Discovery” to search for patterns in eukaryotic regulatory nucleotide sequences. Molekulyarnaya biologiya = Molecular Biology (Moscow). 2001;35(6):952-960. (in Russian); Xu D., Wei G., Lu P., Luo J., Chen X., Skogerb G., Chen R. Analysis of the p53/CEP-1 regulated non-coding transcriptome in C. elegans by an NSR-seq strategy. Protein Cell. 2014;5(10):770-782. DOI 10.1007/s13238-014-0071-y.; Yanan Z., Quan X., Ya G., Qiang W. Characterization of a cluster of CTCF-binding sites in a protocadherin regulatory region. Yi Chuan. 2016;38(4):323-336. DOI 10.16288/j.yczz.16-037.; Zhang Y., Wang P. A fast cluster motif finding algorithm for ChIPSeq data sets. Biomed. Res. Int. 2015;2015;218068. DOI 10.1155/2015/218068.; https://vavilov.elpub.ru/jour/article/view/850

  13. 13
  14. 14
  15. 15
    Academic Journal

    Source: Research and Practical Medicine Journal; Том 2, № 2 (2015); 44-52 ; Research'n Practical Medicine Journal; Том 2, № 2 (2015); 44-52 ; 2410-1893 ; 10.17709/2409-2231-2015-2-2

    File Description: application/pdf

    Relation: https://www.rpmj.ru/rpmj/article/view/62/74; Geens M., Mateizel I., Sermon K., De Rycke M., Spits C., Cauffman G., et al. Human embryonic stem cell lines derived from single blastomeres of two 4-cell stage embryos. Hum Reprod. 2009;24(11):2709-17.; Silva J., Smith A. Capturing pluripotency. Cell. 2008;132(4):532-6.; Wu J., Okamura D., Li M., Suzuki K., Luo C., Ma L., et al. An alternative pluripotent state confers interspecies chimaeric competency. Nature. 2015.; Thomson J.A., Itskovitz-Eldor J., Shapiro S.S., Waknitz M.A., Swiergiel J.J., Marshall V.S., et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145-7.; Hovatta O., Rodin S., Antonsson L., Tryggvason K. Concise review: animal substance-free human embryonic stem cells aiming at clinical applications. Stem Cells Transl Med. 2014;3(11):1269-74.; Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K., et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007 Nov 30;131(5):861-72.; Revazova E.S., Turovets N.A., Kochetkova O.D., Kindarova L.B., Kuzmichev L.N., Janus J.D., et al. Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells. 2007;9(3):432-49.; Tachibana M., Amato P., Sparman M., Gutierrez N.M., Tippner-Hedges R., Ma H., et al. Human embryonic stem cells derived by somatic cell nuclear transfer. Cell. 2013;153(6):1228-38.; Klimanskaya I., Chung Y., Becker S., Lu S.J., Lanza R. Human embryonic stem cell lines derived from single blastomeres. Nature. 2006;444(7118):481-5.; Gurdon J.B., Elsdale T.R., Fischberg M. Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature. 1958;182(4627):64-5.; Wabl M.R., Brun R.B., Du Pasquier L. Lymphocytes of the toad Xenopus laevis have the gene set for promoting tadpole development. Science. 1975;190(4221):1310-2.; Fusaki N., Ban H., Nishiyama A., Saeki K., Hasegawa M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci. 2009;85(8):348-62.; Warren L., Manos P.D., Ahfeldt T., Loh Y.H., Li H., Lau F., et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 2010;7(5):618-30.; Ohi Y., Qin H., Hong C., Blouin L., Polo J.M., Guo T., et al. Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nat Cell Biol. 2011;13(5):541-9.; Nazor K.L., Altun G., Lynch C., Tran H., Harness J.V., Slavin I., et al. Recurrent variations in DNA methylation in human pluripotent stem cells and their differentiated derivatives. Cell Stem Cell. 2012;10(5):620-34.; Ruiz S., Diep D., Gore A., Panopoulos A.D., Montserrat N., Plongthongkum N., et al. Identification of a specific reprogramming-associated epigenetic signature in human induced pluripotent stem cells. Proc Natl Acad Sci U S A. 2012;109(40):16196-201.; Lister R., Pelizzola M., Kida Y.S., Hawkins R.D., Nery J.R., Hon G., et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature. 2011;471(7336):68-73.; Foldes G., Matsa E., Kriston-Vizi J., Leja T., Amisten S., Kolker L., et al. Aberrant ?-Adrenergic hypertrophic response in cardiomyocytes from human induced pluripotent cells. Stem Cell Reports. 2014;3(5):905-14.; Takahashi K., Yamanaka S. Induced pluripotent stem cells in medicine and biology. Development. 2013;140(12):2457-61.; Revazova E.S., Turovets N.A., Kochetkova O.D., Agapova L.S., Sebastian J.L., Pryzhkova M.V., et al. HLA homozygous stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells. [Research Support, Non-U.S. Gov't]. 2008;10(1):11-24.; Isasi R.M., Knoppers B.M. Monetary payments for the procurement of oocytes for stem cell research: In search of ethical and political consistency. Stem Cell Res. 2007;1(1):37-44.; Deuse T., Wang D., Stubbendorff M., Itagaki R., Grabosch A., Greaves L.C., et al. SCNT-Derived ESCs with Mismatched Mitochondria Trigger an Immune Response in Allogeneic Hosts. Cell Stem Cell. 2014.; Lee A.S., Tang C., Rao M.S., Weissman I.L., Wu J.C. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med. 2013;19(8):998-1004.; Cooke M.J., Stojkovic M., Przyborski S.A. Growth of teratomas derived from human pluripotent stem cells is influenced by the graft site. Stem Cells Dev. 2006 Apr;15(2):254-9.; Chung S., Shin B.S., Hedlund E., Pruszak J., Ferree A., Kang U.J., et al. Genetic selection of sox1GFP-expressing neural precursors removes residual tumorigenic pluripotent stem cells and attenuates tumor formation after transplantation. J Neurochem. 2006;97(5):1467-80.; Tang C., Lee A.S., Volkmer J.P., Sahoo D., Nag D., Mosley A.R., et al. An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nat Biotechnol. 2011;29(9):829-34.; Choo A.B., Tan H.L., Ang S.N., Fong W.J., Chin A., Lo J., et al. Selection against undifferentiated human embryonic stem cells by a cytotoxic antibody recognizing podocalyxin-like protein-1. Stem Cells. 2008;26(6):1454-63.; Ben-David U., Gan Q.F., Golan-Lev T., Arora P., Yanuka O., Oren Y.S., et al. Selective elimination of human pluripotent stem cells by an oleate synthesis inhibitor discovered in a high-throughput screen. Cell Stem Cell. 2013;12(2):167-79.; Narva E., Autio R., Rahkonen N., Kong L., Harrison N., Kitsberg D., et al. High-resolution DNA analysis of human embryonic stem cell lines reveals culture-induced copy number changes and loss of heterozygosity. Nat Biotechnol. 2010;28(4):371-7.; Amps K., Andrews P.W., Anyfantis G., Armstrong L., Avery S., Baharvand H., et al. Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol. 2011;29(12):1132-44.; Hussein S.M., Batada N.N., Vuoristo S., Ching R.W., Autio R., Narva E., et al. Copy number variation and selection during reprogramming to pluripotency. Nature. 2011;471(7336):58-62.; Laurent L.C., Ulitsky I., Slavin I., Tran H., Schork A., Morey R., et al. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell. 2011;8(1):106-18.; Daughtry B., Mitalipov S. Concise review: parthenote stem cells for regenerative medicine: genetic, epigenetic, and developmental features. Stem Cells Transl Med. 2014;3(3):290-8.; Ma H., Morey R., O'Neil R.C., He Y., Daughtry B., Schultz M.D., et al. Abnormalities in human pluripotent cells due to reprogramming mechanisms. Nature. 2014;511(7508):177-83.; Andrews P.W., Cavanagro J., Deans R., Feigel E., Horowitz E., Keating A., et al. Harmonizing standards for producing clinical-grade therapies from pluripotent stem cells. Nat Biotechnol. 2014;32(8):724-6.; Martin M.J., Muotri A., Gage F., Varki A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med. 2005;11(2):228-32.; Melkoumian Z., Weber J.L., Weber D.M., Fadeev A.G., Zhou Y., Dolley-Sonneville P., et al. Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat Biotechnol. 2010;28(6):606-10.; Rodin S., Domogatskaya A., Strom S., Hansson E.M., Chien K.R., Inzunza J., et al. Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat Biotechnol. [Research Support, Non-U.S. Gov't]. 2010;28(6):611-5.; Villa-Diaz L.G., Nandivada H., Ding J., Nogueira-de-Souza N.C., Krebsbach PH, O'Shea KS, et al. Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nat Biotechnol. 2010;28(6):581-3.; Miyazaki T., Futaki S., Suemori H., Taniguchi Y., Yamada M., Kawasaki M., et al. Laminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells. Nat Commun. 2012;3:1236.; Rodin S., Antonsson L., Niaudet C., Simonson O.E., Salmela E., Hansson E.M., et al. Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment. Nat Commun. 2014;5:3195.; Rodin S., Antonsson L., Hovatta O., Tryggvason K. Monolayer culturing and cloning of human pluripotent stem cells on laminin-521-based matrices under xeno-free and chemically defined conditions. Nat Protoc. 2014 Oct;9(10):2354-68.; Lu H.F., Chai C., Lim T.C., Leong M.F., Lim J.K., Gao S., et al. A defined xeno-free and feeder-free culture system for the derivation, expansion and direct differentiation of transgene-free patient-specific induced pluripotent stem cells. Biomaterials. 2014;35(9):2816-26.; Nakagawa M., Taniguchi Y., Senda S., Takizawa N., Ichisaka T., Asano K., et al. A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Sci Rep. 2014;4:3594.; Taylor C.J., Bolton E.M., Pocock S., Sharples L.D., Pedersen R.A., Bradley J.A. Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet. 2005;366(9502):2019-25.; Didie M., Christalla P., Rubart M., Muppala V., Doker S., Unsold B., et al. Parthenogenetic stem cells for tissue-engineered heart repair. J Clin Invest. 2013;123(3):1285-98.; Verda L., Kim D.A., Ikehara S., Statkute L., Bronesky D., Petrenko Y., et al. Hematopoietic mixed chimerism derived from allogeneic embryonic stem cells prevents autoimmune diabetes mellitus in NOD mice. Stem Cells. 2008;26(2):381-6.; Grinnemo K.H., Genead R., Kumagai-Braesch M., Andersson A., Danielsson C., Mansson-Broberg A., et al. Costimulation blockade induces tolerance to HESC transplanted to the testis and induces regulatory T-cells to HESC transplanted into the heart. Stem Cells. 2008;26(7):1850-7.; Crook J.M., Peura T.T., Kravets L., Bosman A.G., Buzzard J.J., Horne R., et al. The generation of six clinical-grade human embryonic stem cell lines. Cell Stem Cell. 2007;1(5):490-4.; Stephenson E., Jacquet L., Miere C., Wood V., Kadeva N., Cornwell G., et al. Derivation and propagation of human embryonic stem cell lines from frozen embryos in an animal product-free environment. Nat Protoc. 2012;7(7):1366-81.; Tannenbaum S.E., Turetsky T.T., Singer O., Aizenman E., Kirshberg S., Ilouz N., et al. Derivation of xeno-free and GMP-grade human embryonic stem cells--platforms for future clinical applications. PLoS One. 2012;7(6):e35325.; Murdoch A., Braude P., Courtney A., Brison D., Hunt C., Lawford-Davies J., et al. The procurement of cells for the derivation of human embryonic stem cell lines for therapeutic use: recommendations for good practice. Stem Cell Rev. 2012;8(1):91-9.; Cyranoski D. Stem-cell pioneer banks on future therapies. Nature. 2012;488(7410):139.; Keirstead H.S., Nistor G., Bernal G., Totoiu M., Cloutier F., Sharp K., et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci. 2005;25(19):4694-705.; Hayden E.C. Funding windfall rescues abandoned stem-cell trial. Nature. 2014;510(7503):18.; Baker M. Stem-cell pioneer bows out. Nature. 2011;479(7374):459.; Schwartz S.D., Hubschman J.P., Heilwell G., Franco-Cardenas V., Pan C.K., Ostrick R.M., et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 2012;379(9817):713-20.; Schwartz S.D., Regillo C.D., Lam B.L., Eliott D., Rosenfeld P.J., Gregori N.Z., et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2014.; Kroon E., Martinson L.A., Kadoya K., Bang A.G., Kelly O.G., Eliazer S., et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol. 2008;26(4):443-52.; https://www.rpmj.ru/rpmj/article/view/62

  16. 16
  17. 17
  18. 18
  19. 19
    Academic Journal

    Source: Russian Journal of Transplantology and Artificial Organs; Том 12, № 1 (2010); 86-93 ; Вестник трансплантологии и искусственных органов; Том 12, № 1 (2010); 86-93 ; 1995-1191 ; 10.15825/1995-1191-2010-1

    File Description: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/296/238; Adams G.B. et al. Therapeutic targeting of a stem cell niche // Nat Biotechnol. 2007. Vol. 25. Р. 238−243.; Ahrlund-Richter L., De Luca M., Marshak D. et al. Isola- tion and Production of Cells Suitable for Human Ther- apy: Challenges Ahead // Cell Stem Cell. 2009. Vol. 4. Р. 20–26.; Angoulvant D., Fazel S., Li R.K. Neovascularization derived from cell transplantation in ischemic myocar- dium // Mol Cell Biochem. 2004. Vol. 264. Р. 133–142.; Asahara T. et al. Bone marrow origin of endothelial pro- genitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization // Circ. Res. 1999. Vol. 85. Р. 221–228.; Bhatia M. AC133 expression in human stem cells // Leu- kemia. 2001. Vol. 15. Р. 1685–1688.; Brittan M., Braun K.M., Reynolds L.E. et al. Bone mar- row cells engraft within the epidermis and proliferate in vivo with no evidence of cell fusion // J. Pathol. 2005. Vol. 205. Р. 1–13.; Chambers I., Smith A. Self-renewal of teratocarcinoma and embryonic stem cells // Oncogene. 2004. Vol. 23. Р. 7150–7160.; Chochola M., Pytlík R., Kobylka P. et al. Autologous in- tra-arterial infusion of bone marrow mononuclear cells in patients with critical leg ischemia // Int. Angiol. 2008. Vol. 27 (4). Р. 281–290.; Condorelli G., Borello U., De Angelis L. et al. Cardio- myocytes induce endothelial cells to trans-differentiate into cardiac muscle: implication for myocardium re- generation // Proc. Nat. l Acad. Sci USA. 2001. Vol. 98. Р. 10733–10738.; Davani S., Deschaseaux F., Chalmers D. еt al. Can stem cells mend a broken heart? // Cardiovasc Res. 2005. Vol. 65. Р. 305–316.; Doss M.X., Koehler C.I., Gissel C. еt al. Embryonic stem cells: a promising tool for cell replacement therapy // J. Cell Mol. Med. 2004. Vol. 8. Р. 465–473.; Drukker M., Benvenisty N. The immunogenicity of hu- man embryonic stem-derived cells // Trends Biotechnol. 2004. Vol. 22. Р. 136–141.; Fernandez-Aviles F., San Roman J.A., Garcia-Frade J. Experimental and clinical regenerative capability of hu- man bone marrow cells after myocardial infarction // Circ Res. 2004. Vol. 95. Р. 742–748.; Friedenstein A.J., Chailakhjan R.K., Lalykina K.S. The development of fibroblast colonies in monolayer cultures of guineapig bone marrow and spleen cells // Cell Tissue Kinet. 1970. Vol. 3. Р. 393–403.; Galli D., Innocenzi A., Staszewsky L. Mesoangioblasts, vessel-associated multipotent stem cells, repair the in- farcted heart by multiple cellular mechanisms. A com- parison with bone marrow progenitors, fibroblasts and endothelial cells // Arterioscler. Thromb. Vasc. Biol. 2005. Vol. 25. Р. 692–697.; Grove J.E., Bruscia E., Krause D.S. Plasticity of bone marrow derived stem cells // Stem Cells. 2004. Vol. 22. Р. 487–500.; Guo Y., Lubbert M., Engelhardt M. CD34-hematopoietic stem cells: current concepts and controversies // Stem Cells. 2003. Vol. 21. Р. 15–20.; Hatano S.Y., Tada M., Kimura H. еt al. Pluripotential competence of cells associated with Nanog activity // Mech Dev. 2005. Vol. 122. Р. 67–79.; Hattan N., Kawaguchi H., Ando K. et al. Purified car- diomyocytes from bone marrow mesenchymal stem cells produce stable intracardiac grafts in mice // Cardiovasc. Res. 2005. Vol. 65. Р. 334–344.; Heng B.C., Haider H.K., Sim E.K. еt al. Comments about possible use of human embryonic stem cellderived cardiomyocytes to direct autologous adult stem cells into the cardiomyogenic lineage // Acta Cardiol. 2005. Vol. 60. Р. 7–12.; Hodgson D.M., Behar A., Zingman L.V. еt al. Stable ben- efit of embryonic stem cell therapy in myocardial infarc- tion // Am J. Physiol. Heart Circ. Physiol. 2004. Vol. 287. Р. H471–H479.; Isner J.M. Myocardial gene therapy // Nature. 2002. Vol. 415. P. 234–239.; Kajstura J., Rota M., Whang B. et al. Bone marrow cells differentiate in cardiac cell leneages after infarction in- dependently of cell fusion // Circ. Res. 2005. Vol. 96. Р. 127–137.; Kaushal S. et al. Functional small-diameter neovessels created using endothelial.; Khurana R., Simons M. Insights from angiogenesis trials using fibroblast growth factor for advanced arterioscle- rotic disease // Trends Cardiovasc. Med. 2003. Vol. 13. Р. 116–122.; Kofidis T., deBruin J.L., Yamane T. еt al. Stimulation of paracrine pathways with growth factors enhances em- bryonic stem cell engraftement and host-specific differ- entiation in the heart after ischemic myocardial injury // Circulation. 2005. Vol. 111. Р. 2486–2493.; Koh C.J., Atala A. Tissue engineering, stem cells, and cloning: opportunities for regenerative medicine // J. Am. Soc. Nephrol. 2004. Vol. 15. Р. 1113–1125.; Landry D.W., Zucker H.A. Embryonic death and the cre- ation of human embryonic stem cells // J. Clin. Invest. 2004. Vol. 114. Р. 1184–1186.; Leong F.T., Freeman L.J. Acute renal infarction // J. R. Soc. Med. 2005. Vol. 98. Р. 121–122.; Levenberg S., Golub J., Amit M. еt al. Endothelial cells derived from human embryonic stem cells // Proc. Natl. Acad. Sci USA. 2002. Vol. 99. Р. 4391–4396.; Li R.K., Jia Z.Q., Weisel R.D., Merante F., Mickle D.A. Smooth muscle cell transplantation into myocardial scar tissue improves heart function // J. Mol. Cell Cardiol. 1999. Vol. 31. Р. 513–522.; Lunde K., Solheim S., Aakhus S. et al. Exercise capacity and quality of life after intracoronary injection of autolo- gous mononuclear bone marrow cells in acute myocar- dial infarction: results from the Autologous Stem cell Transplantation in Acute Myocardial Infarction (ASTAMI) randomized controlled trial // Am. Heart J. 2007.; Vol. 154. Р. 710.e1–710.e8.; Majka S.M. et al. Distinct progenitor populations in skeletal muscle are bone marrow.; Martin M.J., Muotri A., Gage F., and Varki A. Human embryonic stem cells express an immunogenic nonhuman sialic acid // Nat. Med. 2005. Vol. 11. Р. 228–232.; Menasche P. Skeletal muscle satellite cell transplantation // Cardiovasc. Res. 2003. Vol. 58. Р. 351–357.; Morrison S.J., Weissman I.L. The long-term repopula- ting subset of hematopoietic stem cells is deterministic and isolatable by phenotype // Immunity. 1994. Vol. 1.Р. 661–673.; Napoli C. et al. Therapeutic targeting of the stem cell niche in experimental hindlimb ischemia // Nat. Clin.; Pract. Cardiovasc. Med. 2008. Vol. 5. Р. 571–579.; Odorico J.S., Kaufman D.S., Thomson J.A. Multilineage differentiation from human embryonic stem cell lines //; Stem Cells. 2001. Vol. 19. Р. 193–204.; Osawa M., Nakamura K., Nishi N. еt al. In vivo self-renewal of c Kit+ Sca-1+Lin(low/-) hematopoietic stem; cells // J. Immunol. 1996. Vol. 156. Р. 3207–3214.; Otani A. et al. Bone marrow derived stem cells target retinal astrocytes and can promote or inhibit retinal angiogenesis // Nat. Med. 2002. Vol. 8. Р. 1004–1010.; Palermo A.T., Labarge M.A., Doyonnas R., Pomerantz J., and Blau H.M. Bone marrow contribution to skeletal muscle: a physiological response to stress // Dev Biol. 2005. Vol. 279. Р. 336–344.; Pera M.F., Trounson A.O. Human embryonic stem cells: prospects for development // Development. 2004.; Vol. 131. Р. 5515–5525.; Pittenger M.F., Martin B.J. Mesenchymal stem cells and their potential as cardiac therapeutics // Circ. Res. 2004.; Vol. 95. Р. 9–20.; Rao M., Condic M.L. Alternative Sources of Pluripotent Stem Cells: Scientific Solutions to an Ethical Dilem- ma // Stem Cells and Development. 2008. Vol. 17. No 1. Р. 1–10.; Reyes M. et al. Origin of endothelial progenitors in human postnatal bone marrow // J. Clin. Invest. 2002. Vol. 109. Р. 337–346.; Sata M. et al. Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of athe- rosclerosis // Nat. Med. 2002. Vol. 8. Р. 403–409.; Schachinger V., Erbs S., Elsasser A. et al. (2006). Im- proved clinical outcomes after intracoronary admi- nistration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial // Eur. Heart J. 2006. Vol. 27. Р. 2775–2783.; Schulinder M., Yanuka O., Itskovitz-Elder J., Melton D., Benvenisty N. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells // Proc. Natl. Acad. Sci USA. 2000. Vol. 97. Р. 11307–11312.; Shizuru J.A., Negrin R.S., Weissman I.L. Hematopoietic stem and progenitor cells: clinical and preclinical re- generation of the hematolymphoid system // Annu Rev Med. 2005. Vol. 56. Р. 509–538.; Silva G.V., Litovsky S., Assad J.A.R., Sousa A.L.S. et al. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model // Circula- tion. 2005. Vol. 111. Р. 150–156.; Smith J.R., Pochampally R., Perry A., Hsu S.C., Proc- kop D.J. Isolation of a highly clonogenic and multipo- tential subfraction of adult stem cells from bone marrow stroma // Stem Cells. 2004. Vol. 22. Р. 823–831.; Takeda Y., Mori T., Imabayashi H., Kiyono T. et al. Can the life span of human marrow stromal cells be prolonged by bmi-1, E6, E7, and/or telomerase without affecting cardiomyogenic differentiation? // J. Gene Med. 2004. Vol. 6. Р. 833–845.; Tzukerman M., Rosenberg T., Ravel Y. еt al. An experi- mental platform for studying growth and invasiveness of tumor cells within teratomas derived from human em- bryonic stem cells // Proc. Natl. Acad. Sci USA. 2003. Vol. 100. Р. 13507–13512.; Wang J.S., Shum-Tim D., Chedrawy E. et al. The coro- nary delivery of marrow stromal cells for myocardial re- generation: pathophysiological and therapeutic implica- tions // J. Thorac. Cardiovasc. Surg. 2001. Vol. 122 (4). Р. 699–705.; Weissman I.L., Anderson D.J., Gage F. Stem and pro- genitor cells: origins, phenotypes, lineage commitments, and transdifferentiations // Annu Rev Cell Dev Biol. 2001. Vol. 17. Р. 387–403.; Yamada S., Nelson T.J., Crespo-Diaz R.J. et al. Embry- onic stem cell therapy of heart failure in genetic cardio- myopathy Stem Cells. 2008. Vol. 26 (10). Р. 2644–2653.; Yoon Y.S., Wecker A., Heyd L., Park J.S. et al. Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarc- tion // J. Clin. Invest. 2005. Vol. 115. Р. 326–338.; Young P.P., Hofling A.A., Sands M.S. VEGF increases engraftment of bone marrow-derived endothelial proge- nitor cells (EPCs) into vasculature of newborn murine recipients // Proc. Natl. Acad. Sci. USA. 2002. Vol. 99. Р. 11951–11956.; Yuasa S., Itabashi Y., Koshimizu U., Tanaka T. et al. Transient inhibition of BMP signaling by Noggin indu- ces cardiomyocyte differentiation of mouse embryonic stem cells // Nat. Biotechnol. 2005. Vol. 23. Р. 607–611.; Zhang M., Methot D., Poppa V., Fujio Y. еt al. Cardio- myocyte grafting for cardiac repair: graft cell death and anti-death strategies // J. Mol. Cell Cardiol. 2001. Vol. 33. Р. 907–921.; https://journal.transpl.ru/vtio/article/view/296

  20. 20