Showing 1 - 20 results of 111 for search '"эллипсометрия"', query time: 0.89s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
    Conference

    Contributors: Юрьев, Юрий Николаевич

    Relation: Перспективы развития фундаментальных наук : сборник научных трудов XIV Международной конференции студентов, аспирантов и молодых ученых, г. Томск, 25-28 апреля 2017 г. Т. 1 : Физика. — Томск, 2017.; http://earchive.tpu.ru/handle/11683/41465

  15. 15
    Academic Journal

    Contributors: The Belarusian Republican Foundation for Fundamental Research, Белорусский республиканский фонд фундаментальных исследований

    Source: Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series; Том 54, № 3 (2018); 360-368 ; Известия Национальной академии наук Беларуси. Серия физико-математических наук; Том 54, № 3 (2018); 360-368 ; 2524-2415 ; 1561-2430 ; 10.29235/1561-2430-2018-54-3

    File Description: application/pdf

    Relation: https://vestifm.belnauka.by/jour/article/view/340/320; Rodríguez-Gómez A., Moreno-Rios M., García-García R., Pérez-Martínez A.L., Reyes-Gasga J. Role of the substrate on the growth of silicon quantum dots embedded in silicon nitride thin films. Materials Chemistry and Physics, 2018, vol. 208, pp. 61–67. https://doi.org/10.1016/j.matchemphys.2018.01.032; Shuleiko D. V., Zabotnov S. V., Zhigunov D. M., Zelenina A. A., Kamenskih I. A., Kashkarov P. K., Photoluminescence of Amorphous and Crystalline Silicon Nanoclusters in Silicon Nitride and Oxide Superlattices. Semiconductors, 2017, vol. 51, no. 2, pp. 196–202. https://doi.org/10.1134/S1063782617020208; Kistner J., Chen X., Wenig Y., Strunk H. P., Schubert M. B., Werner J. H. Photoluminescence from silicon nitride – no quantum effect. Journal of Applied Physics, 2011, vol. 110, no. 2, p. 023520 (5 p.). https://doi.org/10.1063/1.3607975; Hiller D., Zelenina A., Gutsch S., Dyakov S. A., Lopez-Vidrier L., Estrade S., Peiro F., Garrido B., Valenta J., Korinek M., Trojanek F., Maly P., Schnabel M., Weiss C., Janz S., Zachrias M. Absence of quantum confinement effects in the photoluminescence of Si3 N4 -embedded Si nanocrystals. Journal of Applied Physics, 2014, vol. 115, no. 20, p. 204301 (9 p.). https://doi.org/10.1063/1.4878699; Parkhomenko I., Vlasukova L., Komarov F., Milchanin O., Makhavikou M., Mudryi A., Zhivulko V., Żuk J., Kopyciński P., Murzalinov D. Origin of visible photoluminescence from Si-rich and N-rich silicon nitride films. Thin Solid Films, 2017, vol. 626, pp.70–75. https://doi.org/10.1016/j.tsf.2017.02.027; Kanicki J., Warren W. L. Defects in amorphous hydrogenated silicon nitride films. Journal of Non-Crystalline Solids, 1993, vol. 164-166, pp. 1055–1060. https://doi.org/10.1016/0022-3093(93)91180-B; Singh S. P., Srivastava P. Recent progress in the understanding of Si-nanostructures formation in a-SiN :H thin film for Si-based optoelectronic devices. Solid State Phenomena, 2011, vol. 171, pp. 1–17. https://doi.org/10.4028/www.scientific.net/SSP.171.1; Torchynska T. V., Casas Espinola J. L., Vergara Hernandez E., Khomenkova L., Delachat F., Slaoui A. Effect of the stoichiometry of Si-rich silicon nitride thin films on their photoluminescence and structural properties. Thin Solid Films, 2015, vol. 581, pp. 65–69. https://doi.org/10.1016/j.tsf.2014.11.070; Mercaldo L. V., Esposito E. M., Veneri P. D., Rezgui B., Sibai A., Bremond G. Photoluminescence properties of partially phase separated silicon nitride films. Journal of Applied Physics, 2011, vol. 109, no. 9, p. 093512 (5 p.). https://doi.org/10.1063/1.3575172; Wang M., Xie M., Ferraioli L., Yuan Z., Li D., Yang D., Pavesi L. Light emission properties and mechanism of low temperature prepared amorphous SiNx films. I. Room-temperature band tail states photoluminescence. Journal of Applied Physics, 2008, vol. 104, no. 8, p. 083504 (4 p.). https://doi.org/10.1063/1.2996292; Xie M., Li D., Wang F., Yang D. Luminescence properties of silicon-rich silicon nitride films and light emitting devices. ECS Transactions, 2011, vol. 35, no. 18, pp. 3–19. https://doi.org/10.1149/1.3647900; Koutsoureli M., Michalas L., Gantis A., Papaioannou G. A study of deposition conditions on charging properties of PECVD silicon nitride films for MEMS capacitive switches. Microelectronics Reliability, 2014, vol. 54, no. 9-10, pp. 2159−2163. https://doi.org/10.1016/j.microrel.2014.08.002; Necas D., Perina V., Franta D., Ohlídal I., Zemek J. Optical characterization of non-stoichiometric silicon nitride films. Physical Status Solidi C, 2008, vol. 5, no. 5, pp. 1320–1323. https://doi.org/10.1002/pssc.200777767; Maeda K., Umezu I. Atomic micro structure and electronic properties of a-SiN :H deposited by radio frequency glow discharge. Journal of Applied Physics, 1991, vol. 70, no 5, pp. 2745–2754. https://doi.org/10.1063/1.350352; Banerji N., Serra J., Chiussi S., Leo Ân B., Pe Ârez-Amor M. Photo-induced deposition and characterization of variable bandgap a-SiN:H alloy films. Applied Surface Science, 2000, vol. 168, no. 1-4, pp. 52–56. https://doi.org/10.1016/S0169-4332(00)00583-3; Debieu O., Nalini R. P., Cardin J., Portier X., Perriere J., Gourbilleau F. Structural and optical characterization of pure Si-rich nitride thin films. Nanoscale Research Letters, 2013, vol. 8, no. 1, p. 31. https://doi.org/10.1186/1556-276X-8-31; Wang M., Li D., Yuan Z., Yang D., Quen D. Photoluminescence of Si-rich silicon nitride defect-related states and silicon nanoclusters. Applied Physics Letters, 2007, vol. 90, no. 13, p. 131903 (3 p.). https://doi.org/10.1063/1.2717014; Wang X., Liu Y., Chen D., Dong L., Chen C. Photoluminescence of Si-rich SiNx films deposited by LPCVD under different conditions. International Journal of Modern Physics B, 2007, vol. 21, no. 26, pp. 4583–4592. https://doi.org/10.1142/S0217979207037995; Volodin V. A., Bugaev K. O., Gutakovsky A. K., Fedina L. I., Neklyudova M. A., Latyshev A. V., Misiuk A. Evolution of silicon nanoclusters and hydrogen in SiN :H films: Influence of high hydrostatic pressure under annealing. Thin Solid Films, 2012, vol. 520, no. 19, pp. 6207–6214. https://doi.org/10.1016/j.tsf.2012.05.019; Jackson W. A., Searly T. M., Austin I. G., Gibson R. A. Photoluminescence excitation studies of a-SiNx :H alloys. Journal of Non-Crystalline Solids, 1986, vol. 77–78, pp. 909–912. https://doi.org/10.1016/0022-3093(85)90808-7; Mohammed S., Nimmo M. T., Malko A. V., Hinkle C. L. Chemical bonding and defect states of LPCVD grown silicon-rich Si3N4 for quantum dot applications. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2014, vol. 32, no. 2, p. 021507 (7 p.). https://doi.org/10.1116/1.4861338; Krückel C. J., Fülöp A., Ye Z., Andrekson P. A., Torres-Company V. Optical bandgap engineering in nonlinear silicon nitride waveguides. Optics Express, 2017, vol. 25, no. 13, pp. 15370–15380. https://doi.org/10.1364/OE.25.015370; Charifi H., Slaoui A., Stoquert J. P., Chaib H., Hannour A. Opto-structural properties of silicon nitride thin films deposited by ECR-PECVD. World Journal of Condensed Matter Physics, 2016, vol. 6, no. 1, pp. 7–16. https://doi.org/10.4236/wjcmp.2016.61002; Smietana M., Bock W. J., Szmidt J. Evolution of optical properties with deposition time of silicon nitride and diamond-like carbon films deposited by radio-frequency plasma-enhanced chemical vapor deposition method. Thin Solid Films, 2011, vol. 519, no. 19, pp. 6339–6343. https://doi.org/10.1016/j.tsf.2011.04.032; Joshi B. C., Eranna G., Runthala D. P., Dixit B. B., Wadhawan O. P., Vyas P. D. LPCVD and PECVD silicon nitride for microelectronics technology. Indian Journal of Engineering and Materials Sciences, 2000, vol. 7, pp. 303–309. URL; Robertson J. Defects and hydrogen in amorphous silicon nitride. Philosophical Magazine B, 1994, vol. 69, no 2, pp. 307–326. https://doi.org/10.1080/01418639408240111; Goirgis F., Vinegoni C., Pavesi L. Optical absorption and photoluminescence properties of a-Si1-x Nx :H films deposited by plasma-enhanced CVD. Physical Review B, 2000, vol. 61, no. 7, pp. 4693–4698. https://doi.org/10.1103/PhysRevB.61.4693; Austin I. G., Jackson W. A., Searle T. M., Bhat P. K., Gibson R. A. Photoluminescence properties of a-SiNx :H alloys. Philosophical Magazine B, 1985, vol. 52, no. 3, pp. 271–288. https://doi.org/10.1080/13642818508240600; Hasegawa S., Matuura M., Kurata Y. Amorphous SiN:H dielectrics with low density of defects, Applied Physics Letters, 1986, vol. 49, no. 19, pp. 1272–1274. https://doi.org/10.1063/1.97383; Kato H., Kashio N., Ohki Y., Seol K. S., Noma T. Band-tail photoluminescence in hydrogenated amorphous silicon oxynitride and silicon nitride films. Journal of Applied Physics, 2003, vol. 93, no. 1, pp. 239–244. https://doi.org/10.1063/1.1529292; Dyakov S. A., Zhigunov D. M., Hartel A., Zacharias M., Perova T. S., Timoshenko V. Yu. Enhancement of photoluminescence signal from ultrathin layers with silicon nanocrystals. Applied Physics Letters, 2012, vol. 100, no. 6, p. 061908 (4 p.). https://doi.org/10.1063/1.3682537; Gritsenko V. A. Atomic structure of the amorphous nonstoichiometric silicon oxides and nitrides. Physics-Uspekhi, 2008, vol. 51, no. 7, pp. 699–708. https://doi.org/10.3367/UFNr.0178.200807c.0727; Gritsenko V. A., Novikov Yu. N., Chin A. Short-range order and charge transport in SiOx : experiment and numerical simulation. Technical Physics Letters, 2018, vol. 44, no. 6, pp. 541–544. https://doi.org/10.1134/S1063785018060196; https://vestifm.belnauka.by/jour/article/view/340

  16. 16
  17. 17
    Academic Journal

    Contributors: Міністерство освіти і науки України

    Source: Физическая инженерия поверхности; Том 11, № 1 (2013): Фізична інженерія поверхні; 103 - 111 ; Фізична інженерія поверхні; Том 11, № 1 (2013): Фізична інженерія поверхні; 103 - 111 ; 1999-8112 ; 1999-8074

    File Description: application/pdf

  18. 18
    Academic Journal

    Source: Siberian journal of oncology; Том 16, № 4 (2017); 32-41 ; Сибирский онкологический журнал; Том 16, № 4 (2017); 32-41 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2017-16-4

    File Description: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/568/457; Jemal A., Siegel R., Ward E., Hao Y., Xu J., Thun M.J. Cancer statistics, 2009. CA Cancer J Clin. 2009 Jul‑Aug; 59 (4): 225–49. doi:10.3322/caac.20006.; Cai S.R., Zhang S.Z., Zhu H.H., Huang Y.Q., Li Q.R., Ma X.Y., Yao K.Y., Zheng S. Performance of a colorectal cancer screening protocol in an economically and medically underserved population. Cancer Prev Res (Phila). 2011 Oct; 4 (10): 1572–9. doi:10.1158/1940-6207.CAPR-10-0377.; Pawlik T.M., Scoggins C.R., Zorzi D., Abdalla E.K., Andres A., Eng C., Curley S.A., Loyer E.M., Muratore A., Mentha G., Capussotti L., Vauthey J.N. Effect of surgical margin status on survival and site of recurrence after hepatic resection for colorectal metastases. Ann Surg. 2005; 241: 715–22. doi:10.1097/01.sla.0000160703.75808.7d.; Meyerhardt J.A., Mangu P.B., Flynn P.J., Corde L., Loprinzi C.L., Minsky B.D., Petrelli N.J., Ryan K., Schrag D.H., Wong S.L., Benson A.B. Follow-Up Care, Surveillance Protocol, and Secondary Prevention Measures for Survivors of Colorectal Cancer: American Society of Clinical Oncology Clinical Practice Guideline Endorsement. J Clin Oncol. 2013 Dec 10; 31 (35): 4465–70. doi:10.1200/JCO.2013.50.7442.; Bathe O.F., Ernst S., Sutherland F.R., Dixon E., Butts C., Bigam D., Holland D., Porter G.A., Koppel J., Dowden S. A phase II experience with neoadjuvant irinotecan (CPT-11), 5-fluorouracil (5-FU) and leucovorin (LV) for colorectal liver metastases. BMC Cancer. 2009; 9: 156–67. doi:10.1186/1471-2407-9-156.; Pawlik T.M., Schulick R.D., Choti M.A. Expanding criteria for resectability of colorectal liver metastases. Oncologist. 2008; 13: 51–64. doi:10.1634/theoncologist.2007-0142.; Shah S.A., Bromberg R., Coates A., Rempel E., Simunovic M., Gallinger S. Survival after liver resection for metastatic colorectal carcinoma in a large population. J Am Coll Surg. 2007; 205: 676–83. doi:10.1016/j.jamcollsurg.2007.06.283.; Wild N., Andres H., Rollinger W., Krause F., Dilba P., Tacke M., Karl J. A combination of serum markers for the early detection of colorectal cancer. Clin Cancer Res. 2010; 16: 6111–21. doi:10.1158/1078-0432.CCR-10-0119.; Shastri Y.M., Stein J.M. Faecal tumour pyruvate kinase M2: not a good marker for the detection of colorectal adenomas. Br J Cancer. 2008 Sep 30; 99: 1366, author reply 1367. doi:10.1038/sj.bjc.6604656.; Jonkheijm P., Weinrich D., Schroder H., Niemeyer C.M., Waldmann H. Chemical Strategies for Generating Protein Biochips. Angew Chem Int Ed Engl. 2008; 47: 9618–47. doi:10.1002/anie.200801711.; Рыхлицкий С.В., Кручинин В.Н., Швец В.А., Спесивцев Е.В., Прокопьев В.Ю. Спектральный плазмон-эллипсометрический комплекс «Эллипс-СПЭК». Приборы и техника эксперимента. 2013; 1: 137–138. doi:10.7868/S0032816212060092.; Спесивцев Е.В., Рыхлицкий С.В., Назаров Н.И. Автоматический сканирующий микроэллипсометр. Автометрия. 1997; 1: 100–5.; Власов В.В., Синяков А.Н., Пышный Д.В., Рыхлицкий С.В., Кручинин В.Н., Спесивцев Е.В., Пышная И.А., Костина Е.В., Дмитриенко Е.Д., Бессмельцев В.П. Эллипсометрический мониторинг в микрочиповых label-free биотехнологиях. Автометрия. 2011; 47 (5): 67–7; Dmitrienko E., Naumova O., Fomin B., Kupryushkin M., Volkova A., Amirkhanov N., Semenov D., Pyshnaya I., Pyshnyi D. Surface modification of SOI-FET sensors for label-free and specific detection of short RNA analyte. Nanomedicine. 2016; 11 (16): 2073–2082.; Иванов Ю.Д., Плешакова Т.О., Козлов А.Ф., Мальсагова К.А., Крохин Н.В., Кайшева А.Л., Шумов И.Д., Попов В.П., Наумова О.В., Фомин Б.И., Насимов Д.А., Асеев А.Л., Арчаков А.И. КНИ-нанопроволочный транзистор для детекции молекул D-NFATc1. Автометрия. 2013; 49 (5): 119–126.; Naumova O.V., Popov V.P., Safronov L.N., Fomin B.I., Nasimov D.A., Latyshev A.V., Aseev A.L., Ivanov Yu.D., Archakov A.I. Ultra-Thin SOI Layer Nanostructuring and Nanowire Transistor Formation for Femto-Mole Electronic Biosensors. ECS Transactions. 2009; 25 (10): 83–87. doi:10.1149/1.3241580.; Demir A.S., Erdenen F., Muderrisoglu C., Toros A.B., Bektas H., Gelisgen R., Tabak O., Altunoglu E., Uzun H., Erdem Huq G., Aral H. Diagnostic and prognostic value of tumor M2-pyruvate kinase levels in patients with colorectal cancer. Turk J Gastroenterol. 2013; 24(1): 36–42. doi:10.4318/tjg.2013.0607.; Meng W., Zhu H.H., Xu Z.F., Cai S.R., Dong Q., Pan Q.R., Zheng S., Zhang S.Z. Serum M2-pyruvate kinase: A promising non-invasive biomarker for colorectal cancer mass screening. World J Gastrointest Oncol. 2012 June 15; 4 (6): 145–51. doi:10.4251/wjgo.v4.i6.145.; Tonus C., Neupert G., Sellinger M. Colorectal cancer screening by non-invasive metabolic biomarker fecal tumor M2-PK. World J. Gastroenterol. 2006; 12 (43): 7007–11. doi:10.3748/wjg.v12.i43.7007.; Kaura B., Bagga R., Patel F.D. Evaluation of the Pyruvate Kinase isoenzyme tumor (Tu M2-PK) as a tumor marker for cervical carcinoma. J Obstet Gynaecol Res. 2004; 30 (3): 193–96. doi:10.1111/j.1447-0756.2004.00187.x.; Mazurek S., Boschek C.B., Hugo F., Eigenbrodt E. Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol. 2005; 15: 300–8. doi:10.1016/j.semcancer.2005.04.009.; Christofk H.R., Vander Heiden M.G., Harris M.H., Ramanathan A., Gerszten R.E., Wei R., Fleming M.D., Schreiber S.L., Cantley L.C. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 2008; 452: 230–33. doi:10.1038/nature06734.; Walkowiak J., Banasiewicz T., Krokowicz P., Hansdorfer-Korzon R., Drews M., Herzig K.H. Fecal pyruvate kinase (M2-PK): a new predictor for inflammation and severity of pouchitis. Scand J Gastroenterol. 2005; 40 (12): 1493–4. doi:10.1080/00365520500319112.; Helm J., Choi J., Sutphen R., Barthel J.S., Albrecht T.L., Chirikos T.N. Current and evolving strategies for colorectal cancer screening. Cancer Control. 2003; 10: 193–204.; Feng S., Wang W., Tai I.T., Chen G., Chen R., Zeng H. Label-free surface-enhanced Raman spectroscopy for detection of colorectal cancer and precursor lesions using blood plasma. Biomed Optics Express. 2015; 6 (9): 3494–3502. doi:10.1364/BOE.6.003494.; Zhou Q., Peng R.Q., Wu X.J., Xia Q., Hou J.H., Ding Y., Zhou Q.M., Zhang X., Pang Z.Z., Wan D.S., Zeng Y.X., Zhang X.S. The density of macrophages in the invasive front is inversely correlated to liver metastasis in colon cancer. J Transl Med 2010; 8: 13 (1–9). doi:10.1186/1479-5876-8-13.; Giusca S.E., Zugun F.E., Tarcoveanu E., Carasevici E., Amalinei C., Caruntu I.D. Immunohistochemical study of colorectal cancer liver metastases: the immune/inflammatory infiltrate. Rom J Morphol Embryol. 2010; 51 (1): 73–79.; Meyerhardt J.A., Tepper J.E., Venook A. Special Series: Advances in GI Cancer. J Clin Oncol. 2015 Jun 1; 33 (16): 1717–20. doi:10.1200/JCO.2015.60.8661.; Карякин А.А., Уласова Е.А., Вагин М.Ю., Карякина Е.Е. Биосенсоры: устройство, классификация и функциональные характеристики. Сенсор. 2002; 1: 16–24.; Zhang G.J., Ning Y. Silicon nanowire biosensor and its applications in disease diagnostics: a review. Anal Chim Acta. 2012; 749: 1–15. doi:10.1016/j.aca.2012.08.035.; Yang F., Zhang G.J. Silicon nanowire-transistor biosensor for study of molecule-molecule interactions. Rev Anal Chem. 2014; 33 (2): 95–110. doi 10.1515/revac-2014-0010.; Наумова О.В., Фомин Б.И. Оптимизация отклика нанопроволочных биосенсоров. Автометрия. 2016; 52 (5): 21–25.; https://www.siboncoj.ru/jour/article/view/568

  19. 19
    Academic Journal

    Source: Doklady of the National Academy of Sciences of Belarus; Том 61, № 4 (2017); 31-38 ; Доклады Национальной академии наук Беларуси; Том 61, № 4 (2017); 31-38 ; 2524-2431 ; 1561-8323 ; undefined

    File Description: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/437/438; Cai, W. Optical metamaterials: Fundamentals and Applications / W. Cai, V. Shalaev. – New York: Springer-Verlag, 2010. – 201 p. doi.org/10.1007/978-1-4419-1151-3; Simulation of Negative Refraction Condition for Fishnet Structures Based on Self-Assembled Nanoparticles Templates / S. Kozik [et al.] // Proc. of the 9th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics Metamaterials. – Oxford, 2015. – P. 520–522.; Morphology and Optical Properties of Carboxylated Nitrocellulose Honeycomb Films Modified with Silver Nanoparticles / V. I. Kulikouskaya [et al.] // Proc. of the 9th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics Metamaterials. – Oxford, 2015. – P. 586–588.; Langmuir–Blodgett films of polystyrene-poly-2-vinylpyridine with silver nanoparticles / A. Salamianski [et al.] // Proc. of the 9th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics Metamaterials. – Oxford, 2015. – P. 574–576.; Composite thin film materials on the basis of silver nanostructures on polymer matrix by methods of chemical metallization and self-assembling / E. Skoptsov [et al.] // Applied Physics A. – 2014. – Vol. 117, N 2. – P. 713–718. doi. org/10.1007/s00339-014-8727-2; Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites / S. V. Zhukovsky [et al.] // Optics Express. – 2014. – Vol. 22, N 15. – P. 18290–18298. doi.org/10.1364/oe.22.018290; Эффективная диэлектрическая проницаемость композитного материала на основе плазмонных наночастиц произвольной формы / С. Е. Козик [и др.] // Журнал прикладной спектроскопии. – 2015. – Т. 82, № 3. – С. 400–405.; Investigation of surface roughness influence on hyperbolic metamaterial performance / S. Kozik [et al.] // Advanced Electromagnetics. – 2014. – Vol. 3, N 2. – P. 6–9. doi.org/10.7716/aem.v3i2.245; Features of hyperbolic metamaterials with extremal optical characteristics / S. N. Kurilkina [et al.] // J. Optics. – 2016. – Vol. 18, N 8. – P. 085102. doi.org/10.1088/2040-8978/18/8/085102; Kurilkina, S. N. Features of vortex Bessel plasmons generated in metal–dielectric layered structures / S. N. Kurilkina, V. N. Belyi, N. S. Kazak // J. Optics. – 2013. – Vol. 15, N 4. – P. 044017. doi.org/10.1088/2040-8978/15/4/044017; Far-field plane lens based on a multilayered metal-dielectric structure / V. Belyi [et al.] // Advanced Electromagnetics. – 2014. – Vol. 3, N 2. – P. 1–5. doi.org/10.7716/aem.v3i2.242; Особенности фокусировки света плоской линзой на основе структуры металл–диэлектрик / Н. С. Казак [и др.] // Докл. Нац. акад. наук Беларуси. – 2016. – T. 60, № 3. – C. 43–50.; Daghestani, H. N. Theory and Applications of Surface Plasmon Resonance, Resonant Mirror, Resonant Waveguide Grating, and Dual Polarization Interferometry Biosensors / H. N. Daghestani, B. W. Day // Sensors. – 2010. – Vol. 10, N 11. – P. 9630–9646.; Преобразование поляризации света с использованием нанопористых пленок оксида алюминия / В. А. Длугунович [и др.] // Журн. приклад. спектроскопии. – 2015. – Т. 82, № 5. – C. 766–772.; https://doklady.belnauka.by/jour/article/view/437; undefined

  20. 20
    Academic Journal