Showing 1 - 2 results of 2 for search '"эллипсоидально-статистическая модель"', query time: 0.45s Refine Results
  1. 1
    Academic Journal

    Contributors: РФФИ

    Source: Mathematics and Mathematical Modeling; № 4 (2019); 34-51 ; Математика и математическое моделирование; № 4 (2019); 34-51 ; 2412-5911

    File Description: application/pdf

    Relation: https://www.mathmelpub.ru/jour/article/view/192/157; Sazhin O. Gas flow through a slit into a vacuum in a wide range of rarefaction // J. of Experimental and Theoretical Physics. 2008. Vol. 107. No. 1. Pp. 162-169. DOI:10.1134/S1063776108070170; Sazhin O. Rarefied gas flow through a channel of finite length into a vacuum // J. of Experimental and Theoretical Physics. 2009. Vol. 109. No. 4. Pp. 700-706. DOI:10.1134/S1063776109100161; Sharipov F. Numerical simulation of rarefied gas flow through a thin orifice // J. of Fluid Mechanics. 2004. Vol. 518. Pp. 35-60. DOI:10.1017/S0022112004000710; Varoutis S., Valougeorgis D., Sazhin O., Sharipov F. Rarefied gas flow through short tubes into vacuum // J. of Vacuum Science & Technology A. 2008. Vol. 26. No. 2. Pp. 228-238. DOI:10.1116/1.2830639; Titarev V.A., Shakhov E.M. Rarefied gas flow into vacuum through a pipe composed of two circular sections of different radii // Vacuum. 2014. Vol. 109. Pp. 236-245. DOI:10.1016/j.vacuum.2014.02.019; Aristov V.V., Shakhov E.M., Titarev V.A., Zabelok S.A. Comparative study for rarefied gas flow into vacuum through a short circular pipe // Vacuum. 2014. Vol. 103. Pp. 5-8. DOI:10.1016/j.vacuum.2013.11.003; Титарев В.А., Утюжников С.В., Шахов Е.М. Истечение разреженного газа в вакуум через трубу квадратного сечения, переменного по длине // Журнал вычислительной математики и математической физики. 2013. T. 53. № 8. C. 1402–1411. DOI:10.7868/S0044466913060197; Ларина И.Н., Рыков В.А. Численное исследование нестационарных течений двухатомного разреженного газа в плоском микроканале // Журнал вычислительной математики и математической физики. 2014. T. 54. № 8. С. 1332–1344. DOI:10.7868/S0044466914080080; Vargas M., Naris S., Valougeorgis D., Pantazis S., Jousten K. Time-dependent rarefied gas flow of single gases and binary gas mixtures into vacuum // Vacuum. 2014. Vol. 109. Pp. 385-396. DOI:10.1016/j.vacuum.2014.06.024; Конопелько Н.А., Шахов Е.М. Развитие и установление истечения разреженного газа из резервуара через плоский канал в вакуум // Журнал вычислительной математики и математической физики. 2017. Т. 57. № 10. С. 1722–1733. DOI:10.7868/S004446691710009X; Morozov A.A. Analysis of time-of-flight distributions under pulsed laser ablation in vacuum based on the DSMC calculations // Applied Physics A: Materials Science & Processing. 2013. Vol. 111. No. 4. Pp. 1107-1112. DOI:10.1007/s00339-012-7325-4; Титарев В.А., Фролова А.А., Шахов Е.М. Отражение потока разреженного газа от стенки с отверстием и истечение газа в вакуум // Изв. РАН. Механика жидкости и газа. 2019. № 4. С. 111-118. DOI:10.1134/S0568528119040108; Kolobov V.I., Arslanbekov R.R., Aristov V.V., Frolova A.A., Zabelok S.A. Unified solver for rarefied and continuum flows with adaptive mesh and algorithm refinement // J. of Computational Physics. 2007. Vol. 223. No. 2. Pp. 589-608. DOI:10.1016/j.jcp.2006.09.021; Titarev V.A. Efficient deterministic modelling of three-dimensional rarefied gas flows// Communications in Computational Physics. 2012. Vol. 12. No. 1. Pp. 162-192. DOI:10.4208/cicp.220111.140711a; Титарев В.А. Программный комплекс моделирования трехмерных течений одноатомного разреженного газа. Свидетельство о гос. регистрации программы для ЭВМ 2017613138 от 10.04.2017.; Chai J.C, Lee H.S., Patankar S.V. Ray effect and false scattering in the discrete ordinates method // Numerical Heat Transfer B: Fundamentals. 1993. Vol. 24. No. 4. Pp. 373-389. DOI:10.1080/10407799308955899; Brull S., Mieussens L. Local discrete velocity grids for deterministic rarefied flow simulations // J. of Computational Physics. 2014. Vol. 266. Pp. 22-46. DOI:10.1016/j.jcp.2014.01.050; Коган М.Н. Динамика разреженного газа. М.: Наука, 1967. 440 с. [Kogan M.N. Rarefied gas dynamics. N.Y.: Plenum Press, 1969. 515 p.].; Шахов Е.М. Об обобщении релаксационного кинетического уравнения Крука // Изв. АН. СССР. Механика жидкости и газа. 1968. № 5. С.142-145.; Holway L.H. jr. New statistical models for kinetic theory: Methods of construction // Physics of Fluids. 1966. Vol. 9. No. 9. Pp. 1658-1673. DOI:10.1063/1.1761920; Chunpei Cai, Boyd I.D. Theoretical and numerical study of free molecular-flow problems // J. of Spacecraft and Rockets. 2007. Vol. 44. No. 3. Pp. 619-624. DOI:10.2514/1.25893; Chunpei Cai. Theoretical and numerical studies of plume flows in vacuum chambers. Cand. diss. Ann Arbor: Univ. of Michigan, 2005. 212 p.; Arslanbekov R.R., Kolobov V. I., Frolova A.A. Kinetic solvers with adaptive mesh in phase space // Physical Review E. 2013. Vol. 88. No. 6. P. 063301. DOI:10.1103/PhysRevE.88.063301; Morris A.B., Varghese P.L., Goldstein D.B. Monte Carlo solution of the Boltzmann equation via a discrete velocity model // J. of Computational Physics. 2011. Vol. 230. No. 4. Pp. 1265-1280. DOI:10.1016/j.jcp.2010.10.037; Chang Liu, Kun Xu, Quanhua Sun, Qingdong Cai. A unified gas-kinetic scheme for continuum and rarefied flows IV: Full Boltzmann and model equations // J. of Computational Physics. 2016. Vol. 314. Pp. 305- 340. DOI:10.1016/j.jcp.2016.03.014; https://www.mathmelpub.ru/jour/article/view/192

  2. 2
    Academic Journal

    Source: Mathematics and Mathematical Modeling; № 4 (2018); 27-44 ; Математика и математическое моделирование; № 4 (2018); 27-44 ; 2412-5911

    File Description: application/pdf

    Relation: https://www.mathmelpub.ru/jour/article/view/142/122; Sazhin O. Gas flow through a slit into a vacuum in a wide range of rarefaction // J. of Experimental and Theoretical Physics. 2008. Vol. 107. No. 1. Pp. 162-169. DOI:10.1134/S1063776108070170; Sazhin O. Rarefied gas flow through a channel of finite length into a vacuum // J. of Experimental and Theoretical Physics. 2009. Vol. 109. No. 4. Pp. 700-706. DOI:10.1134/S1063776109100161; Sharipov F. Numerical simulation of rarefied gas flow through a thin orifice // J. of Fluid Mechanics. 2004. Vol. 518. Pp. 35-60. DOI:10.1017/S0022112004000710; Varoutis S., Valougeorgis D., Sazhin O., Sharipov F. Rarefied gas flow through short tubes into vacuum // J. of Vacuum Science & Technology. A. 2008. Vol. 26. No. 2. Pp. 228-238. DOI:10.1116/1.2830639; Titarev V.A., Shakhov E.M. Rarefied gas flow into vacuum through a pipe composed of two circular sections of different radii // Vacuum. 2014. Vol. 109. Pp. 236-245.DOI:10.1016/j.vacuum.2014.02.019; Aristov V.V., Shakhov E.M., Titarev V.A., Zabelok S.A. Comparative study for rarefied gas flow into vacuum through a short circular pipe // Vacuum. 2014. Vol. 103. Pp. 5-8. DOI:10.1016/j.vacuum.2013.11.003; Титарев В.А., Утюжников С.В., Шахов Е.М. Истечение разреженного газа в вакуум через трубу квадратного сечения, переменного по длине // Журнал вычислительной математики и математической физики. 2013. T. 53. № 8. C. 1402–1411. DOI:10.7868/S0044466913060197; Ларина И.Н., Рыков В.А. Численное исследование нестационарных течений двухатомного разреженного газа в плоском микроканале // Журнал вычислительной математики и математической физики. 2014. T. 54. № 8. С. 1332–1344. DOI:10.7868/S0044466914080080; Vargas M., Naris S., Valougeorgis D., Pantazis S., Jousten K. Time-dependent rarefied gas flow of single gases and binary gas mixtures into vacuum // Vacuum. 2014. Vol. 109. Pp. 385-396. DOI:10.1016/j.vacuum.2014.06.024; Конопелько Н.А., Шахов Е.М. Развитие и установление истечения разреженного газа из резервуара через плоский канал в вакуум // Журнал вычислительной математики и математической физики. 2017. Т. 57. № 10. С. 1722–1733. DOI:10.7868/S004446691710009X; Morozov A. A. Analysis of time-of-flight distributions under pulsed laser ablation in vacuum based on the DSMC calculations // Applied Physics A: Materials Science & Processing. 2013. Vol. 111. No. 4. Pp. 1107-1112. DOI:10.1007/s00339-012-7325-4; Титарев В.А., Фролова А.А., Шахов Е.М. Отражение потока разреженного газа от стенки с отверстием и истечение газа в вакуум // Изв. РАН. Механика жидкости и газа. 2018 (в печати).; Kolobov V.I., Arslanbekov R.R., Aristov V.V., Frolova A.A., Zabelok S.A. Unified solver for rarefied and continuum flows with adaptive mesh and algorithm refinement // J. of Computational Physics. 2007. Vol. 223. No. 2. Pp. 589-608. DOI:10.1016/j.jcp.2006.09.021; Titarev V.A. Efficient deterministic modelling of three-dimensional rarefied gas flows // Communications in Computational Physics. 2012. Vol. 12. No. 1. Pp. 162-192. DOI:10.4208/cicp.220111.140711a; Титарев В.А. Программный комплекс моделирования трехмерных течений одноатомного разреженного газа «Несветай-3Д». Свидетельство о гос. регистрации программы для ЭВМ 2017613138 от 10.04.2017.; Chai J.C, Lee H.S., Patankar S.V. Ray effect and false scattering in the discrete ordinates method // Numerical Heat Transfer. Pt. B: Fundamentals. 1993. Vol. 24. No. 4. Pp. 373-389. DOI:10.1080/10407799308955899; Brull S., Mieussens L. Local discrete velocity grids for deterministic rarefied flow simulations // J. of Computational Physics. 2014. Vol. 266. Pp. 22-46. DOI:10.1016/j.jcp.2014.01.050; Коган М.Н. Динамика разреженного газа. М.: Наука, 1967. 440 с.; Шахов Е.М. Об обобщении релаксационного кинетического уравнения Крука // Изв. АН СССР. Механика жидкости и газа. 1968. № 5. С. 142-145.; Holway L.H.Jr. New statistical models for kinetic theory: Methods of construction // Physics of Fluids. 1966. Vol. 9. No. 9. Pp. 1658-1673. DOI:10.1063/1.1761920; Chunpei Cai, Boyd I.D. Theoretical and numerical study of free molecular-flow problems // J. of Spacecraft and Rockets. 2007. Vol. 44. No. 3. Pp. 619-624. DOI:10.2514/1.25893; Chunpei Cai. Theoretical and numerical studies of plume flows in vacuum chambers: Doct. diss. Ann Arbor: Univ. of Michigan Publ., 2005. 235 p.; Arslanbekov R.R., Kolobov V.I., Frolova A.A. Kinetic solvers with adaptive mesh in phase space // Physical Review E. 2013. Vol. 88. No. 6. 063301. DOI:10.1103/PhysRevE.88.063301; Morris A.B., Varghese P.L., Goldstein D.B. Monte Carlo solution of the Boltzmann equation via a discrete velocity model // J. of Computational Physics. 2011. Vol. 230. No. 4. Pp. 1265-1280. DOI:10.1016/j.jcp.2010.10.037; Chang Liu, Kun Xu, Quanhua Sun, Qingdong Cai. A unified gas-kinetic scheme for continuum and rarefied flows IV: Full Boltzmann and model equations // J. of Computational Physics. 2016. Vol. 314. Pp. 305-340. DOI:10.1016/j.jcp.2016.03.014; https://www.mathmelpub.ru/jour/article/view/142