-
1Academic Journal
Authors: Proţenko, V.S., Bobrova, L.S., Danilov, F.I.
Source: Электронная обработка материалов (1) 42-55
Subject Terms: Chromium, электроосаждение, выход по току, электрокатализ, deep eutecticsolvent, current efficiency, Hydrogen evolution reaction, хром, реакция выделения водорода, Electrodeposition, низкотемпературный эвтектический растворитель, kinetics, Electrocatalysis, кинетика
File Description: application/pdf
Access URL: https://ibn.idsi.md/vizualizare_articol/222753
-
2Academic Journal
Authors: Maryia G. Galuza, Tatsiana N. Vorobyova
Source: Журнал Белорусского государственного университета: Химия, Iss 1, Pp 23-32 (2024)
Subject Terms: электроосаждение, сплав cu – sn, покрытия cu – sn, щелочной электролиз воды, электрокатализ, электроды, Chemistry, QD1-999
File Description: electronic resource
-
3Academic Journal
Authors: Koroleva, P.I., Gilep, A.A., Shumyantseva, V.V.
Source: Biomedical Chemistry: Research and Methods; Vol. 7 No. 3 (2024); e00232 ; Biomedical Chemistry: Research and Methods; Том 7 № 3 (2024); e00232 ; 2618-7531
Subject Terms: cytochrome P450, electrocatalysis, цитохромы P450, электрокатализ
File Description: application/pdf; text/html
Relation: http://www.bmc-rm.org/index.php/BMCRM/article/view/232/561; http://www.bmc-rm.org/index.php/BMCRM/article/view/232/562; http://www.bmc-rm.org/index.php/BMCRM/article/view/232/563
Availability: http://www.bmc-rm.org/index.php/BMCRM/article/view/232
-
4
-
5Academic Journal
Authors: O. N. Vrublevskaya, N. Yu. Kareva, A. D. Kalesnik, A. A. Kudaka, B. Bolormaa, G. Sevjidsuren, О. Н. Врублевская, Н. Ю. Карева, А. Д. Калесник, А. А. Кудако, Б. Болормаа, Г. Севжидсурен
Contributors: This work was financially supported by the Belarusian republican foundation for fundamental research (grants no. X20MH-004, X23MH-002)., Работа выполнена при финансовой поддержке Белорусского республиканского фонда фундаментальных исследований (гранты № X20MH-004, X23MH-002).
Source: Proceedings of the National Academy of Sciences of Belarus, Chemical Series; Том 59, № 3 (2023); 183-192 ; Известия Национальной академии наук Беларуси. Серия химических наук; Том 59, № 3 (2023); 183-192 ; 2524-2342 ; 1561-8331 ; 10.29235/1561-8331-2023-59-3
Subject Terms: коррозионная устойчивость, electrocatalysis, hydrogen evolution, alkaline solution, corrosion resistance, электрокатализ, выделение водорода, щелочной раствор
File Description: application/pdf
Relation: https://vestichem.belnauka.by/jour/article/view/824/709; Ďurovič M., Hnát J., Bouzek K. Electrocatalysts for the hydrogen evolution reaction in alkaline and neutral media. A comparative review. Journal of Power Sources, 2021, vol. 493, 229708. https://doi.org/10.1016/j.jpowsour.2021.229708; Wang S., Lu A., Zhong C.-J. Hydrogen production from water electrolysis: role of catalysts. Nano Convergence, 2021, vol. 8, art. no. 4. https://doi.org/10.1186/s40580-021-00254-x; Aliyev A. Sh., Guseynova R. G., Gurbanova U. M., Babanly D. M., Fateev V. N., Pushkareva I. V., Tagiyev D. B. Electrocatalysts for water electrolysis. Chemical Problems, 2018, vol. 16, no. 3, pp. 283–306. https://doi.org/10.32737/2221-8688-2018-3-283-306; Zhai W., Ma Y., Chen D., Ho J. C., Dai Z., Qu Y. Recent progress on the long-term stability of hydrogen evolution reaction electrocatalysts. InfoMat, 2022, vol. 4, no. 9, art. no. e12357. https://doi.org/10.1002/inf2.1235; Krstajić N. V., Jović V. D., Gajić-Krstajić Lj., Jović B. M., Antozzi A. L., Martelli G. N. Electrodeposition of Ni–Mo alloy coatings and their characterization as cathodes for hydrogen evolution in sodium hydroxide solution. International Journal of Hydrogen Energy, 2008, vol. 33, no. 14, pp. 3676–3687. https://doi.org/10.1016/j.ijhydene.2008.04.039; Su C., Sa Z., Liu Y., Zhao L., Wu F., Bai W. Excellent properties of Ni-15 wt.% W alloy electrodeposited from a low-temperature pyrophosphate system. Coatings, 2021, vol. 11, no. 10, art. no. 1262. https://doi.org/10.3390/coatings11101262; Jović B. M., Lačnjevac U. Č., Krstajić N. V., Jović V. D. Ni–Sn coatings as cathodes for hydrogen evolution in alkaline solutions. Electrochimica Acta, 2013, vol. 114, pp. 813–818. https://doi.org/10.1016/j.electacta.2013.06.024; Ngamlerdpokin K., Tantavichet N. Electrodeposition of nickel–copper alloys to use as a cathode for hydrogen evolution in an alkaline media. International Journal of Hydrogen Energy, 2014, vol. 39, no. 6, pp. 2505–2515. http://dx.doi.org/10.1016/j.ijhydene.2013.12.013; Jović B. M., Lačnjevac U. Č., Krstajić N. V., Jović V. D. Service life test of the NiSn coatings as cathodes for hydrogen evolution in industrial chlor-alkali electrolysis. International Journal of Hydrogen Energy, 2014, vol. 39, no. 17, pp. 8947–8958. https://doi.org/10.1016/j.ijhydene.2014.04.015; Zhu Y., Zhang X., Song J., Wang W., Yue F., Ma Q. Microstructure and hydrogen evolution catalytic properties of Ni-Sn alloys prepared by electrodeposition method. Applied Catalysis A: General, 2015, vol. 500, pp. 51–57. https://doi.org/10.1016/j.apcata.2015.05.005; Yang J., Li J., Wang Y., Dong S., Fan Y., Liu W., Kuang Y., Tan S., Xiao G., Wang B., Yu Z. Tailoring the pore structure of porous Ni-Sn alloys for boosting hydrogen evolution reaction in alkali solution. Metals, 2022, vol. 12, no. 12, art. no. 2123. https://doi.org/10.3390/met12122123; Cao Y.-L., Li Z.-L., Wang F., Liu J.-J., Ji J., Wang J.-J., Zhang L.-H., Qin S.-Y. Electrochemical preparation of Ni-Sn active cathode and its electrocatalytic hydrogen evolution reaction mechanisms in alkaline solution. Acta Physico-Chimica Sinica, 2013, vol. 29, no. 7, pp. 1479–1486. https://doi.org/10.3866/PKU.WHXB201305083; Schade C. Chemical and electrolytic methods of powder production. Samal P. K., Newkirk J. W. (eds.). ASM Handbook. Vol. 7. Powder Metallurgy. Ohio, ASM International, 2015, pp. 72–76. https://doi.org/10.31399/asm.hb.v07.a0006087; Vrublevskaya O. N., Shcherbakova A. B., Kudaka A. A., Galuza M. G., Sevjidsuren G., Bolormaa B. Catalytic activity of nickel–copper powder alloys in the processes of electrochemical hydrogen evolution in alkaline solution and ethanol alkaline solution. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya khimichnyh navuk = Proceedings of the National Academy of Science of Belarus. Chemical series, 2022, vol. 58, no. 1, pp. 36–44 (in Russian). https://doi.org/10.29235/1561-8331-2022-58-1-36-44; Rudoi V. M., Trofimov A. A., Anan’ev M. V., Ostanin N. I., Darintseva A. B., Ostanina T. N., Nikitin V. S. Methods for calculating and experimental determining the parameters of electrochemical systems. Yekaterinburg, Ural University Publ., 2019. 128 p. (in Russian).; Cossar E., Houache M. S. E., Zhang Z., Baranova E. A. Comparison of electrochemical active surface areas methods for various nickel nanostructures. Journal of Electroanalytical Chemistry, 2020, vol. 870, art. no. 114246. https://doi.org/10.1016/j.jelechem.2020.114246; Hansen J. N., Prats H., Toudahl K. K., Secher N. M., Chan K., Kibsgaard J., Chorkendorff I. Is there anything better than Pt for HER? ACS Energy Letters, 2021, vol. 6, no. 4, pp. 1175–1180. https://doi.org/10.1021/acsenergylett.1c00246; Rosoiu S. P., Pantazi A. G., Petica A., Cojocaru A., Costovici S., Zanella C., Visan T., Anicai L., Enachescu M. Electrodeposition of NiSn-rGO composite coatings from deep eutectic solvents and their physicochemical characterization. Metals, 2020, vol. 10, no. 11, art. no. 1455. https://doi.org/10.3390/met10111455; Jović V. D., Jović B. M., Lačnjevac U. Č., Krstajić N. V., Zabinski P., Elezović N. R. Accelerated service life test of electrodeposited NiSn alloys as bifunctional catalysts for alkaline water electrolysis under industrial operating conditions. Journal of Electroanalytical Chemistry, 2018, vol. 819, pp. 16–25. https://doi.org/10.1016/j.jelechem.2017.06.011; Jović V. D., Lačnjevac U., Jović B. M., Karanović Lj., Krstajić N. V. Ni–Sn coatings as cathodes for hydrogen evolution in alkaline solution. Chemical composition, phase composition and morphology effects. International Journal of Hydrogen Energy, 2012, vol. 37, no. 23, pp. 17882–17891. https://doi.org/10.1016/j.ijhydene.2012.09.110; Jović B. M., Lačnjevac U. Č., Jović V. D., Krstajić N. V. Kinetics of the oxygen evolution reaction on NiSn electrodes in alkaline solutions. Journal of Electroanalytical Chemistry, 2015, vol. 754, pp. 100–108. https://doi.org/10.1016/j.jelechem.2015.07.013; Kellenberger A., Vaszilcsin N., Brandl W., Duteanu N. Kinetics of hydrogen evolution reaction on skeleton nickel and nickel–titanium electrodes obtained by thermal arc spraying technique. International Journal of Hydrogen Energy, 2007, vol. 32, no. 15, pp. 3258–3265. https://doi.org/10.1016/j.ijhydene.2007.02.028; https://vestichem.belnauka.by/jour/article/view/824
-
6Academic Journal
Authors: Кинсфатор, Анастасия Олеговна, Соколов, Степан Алексеевич, Шелковников, Владимир Витальевич
Source: Вестник Томского государственного университета. Химия. 2025. № 38. С. 17-30
Subject Terms: инверсионная вольтамперометрия, модифицированные электроды, аминокислоты, тирозин, биологически активные добавки, электрокатализ, гексацианоферрат европия
File Description: application/pdf
Relation: http_to000518048. Вестник Томского государственного университета. Химия; koha:001269372; https://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001269372
-
7Academic Journal
Authors: Shcherbakova-Sandu, Mariya P., Meshcheryakov, Eugene P., Gulevich, Semyon A., Kushwaha, Ajay K., Kumar, Ritunesh, Sonwane, Akshay K., Samal, Sonali, Kurzina, Irina A.
Source: Molecules. 2025. Vol. 30, № 14. P. 3012 (1-40)
Subject Terms: окисление глюкозы, глюконовая кислота, глюкаровая кислота, гетерогенный катализ, электрокатализ, ферментативный катализ, химический синтез, переработка отходов
File Description: application/pdf
Relation: Molecules; koha:001268500; https://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001268500
-
8Academic Journal
Authors: O. N. Vrublevskaya, A. B. Shcherbakova, A. A. Kudaka, M. G. Galuza, G. Sevjidsuren, B. Bolormaa, О. И. Врублевская, А. Б. Щербакова, А. А. Кудако, М. Г. Галуза, Г. Севжидсурен, Б. Болормаа
Source: Proceedings of the National Academy of Sciences of Belarus, Chemical Series; Том 58, № 1 (2022); 36-44 ; Известия Национальной академии наук Беларуси. Серия химических наук; Том 58, № 1 (2022); 36-44 ; 2524-2342 ; 1561-8331 ; 10.29235/1561-8331-2022-58-1
Subject Terms: этанол, electrocatalysis, hydrogen evolution, alkaline solution, ethanol, электрокатализ, выделение водорода, щелочной раствор
File Description: application/pdf
Relation: https://vestichem.belnauka.by/jour/article/view/702/649; Current progress of Pt and Pt-based electrocatalysts used for fuel cells / X. Ren [et al.] // Sustain. Energy Fuels. – 2020. – Vol. 4, N 1. – P. 15–30. https://doi.org/10.1039/C9SE00460B; Meng, H. Recent development of Pd-based electrocatalysts for proton exchange membrane fuel cells / H. Meng, D. Zeng, F. Xie // Catalysts. – 2015. – Vol. 5, N 3. – P. 1221–1274. https://doi.org/10.3390/catal5031221; A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction / M. Gong [et al.] // Nano Res. – 2016. – Vol. 9, N 1. – P. 28–46. https://doi.org/10.1007/s12274-015-0965-x; Electrocatalytic activity of Ni nanowires prepared by galvanic electrodeposition for hydrogen evolution reaction / J. K. Lee [et al.] // Catal. Today. – 2009. – Vol. 146, N 1–2. – P. 188–191. https://doi.org/10.1016/j.cattod.2008.12.007; Electrodeposited Ni dendrites with high activity and durability for hydrogen evolution reaction in alkaline water electrolysis / S. H. Ahn [et al.] // J. Mater. Chem. – 2012. – Vol. 22, N 30. – P. 15153–15159. https://doi.org/10.1039/C2JM31439H; Synthesis of dendritic nano-sized nickel for use as anode material in an alkaline membrane fuel cell / S. J. Ewing [et al.] // Fuel Cells. – 2010. – Vol. 10, N 1. – P. 72–76. https://doi.org/10.1002/fuce.200900102; Single-crystalline ultrathin nickel nanosheets array from in situ topotactic reduction for active and stable electrocatalysis / Y. Kuang [et al.] // Angew. Chem. Int. Ed. – 2016. – Vol. 55, N 2. – P. 693–697. https://doi.org/10.1002/anie.201509616; Ďurovič, M. Electrocatalysts for the hydrogen evolution reaction in alkaline and neutral media. A comparative review / M. Ďurovič, J. Hnát, K. Bouzek // J. Power Sources. – 2021. – Vol. 493. – P. 229708. https://doi.org/10.1016/j.jpowsour.2021.229708; Ngamlerdpokin, K. Electrodeposition of nickel–copper alloys to use as a cathode for hydrogen evolution in an alkaline media / K. Ngamlerdpokin, N. Tantavichet // Int. J. Hydrog. Energy. – 2014. – Vol. 39, N 6. – P. 2505–2515. http://doi.org/10.1016/j.ijhydene.2013.12.013; Ni–Sn coatings as cathodes for hydrogen evolution in alkaline solutions / B. M. Jović [et al.] // Electrochim. Acta. – 2013. – Vol. 114. – P. 813–818. https://doi.org/10.1016/j.electacta.2013.06.024; Clean hydrogen generation through the electrocatalytic oxidation of ethanol in a proton exchange membrane electrolysis cell (PEMEC): effect of the nature and structure of the catalytic anode / C. Lamy [et al.] // J. Power Sources. – 2014. – Vol. 245. – P. 927‒936. https://doi.org/10.1016/j.jpowsour.2013.07.028; Hydrogen generation from alkaline solutions of methanol and ethanol by electrolysis / I. Ulusoy [et al.] // ECS Trans. – 2009. – Vol. 19, N 10. – P. 77–94. https://doi.org/10.1149/1.3237110; Campos-Roldán, C. A. Experimental protocol for HOR and ORR in alkaline electrochemical measurements / C. A. Campos-Roldán, R. G. González-Huerta, N. Alonso-Vante // J. Electrochem. Soc. ‒ 2018. ‒ Vol. 165, N 15. – Р. J3001– J3007. https://doi.org/10.1149/2.0011815jes; Comparison of electrochemical active surface area methods for various nickel nanostructures / E. Cossar [et al.] // J. Electroanal. Chem. – 2020. – Vol. 870. – 114246. https://doi.org/10.1016/j.jelechem.2020.114246; Cu–Ni nanoalloy phase diagram – prediction and experiment / J. Sopousek [et al.] // Calphad. – 2014. – Vol. 45. – P. 33–39. https://doi.org/10.1016/j.calphad.2013.11.004; Ощепков, А. Г. Исследование водородных электродных реакций на никелевых электрокатализаторах в щелочной среде: дис. … канд. хим. наук: 02.00.15 / А. Г. Ощепков. – Новосибирск, 2017. – 157 л.; Nickel-based electrodes as catalysts for hydrogen evolution reaction in alkaline media / Y. Zhu [et al.] // Ionics. – 2018. – Vol. 24, N 4. – Р. 1121–1127. https://doi.org/10.1007/s11581-017-2270-z; Electrochemically fabricated NiCu alloy catalysts for hydrogen production in alkaline water electrolysis / S. H. Ahn [et al.] // Int. J. Hydrog. Energy. – 2013. – Vol. 38, N 31. – P. 13493–13501. https://doi.org/10.1016/j.ijhydene.2013.07.103; https://vestichem.belnauka.by/jour/article/view/702
-
9Academic Journal
Authors: Nenastina, Tatiana Aleksandrovna, Ved’, Maryna Vitaliyivna, Sakhnenko, Nikolay Dmytrovych, Proskurina, Valeria Olegovna, Yermolenko, Irina Yurievna
Source: Вісник Національного технічного університету «ХПІ». Серія: Хiмiя, хiмiчнi технологiї та екологiя; № 39 (2018): Вісник Національного технічного університету «ХПІ» Cерія: Хімія, хімічна технологія та екологія; 65-69
Bulletin of the National Technical University "KhPI". Series: Chemistry, Chemical Technology and Ecology; № 39 (2018): Bulletin of the National Technical University «KhPI». Series: Chemistry, Chemical Technology and Ecology; 65-69
Весник НТУ"ХПИ" серия "Химия, химическая технология и экология"; № 39 (2018): Вестник Национального технического университета "ХПИ". Серия: Химия, химическая технология и экология; 65-69Subject Terms: 9. Industry and infrastructure, 0211 other engineering and technologies, 0202 electrical engineering, electronic engineering, information engineering, тернарні сплави кобальту, окиснення метанолу, граничний струм, електрокаталіз, корозійна стійкість, 02 engineering and technology, 7. Clean energy, тернарные сплавы кобальта, окисление метанола, предельный ток, электрокатализ, коррозионная стойкость, ternary cobalt alloys, methanol oxidation, current limit, electrocatalysis, corrosion resistance, 3. Good health
File Description: application/pdf
-
10Academic Journal
Authors: Proţenko, V.S., Проценко, В.С., Butîrina, T.E., Бутырина, Т.Е., Bogdanov, D.A., Богданов, Д.А., Kornii, S.A., Корний, С.A., Danilov, F.I., Данилов, Ф.И.
Source: Электронная обработка материалов 57 (6) 1-13
Subject Terms: электроосаждение, никель, диоксид титана, композиционное покрытие, низкотемпературный эвтектический растворитель, электрокатализ, реакция выделения водорода, Electrodeposition, nickel, titanium dioxide, composite coating, deep eutectic solvent, Electrocatalysis, Hydrogen evolution reaction
File Description: application/pdf
Relation: https://ibn.idsi.md/vizualizare_articol/145787; urn:issn:00135739
-
11Report
Authors: Шукюров, Ялчын Мушфиг оглы
Contributors: Шаненков, Иван Игоревич
Subject Terms: Водород, Плазмодинамический синтез, Электрокатализ, Карбид вольфрама, Возобновляемые источники энергии, Hydrogen, Plasmodynamic synthesis, Electrocatalysis, Tungsten carbide, Renewable source of energy, 13.04.02, 661.961:54-32-026.741
File Description: application/pdf
Availability: http://earchive.tpu.ru/handle/11683/70984
-
12Conference
Authors: Глазырина, Ю. А., Коновалова, А. М.
Subject Terms: ЭЛЕКТРОКАТАЛИЗ, ПЕРОКСИД ВОДОРОДА, ТОЛСТОПЛЕНОЧНЫЙ ГРАФИТОВЫЙ ЭЛЕКТРОД, ОКСИД НИКЕЛЯ, ОКСИД КОБАЛЬТА
File Description: application/pdf
Relation: Экологическая безопасность в техносферном пространстве : сборник материалов Второй Всероссийской конференции молодых ученых и студентов. - Екатеринбург, 2019; student
Availability: https://elar.uspu.ru/handle/ru-uspu/29936
-
13Dissertation/ Thesis
Authors: Bakhtina, O. V.
Contributors: Охохонин, А. В., Okhokhonin, A. V., УрФУ. Химико-технологический институт, Кафедра аналитической химии
Subject Terms: 2-МЕРКАПТОИМИДАЗОЛ, COPPER(II)-IMIDAZOLE FRAMEWORKS (CUZIF), МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ, ЭЛЕКТРООСАЖДЕНИЕ ЗОЛОТА, MASTER'S THESIS, DEEP EUTECTIC SOLVENT, МЕДЬ(II)-ИМИДАЗОЛЬНЫЕ КАРКАСЫ (CUZIF), ELECTRODEPOSITION OF GOLD, 2-MERCAPTOIMIDAZOLE, ЭЛЕКТРОКАТАЛИЗ, 2-МЕТИЛИМИДАЗОЛ, ПЛАНАРНЫЙ ЭЛЕКТРОД С ТРАФАРЕТНОЙ ПЕЧАТЬЮ 3-В-1, GLUCOSE, 2-IMIDAZOLECARBOXALLEGIDE, БЕСФЕМЕНТНОЕ, VOLTAMMETRY, ВОЛЬТАМПЕРОМЕТРИЯ, ГЛУБОКИЙ ЭВТЕКТИЧЕСКИЙ РАСТВОРИТЕЛЬ, ГЛЮКОЗА, КРЕАТИНИН, 2-ИМИДАЗОЛКАРБОКСАЛЬДЕГИД, ENZYME-LESS, ELECTROCATALYSIS, 2-METHYLIMIDAZOLE, UREA, CREATININE, МОЧЕВИНА, SCREEN-PRINTED ELECTRODE 3-IN-1
File Description: application/pdf
Access URL: http://elar.urfu.ru/handle/10995/135376
-
14Academic Journal
Source: Journal of analytical chemistry. 2016. Vol. 71, № 8. P. 823-833
Subject Terms: ультрафиолетовое облучение, вольтамперометрия, арсенаты, питьевая вода, электрокатализ, ионный обмен, мышьяк, арсениты, 01 natural sciences, 0104 chemical sciences
File Description: application/pdf
Linked Full TextAccess URL: https://link.springer.com/article/10.1134/S1061934816080177
http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000619204 -
15Conference
Subject Terms: ТОЛСТОПЛЕНОЧНЫЙ ГРАФИТОВЫЙ ЭЛЕКТРОД, ЭЛЕКТРОКАТАЛИЗ, ПЕРОКСИД ВОДОРОДА, ОКСИД КОБАЛЬТА, ОКСИД НИКЕЛЯ
File Description: application/pdf
Access URL: https://elar.uspu.ru/handle/ru-uspu/29936
-
16Conference
Subject Terms: ТОЛСТОПЛЕНОЧНЫЙ ГРАФИТОВЫЙ ЭЛЕКТРОД, ЭЛЕКТРОКАТАЛИЗ, ПЕРОКСИД ВОДОРОДА, ОКСИД КОБАЛЬТА, ОКСИД НИКЕЛЯ
File Description: application/pdf
Access URL: https://elar.rsvpu.ru/handle/123456789/29936
-
17Conference
Subject Terms: ТОЛСТОПЛЕНОЧНЫЙ ГРАФИТОВЫЙ ЭЛЕКТРОД, ЭЛЕКТРОКАТАЛИЗ, ПЕРОКСИД ВОДОРОДА, ОКСИД КОБАЛЬТА, ОКСИД НИКЕЛЯ
File Description: application/pdf
Access URL: https://elar.uspu.ru/handle/ru-uspu/29936
-
18Dissertation/ Thesis
Subject Terms: неорганическая химия, химическое восстановление, выделение водорода, катализ, электрокатализ, водород, электролиты, полимерные электролиты, твердые электролиты, платина
File Description: application/pdf
Access URL: https://elib.belstu.by/handle/123456789/62371
-
19
-
20Academic Journal