Showing 1 - 20 results of 120 for search '"экспериментальные модели"', query time: 0.72s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
    Academic Journal

    Source: Pharmacokinetics and Pharmacodynamics; № 4 (2024); 17-21 ; Фармакокинетика и Фармакодинамика; № 4 (2024); 17-21 ; 2686-8830 ; 2587-7836

    File Description: application/pdf

    Relation: https://www.pharmacokinetica.ru/jour/article/view/434/386; López-Otín C, Blasco MA, Partridge L, et al. The hallmarks of aging. Cell. 2013 Jun 6;153(6):1194-217. doi:10.1016/j.cell.2013.05.039.; Moffitt TE, Belsky DW, Danese A, et al. The Longitudinal Study of Aging in Human Young Adults: Knowledge Gaps and Research Agenda. J Gerontol A Biol Sci Med Sci. 2017 Feb;72(2):210-215. doi:10.1093/gerona/glw191.; Mitchell SJ, Scheibye-Knudsen M, Longo DL, de Cabo R. Animal models of aging research: implications for human aging and age-related diseases. Annu Rev Anim Biosci. 2015;3:283-303. doi:10.1146/annurevanimal-022114-110829.; Hamczyk MR, Nevado RM, Barettino A, et al. Biological Versus Chronological Aging: JACC Focus Seminar. J Am Coll Cardiol. 2020 Mar 3; 75(8):919-930. doi:10.1016/j.jacc.2019.11.062.; Larsson L, Degens H, Li M, et al. Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiol Rev. 2019 Jan 1;99(1):427-511. doi:10.1152/physrev.00061.2017.; Burns TC, Li MD, Mehta S, et al. Mouse models rarely mimic the transcriptome of human neurodegenerative diseases: A systematic bioinformatics-based critique of preclinical models. Eur J Pharmacol. 2015 Jul 15;759:101-17. doi:10.1016/j.ejphar.2015.03.021.; Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961 Dec;25:585-621. doi:10.1016/0014-4827(61)90192-6.; Toussaint O, Medrano EE, von Zglinicki T. Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp Gerontol. 2000 Oct;35(8):927-45. doi:10.1016/s0531-5565(00)00180-7.; Phipps SM, Berletch JB, Andrews LG, Tollefsbol TO. Aging cell culture: methods and observations. Methods Mol Biol. 2007;371:9-19. doi:10.1007/978-1-59745-361-5_2.; Liu GH, Ding Z, Izpisua Belmonte JC. iPSC technology to study human aging and aging-related disorders. Curr Opin Cell Biol. 2012 Dec;24(6):765-74. doi:10.1016/j.ceb.2012.08.014.; Machairaki V. Human Pluripotent Stem Cells as In Vitro Models of Neurodegenerative Diseases. Adv Exp Med Biol. 2020;1195:93-94. doi:10.1007/978-3-030-32633-3_13.; Miller JD, Ganat YM, Kishinevsky S, et al. Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell. 2013 Dec 5;13(6):691-705. doi:10.1016/j.stem.2013.11.006.; Hu JL, Todhunter ME, LaBarge MA, Gartner ZJ. Opportunities for organoids as new models of aging. J Cell Biol. 2018 Jan 2;217(1):39-50. doi:10.1083/jcb.201709054.; Lewis SK, Nachun D, Martin MG, et al. DNA Methylation Analysis Validates Organoids as a Viable Model for Studying Human Intestinal Aging. Cell Mol Gastroenterol Hepatol. 2020;9(3):527-541. doi:10.1016/j.jcmgh.2019.11.013.; Birch HL. Extracellular Matrix and Ageing. Subcell Biochem. 2018;90:169-190. doi:10.1007/978-981-13-2835-0_7.; Mortimer RK, Johnston JR. Life span of individual yeast cells. Nature. 1959 Jun 20;183(4677):1751-2. doi:10.1038/1831751a0.; Goffeau A, Barrell BG, Bussey H, et al. Life with 6000 genes. Science. 1996 Oct 25;274(5287):546, 563-7. doi:10.1126/science.274.5287.546.; Longo VD. Mutations in signal transduction proteins increase stress resistance and longevity in yeast, nematodes, fruit flies, and mammalian neuronal cells. Neurobiol Aging. 1999 Sep-Oct;20(5):479-86. doi:10.1016/s0197-4580(99)00089-5.; Longo VD, Shadel GS, Kaeberlein M, Kennedy B. Replicative and chronological aging in Saccharomyces cerevisiae. Cell Metab. 2012 Jul 3; 16(1):18-31. doi:10.1016/j.cmet.2012.06.002.; Mack HID, Heimbucher T, Murphy CT. The nematode Caenorhabditis elegans as a model for aging research. Drug Discovery Today: Disease Models. 2018;(27):3-13. doi:10.1016/j.ddmod.2018.11.001.; Loeb J, Northrop JH. Is There a Temperature Coefficient for the Duration of Life? Proc Natl Acad Sci U S A. 1916 Aug;2(8):456-7. doi:10.1073/pnas.2.8.456.; Jacobson J, Lambert AJ, Portero-Otín M, et al. Biomarkers of aging in Drosophila. Aging Cell. 2010 Aug;9(4):466-477. doi:10.1111/j.1474-9726.2010.00573.x.; Taormina G, Ferrante F, Vieni S, et al. Longevity: Lesson from Model Organisms. Genes (Basel). 2019 Jul 9;10(7):518. doi:10.3390/genes10070518.; Gilbert MJ, Zerulla TC, Tierney KB. Zebrafish (Danio rerio) as a model for the study of aging and exercise: physical ability and trainability decrease with age. Exp Gerontol. 2014 Feb;50:106-13. doi:10.1016/j.exger.2013.11.013.; Mullins MC, Nüsslein-Volhard C. Mutational approaches to studying embryonic pattern formation in the zebrafish. Curr Opin Genet Dev. 1993 Aug;3(4):648-54. doi:10.1016/0959-437x(93)90102-u.; Daya A, Donaka R, Karasik D. Zebrafish models of sarcopenia. Dis Model Mech. 2020 Mar 30;13(3):dmm042689. doi:10.1242/dmm.042689.; Gorbunova V, Bozzella MJ, Seluanov A. Rodents for comparative aging studies: from mice to beavers. Age. 2008;(30):111-119.; Yamaza H, Komatsu T, Chiba T, et al. A transgenic dwarf rat model as a tool for the study of calorie restriction and aging. Exp Gerontol. 2004 Feb;39(2):269-72. doi:10.1016/j.exger.2003.11.001.; Ackert-Bicknell CL, Anderson LC, Sheehan S, et al. Aging Research Using Mouse Models. Curr Protoc Mouse Biol. 2015 Jun 1;5(2):95-133. doi:10.1002/9780470942390.mo140195.; Giacomello E, Crea E, Torelli L, et al. Age Dependent Modification of the Metabolic Profile of the Tibialis Anterior Muscle Fibers in C57BL/ 6J Mice. Int J Mol Sci. 2020 May 30;21(11):3923. doi:10.3390/ijms21113923.; https://www.pharmacokinetica.ru/jour/article/view/434

  5. 5
  6. 6
  7. 7
    Academic Journal

    Source: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 79, № 2S (2024); 5-8 ; Вестник Московского университета. Серия 16. Биология; Том 79, № 2S (2024); 5-8 ; 0137-0952

    File Description: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/1375/676; Островский М.А. Молекулярный механизм адаптации к световой среде обитания: к вопросу о спектральной настройке зрительных пигментов двух популяций креветок Mysis relicta (Crustacea: Mysidacea). Вестн. Моск. ун-та. Сер. 16. Биол. 2024;79(2S):9–15.; Недоспасов С.А. Цитокины – регуляторы иммунитета. Вестн. Моск. ун-та. Сер. 16. Биол. 2024;79(2S):16–21.; Воронина Я.А., Кархов А.М., Кузьмин В.С. Современные представления о структурной основе и молекулярных механизмах трансмембранного транспорта Сl- в кардиомиоцитах. Вестн. Моск. ун-та. Сер. 16. Биол. 2024;79(2S):22–36.; Афанасьева Д.Ю., Балабан П.М. Сложные «простые нервные системы». Вестн. Моск. ун-та. Сер. 16. Биол. 2024;79(2S):37–45.; Кузьмина Е.С., Нечаева М.В, Авдонин П.В. Роль NAADP в поддержании спонтанных сокращений сердца: сравнительно-физиологические исследования. Вестн. Моск. ун-та. Сер. 16. Биол. 2024;79(2S):65–72.; Касумян А.О., Левина А.Д. Вкусовая привлекательность органических кислот и их производных для цихлидовых рыб (Cichlidae). Вестн. Моск. ун-та. Сер. 16. Биол. 2024;79(2S):73–80.; Тимошина Ю.А., Терещенко Л.В., Куликова О.И., Федорова Т.Н., Латанов А.В. Моделирование предсимптомной стадии паркинсоноподобного состояния на животных (грызуны и обезьяны). Вестн. Моск. ун-та. Сер. 16. Биол. 2024;79(2S):81–88.; Филатова Т.С., Бородков А.С., Кархов А.М., Джуманиязова И.Х., Пустовит О.Б., Абрамочкин Д.В. Механизмы воздействия полиароматических углеводородов нефти на электрическую активность сердца северной наваги (Eleginus nawaga). Вестн. Моск. ун-та. Сер. 16. Биол. 2024;79(2S):89–97.; Смирнова О.В., Абрамичева П.А., Павлова Н.С. Осморегуляция и репродукция: эволюционные тренды функций пролактина от рыб к млекопитающим. Вестн. Моск. ун-та. Сер. 16. Биол. 2024;79(2S):46–54.; Гайнуллина Д.К., Тарасова О.С., Швецова А.А. Регуляция сокращения гладкомышечных клеток сосудов в раннем постнатальном онтогенезе. Вестн. Моск. ун-та. Сер. 16. Биол. 2024;79(2S):55–64.; Богачева П.О., Чернышев К.А., Тарасова Е.О., Потапова Д.А., Балезина О.П. Регуляция активности регенерирующих моторных синапсов с участием эндоканнабиноидов. Вестн. Моск. ун-та. Сер. 16. Биол. 2024;79(2S):98–104.; Яковлев Л.В., Сыров Н.В., Мирошников А.А, Морозова М.В., Беркмуш-Антипова А.М., Петрова Д.А., Каплан А.Я. Локализация источников десинхронизации мю-ритма ЭЭГ при тактильном воображении. Вестн. Моск. ун-та. Сер. 16. Биол. 2024;79(2S):105–112.

  8. 8
  9. 9
  10. 10
    Academic Journal

    Contributors: The research was funded by budget number FWNR-2022-0019., Исследование выполнено при поддержке бюджетного проекта № FWNR-2022-0019.

    Source: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 77, № 2 (2022); 130–137 ; Вестник Московского университета. Серия 16. Биология; Том 77, № 2 (2022); 130–137 ; 0137-0952

    File Description: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/1135/590; Weaver I.C. Epigenetic programming by maternal behavior and pharmacological intervention. Nature versus nurture: let’s call the whole thing off // Epigenetics. 2007. Vol. 2. N 1. P. 22–28.; Curley J.P., Champagne F.A. Influence of maternal care on the developing brain: mechanisms, temporal dynamics and sensitive periods // Front. Neuroendocrin. 2016. Vol. 40. P. 52–66.; Meaney M.J., Szyf M. Maternal care as a model for experience-dependent chromatin plasticity? // Trends Neurosci. 2005. Vol. 28. N 9. P. 456–463.; Pena C.J., Champagne F.A. Implications of temporal variation in maternal care for the prediction of neurobiological and behavioral outcomes in offspring // Behav. Neurosci. 2013. Vol. 127. N 1. P. 33–46.; Kolpakov V.G., Kulikov A.V., Alekhina T.A., Chuguy V.F., Petrenko O.I., Barykina N.N. Catatonia or depression: the GC rat strain as an animal model of psychopathology // Russ. J. Genet. 2004. Vol. 40. N. 6. P. 672–678.; Kulikov A.V., Kolpakov V.G., Popova N.K. The genetic cataleptic (GK) rat strain as a model of depression disorders // V. Animal models in biological psychiatry, 1st edn. / Ed. A.V. Kalueff. N.Y.: Nova Science Pub. Inc., 2006. P. 59–73.; Fink M., Taylor M.A. The many varieties of catatonia // Eur. Arch. Psychiatry Clin. Neurosci. 2001. Vol. 251. Suppl. 1. P. 18–13.; Hornstein Ch., Trautmann-Villalba P., Hohm E., Rave E., Wortmann-Fleischer S., Schwarz M. Maternal bond and mother-child interaction in severe postpartum psychiatric disorder: Is there a link? // Arch. Womens Ment. Health. 2006. Vol. 9. N 5. P. 279–284.; Shenoy S., Desai G., Venkatasubramanian G., Chandra P.S. Parenting in mothers with schizophrenia and its relation to facial emotion recognition deficits- a case control study // Asian J. Psychiatr. 2019. Vol. 40. P. 55–59.; Khoshgoftar M., Khodabakhshi-Koolaee A., Reza Sheikhi M.R. Analysis of the early mother-child relationship in schizophrenic patients // Int. J. Soc. Psychiatry. 2022. Vol. 68. N 3. P. 548–554.; Lavi-Avnon Y., Yadid G., Overstreet D.H., Weller A. Abnormal patterns of maternal behavior in genetic animal model of depression // Physiol. Behav. 2005. Vol. 84. N 4. P. 607–615.; Добрякова Ю.В., Танаева К.К., Дубынин В.А., Саркисова К.Ю. Сравнительный анализ проявлений материнской мотивации у крыс линий WAG/Rij и Wistar в тестах «предпочтение мест» и «открытое поле» // Журн. высш. нерв. деят. 2014. Т. 64. № 4. С. 448–459.; Саркисова К.Ю., Танаева К.К., Добрякова Ю.В. Условная реакция предпочтения места, ссоциированного с детенышами, и материнская забота у депрессивных крыс линии Wag/Rij // Журн. высш. нерв. деят. 2016. Т. 66. № 2. С. 229–241.; Petrenko O.I., Chuguy V.F. Barykna N.N., Alekhina T.A., Kolpakov V.G., Amstslavsky S.Ya. Components of early maternal environment affecting the predisposition to catalepsy // Behav. Processes. 2004. Vol. 65. N 1. Р. 1–6.; Рязанова М.А., Прокудина О.И., Плеканчук В.С., Алехина Т.А. Экспрессия генов системы катехоламинов в среднем мозге и реакция престимульного торможения у крыс с генетической кататонией // Вавиловский журнал генетики и селекции. 2017. Т. 21. № 7. С. 798–803.; Karatsoreos I.N. Links between circadian rhythms and psychiatric disease // Front. Behav. Neurosci. 2014. Vol. 8: 162.; von Schantz M., Leocadio-Miguel M.A., McCarthy M.J., Papiol S., Landgraf D. Genomic perspectives on the circadian clock hypothesis of psychiatric disorders // Advances in genetics, vol. 107 / Ed. D. Kumar. Academic Press, 2021. P. 153–191.; Плюснина И.З., Таранцев И.Г., Булушев Е.Д., Коношенко М.Ю., Кожемякина Р.В., Гербек Ю.Э., Оськина И.Н. Анализ материнского поведения ручных и агрессивных серых крыс // Журн. высш. нерв. деят. 2013. Т. 63. № 3. С. 375–383.; August P.M., Santos Rodrigues Kd, Klein C.P., dos Santos B.G., Mattґe C. Influence of gestational exercise practice and litter size reduction on maternal care // Neurosci. Lett. 2020. Vol. 741: 135454.; Myers M.M., Brunelli S.A, Squire J.M., Shindeldecker R.D., Hofer M.A. Maternal behaviour of SHR rats and its relationship to offspring blood pressure // Dev. Psychobiol. 1989. Vol. 22. N 1. P. 29–53.; Bosch O.J., Pförtsch J., Beiderbeck D.I., Landgraf R., Neumann I.D. Maternal behaviour is associated with vasopressin release in the medial preoptic area and bed nucleus of the stria terminalis in the rat // J. Neuroendocrinol. 2010. Vol. 22. N 5. P. 420–429.; Cohen L.J., Glover M.E., Pugh P.C., Fant A.D., Simmons R.K., Akil H., A. Kerman I.A., Clinton S.M. Maternal style selectively shapes amygdalar development and social behavior in rats genetically prone to high anxiety // Dev. Neurosci. 2015. Vol. 37. N 3. P. 203–214.; Bosch O.J. Maternal nurturing is dependent on her innate anxiety: the behavioral roles of brainoxytocin and vasopressin // Horm. Behav. 2011. Vol. 59. N 2. P. 202–212.; Bosch O.J., Neumann I.D. Brain vasopressin is an important regulator of maternal behavior independent of dams’ trait anxiety // Proc. Natl. Acad. Sci. U.S.A. 2008. Vol. 105. N 44. P. 17139–17144.; Kessler M.S., Bosch O.J., Bunck M., Landgraf R., Neumann I.D. Maternal care differs in mice bred for high versus low trait anxiety: impact of brain vasopressin and cross-fostering // Soc. Neurosci. 2011. Vol. 6. N 2. P. 156–168.; Boero G., Biggio F., Pisu M.G., Locci V., Porcu P., Serra M. Combined effect of gestational stress and postpartum stress on maternal care in rats // Physiol. Behav. 2018. Vol. 184. P. 172–178.; Olejnıkova L., Polidarova L., Pauslyova L., Sladek M., Sumova A. Diverse development and higher sensitivity of the circadian clocks to changes in maternalfeeding regime in a rat model of cardio-metabolic disease // Chronobiol. Int. 2015. Vol. 32. N 4. P. 531–547.; Gao J., Nie L., Li Y., Li M. Serotonin 5-HT2A and 5-HT2C receptors regulate rat maternal behavior through distinct behavioral and neural mechanisms // Neuropharmacology. 2020. Vol. 162: 107848; Серая крыса: Систематика. Экология. Регуляция численности. Ред. В.Е. Соколов и Е.В. Карасева. М.: Наука, 1990. 456 с.; Clinton S.M., Bedrosian T.A., Abraham A.D., Watson S.J., Akil H. Neural and environmental factors impacting maternal behavior differences in high- versus lownovelty-seeking rats // Horm. Behav. 2010. Vol. 57. N 4–5. P. 463–473.; Stern J.M. Trigeminal lesions and maternal behavior in Norway rats: II. Disruption of parturition // Physiol. Behav. 1996. Vol. 60. N 1. Р. 187–190.; Kittrell E.M.W., Satinoff E. Diurnal rhythms of body temperature, drinking and activity over reproductive cycles // Physiol. Behav. 1988. Vol. 42. N 5. P. 477–484.; Fernandez J.W., Grizzell J.A., Philpot R.M., Wecker L. Postpartum depression in rats: Differences in swim test immobility, sucrose preference and nurturing behaviors // Behav. Brain Res. 2014. Vol. 272. P. 75–82.; Voitenko N.N., Kolpakov V.G., Popova N.K., Alekhina T.A. Predisposition to cataleptic reactions, monoamine oxidase and delta-sleep-inducing peptide in rats // Biog. Amines. 1995. Vol. 11. N 1. P. 63–76.; Panteleeva N.G., Gryazeva N.I., Verbitskaya L.V., Shurlygina A.V., Trufakin V.A., Kolpakov V.G., Alekhina T.A., Barykina N.N. Diurnal variations in lymphocyte subpopulations in lymphoid organs of rats with genetic catalepsy and Wistar rats // Bull. Exp. Biol. Med. 2004. Vol. 137. N 3. P. 288–290.; Lyall L.M., Wyse C.A., Graham N., et al. Association of disrupted circadian rhythmicity with mood disorders, subjective wellbeing, and cognitive function: A cross-sectional study of 91 105 participants from the UK biobank // Lancet. Psychiat. 2018. Vol. 5. N 6. P. 507–514.

  11. 11
  12. 12
  13. 13
  14. 14
    Academic Journal

    Contributors: Исследование выполнено за счет гранта Российского научного фонда (проект № 18-75-10017).

    Source: Siberian journal of oncology; Том 20, № 3 (2021); 134-143 ; Сибирский онкологический журнал; Том 20, № 3 (2021); 134-143 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2021-20-3

    File Description: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/1821/873; Masri S., Sassone-Corsi P. The emerging link between cancer, metabolism, and circadian rhythms. Nat Med. 2018 Dec; 24(12): 1795–1803. doi:10.1038/s41591-018-0271-8.; Bass J. Circadian topology of metabolism. Nature. 2012 Nov 15; 491(7424): 348–56. doi:10.1038/nature11704.; Albrecht U., Eichele G. The mammalian circadian clock. Curr Opin Genet Dev. 2003 Jun; 13(3): 271–7. doi:10.1016/s0959-437x(03)00055-8.; Partch C.L., Green C.B., Takahashi J.S. Molecular architecture of the mammalian circadian clock. Trends Cell Biol. 2014 Feb; 24(2): 90–9. doi:10.1016/j.tcb.2013.07.002.; Welsh D.K., Takahashi J.S., Kay S.A. Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol. 2010; 72: 551–77. doi:10.1146/annurev-physiol-021909-135919.; Trott A.J., Menet J.S. Regulation of circadian clock transcriptional output by CLOCK:BMAL1. PLoS Genet. 2018 Jan 4; 14(1): e1007156. doi:10.1371/journal.pgen.1007156.; Cox K.H., Takahashi J.S. Circadian clock genes and the transcriptional architecture of the clock mechanism. J Mol Endocrinol. 2019 Nov; 63(4): R93–R102. doi:10.1530/JME-19-0153.; Shostak A. Circadian Clock, Cell Division, and Cancer: From Molecules to Organism. Int J Mol Sci. 2017; 18(4): 873. doi:10.3390/ijms18040873.; Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell. 2011 Mar 4; 144(5): 646–74. doi:10.1016/j.cell.2011.02.013.; Sulli G., Lam M.T.Y., Panda S. Interplay between Circadian Clock and Cancer: New Frontiers for Cancer Treatment. Trends Cancer. 2019 Aug; 5(8): 475–494. doi:10.1016/j.trecan.2019.07.002.; El-Athman R., Relógio A. Escaping Circadian Regulation: An Emerging Hallmark of Cancer? Cell Syst. 2018; 6(3): 266–7. doi:10.1016/j.cels.2018.03.006.; Shilts J., Chen G., Hughey J.J. Evidence for widespread dysregulation of circadian clock progression in human cancer. Peer J. 2018 Jan 31; 6: e4327. doi:10.7717/peerj.4327.; Ye Y., Xiang Y., Ozguc F.M., Kim Y., Liu C.J., Park P.K., Hu Q., Diao L., Lou Y., Lin C., Guo A.Y., Zhou B., Wang L., Chen Z., Takahashi J.S., Mills G.B., Yoo S.H., Han L. The Genomic Landscape and Pharmacogenomic Interactions of Clock Genes in Cancer Chronotherapy. Cell Syst. 2018; 6(3): 314–28. doi:10.1016/j.cels.2018.01.013.; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Painting, firefighting, and shiftwork. IARC Monogr Eval Carcinog risks to humans. 2010; 98: 9–764.; Liu W., Zhou Z., Dong D., Sun L., Zhang G. Sex Differences in the Association between Night Shift Work and the Risk of Cancers: A Meta-Analysis of 57 Articles. Dis Markers. 2018; 2018: 7925219. doi:10.1155/2018/7925219.; Gan Y., Li L., Zhang L., Yan S., Gao C., Hu S., Qiao Y., Tang S., Wang C., Lu Z. Association between shift work and risk of prostate cancer: a systematic review and meta-analysis of observational studies. Carcinogenesis. 2018 Feb 9; 39(2): 87–97. doi:10.1093/carcin/bgx129.; Travis R.C., Balkwill A., Fensom G.K., Appleby P.N., Reeves G.K., Wang X.S., Roddam A.W., Gathani T., Peto R., Green J., Key T.J., Beral V. Night Shift Work and Breast Cancer Incidence: Three Prospective Studies and Meta-analysis of Published Studies. J Natl Cancer Inst. 2016 Oct 6; 108(12): djw169. doi:10.1093/jnci/djw169.; Boivin D.B., Boudreau P. Impacts of shift work on sleep and circadian rhythms. Pathol Biol (Paris). 2014; 62(5): 292–301. doi:10.1016/j.patbio.2014.08.001.; Hunter C.M., Figueiro M.G. Measuring Light at Night and Melatonin Levels in Shift Workers: A Review of the Literature. Biol Res Nurs. 2017 Jul; 19(4): 365–374. doi:10.1177/1099800417714069.; Iwamoto A., Kawai M., Furuse M., Yasuo S. Effects of chronic jet lag on the central and peripheral circadian clocks in CBA/N mice. Chronobiol Int. 2014 Mar; 31(2): 189–98. doi:10.3109/07420528.2013.837478.; Виноградова И.А., Анисимов В.Н. Световой режим, препараты эпифиза, старение и продолжительность жизни. Lambert Academic Publishing. 2012. 444 p.; Turek F.W., Joshu C., Kohsaka A., Lin E., Ivanova G., McDearmon E., Laposky A., Losee-Olson S., Easton A., Jensen D.R., Eckel R.H., Takahashi J.S., Bass J. Obesity and metabolic syndrome in circadian Clock mutant mice. Science. 2005 May 13; 308(5724): 1043–5. doi:10.1126/science.1108750.; Birky T.L., Bray M.S. Understanding circadian gene function: animal models of tissue-specific circadian disruption. IUBMB Life. 2014 Jan; 66(1): 34–41. doi:10.1002/iub.1241.; van den Heiligenberg S., Deprés-Brummer P., Barbason H., Claustrat B., Reynes M., Lévi F. The tumor promoting effect of constant light exposure on diethylnitrosamine- induced hepatocarcinogenesis in rats. Life Sci. 1999; 64(26): 2523–34. doi:10.1016/s0024-3205(99)00210-6.; Панченко А.В., Петрищев Н.Н., Кветной И.М., Анисимов В.Н. Канцерогенез в толстой кишке крыс в условиях различных режимов освещения. Вопросы онкологии. 2008; 54(3): 332–7.; Filipski E., Delaunay F., King V.M., Wu M.W., Claustrat B., Gréchez-Cassiau A., Guettier C., Hastings M.H., Francis L. Effects of chronic jet lag on tumor progression in mice. Cancer Res. 2004; 64(21): 7879–85. doi:10.1158/0008-5472.CAN-04-0674.; Schwimmer H., Metzer A., Pilosof Y., Szyf M., Machnes Z.M., Fares F., Harel O., Haim A. Light at night and melatonin have opposite effects on breast cancer tumors in mice assessed by growth rates and global DNA methylation. Chronobiol Int. 2014 Feb; 31(1): 144–50. doi:10.3109/07420528.2013.842925.; Dauchy R.T., Xiang S., Mao L., Brimer S., Wren M.A., Yuan L., Anbalagan M., Hauch A., Frasch T., Rowan B.G., Blask D.E., Hill S.M. Circadian and melatonin disruption by exposure to light at night drives intrinsic resistance to tamoxifen therapy in breast cancer. Cancer Res. 2014 Aug 1; 74(15): 4099–110. doi:10.1158/0008-5472.CAN-13-3156.; Papagiannakopoulos T., Bauer M.R., Davidson S.M., Heimann M., Subbaraj L., Bhutkar A., Bartlebaugh J., Vander Heiden M.G., Jacks T. Circadian Rhythm Disruption Promotes Lung Tumorigenesis. Cell Metab. 2016 Aug 9; 24(2): 324–31. doi:10.1016/j.cmet.2016.07.001.; Lee S., Donehower L.A., Herron A.J., Moore D.D., Fu L. Disrupting circadian homeostasis of sympathetic signaling promotes tumor development in mice. PLoS One. 2010 Jun 7; 5(6): e10995. doi:10.1371/journal.pone.0010995.; Gu X., Xing L., Shi G., Liu Z., Wang X., Qu Z, Wu X., Dong Z., Gao X., Liu G., Yang L., Xu Y. The circadian mutation PER2(S662G) is linked to cell cycle progression and tumorigenesis. Cell Death Differ. 2012 Mar; 19(3): 397–405. doi:10.1038/cdd.2011.103.; Kettner N.M., Voicu H., Finegold M.J., Coarfa C., Sreekumar A., Putluri N., Katchy C.A., Lee C., Moore D.D., Fu L. Circadian Homeostasis of Liver Metabolism Suppresses Hepatocarcinogenesis. Cancer Cell. 2016; 30(6): 909–924. doi:10.1016/j.ccell.2016.10.007.; Fu L., Pelicano H., Liu J., Huang P., Lee C. The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell. 2002 Oct; 111(1): 41–50.; Mteyrek A., Filipski E., Guettier C., Oklejewicz M., van der Horst G.T., Okyar A., Lévi F. Critical cholangiocarcinogenesis control by cryptochrome clock genes. Int J Cancer. 2017 Jun 1; 140(11): 2473–2483. doi:10.1002/ijc.30663.; Gauger M.A., Sancar A. Cryptochrome, circadian cycle, cell cycle checkpoints, and cancer. Cancer Res. 2005 Aug 1; 65(15): 6828–34. doi:10.1158/0008-5472.CAN-05-1119.; Ozturk N., Lee J.H., Gaddameedhi S., Sancar A. Loss of cryptochrome reduces cancer risk in p53 mutant mice. Proc Natl Acad Sci USA. 2009; 106(8): 2841–6. doi:10.1073/pnas.0813028106.; Antoch M.P., Gorbacheva V.Y., Vykhovanets O., Toshkov I.A., Kondratov R.V., Kondratova A.A., Lee C., Nikitin A.Y. Disruption of the circadian clock due to the Clock mutation has discrete effects on aging and carcinogenesis. Cell Cycle. 2008 May 1; 7(9): 1197–204. doi:10.4161/cc.7.9.5886.; Kondratov R.V., Kondratova A.A., Gorbacheva V.Y., Vykhovanets O.V., Antoch M.P. Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock. Genes Dev. 2006 Jul 15; 20(14): 1868–73. doi:10.1101/gad.1432206.; Baturin D.A., Alimova I.N., Anisimov V.N., Popovich I.G., Zabezhinski M.A., Provinciali M., Mancini R., Franceschi C. The effect of light regimen and melatonin on the development of spontaneous mammary tumors in HER-2/neu transgenic mice is related to a downregulation of HER-2/neu gene expression. Neuro Endocrinol Lett. 2001 Dec; 22(6): 441–7.; Otálora B.B., Madrid J.A., Alvarez N., Vicente V., Rol M.A. Effects of exogenous melatonin and circadian synchronization on tumor progression in melanoma-bearing C57BL6 mice. J Pineal Res. 2008 Apr; 44(3): 307–15. doi:10.1111/j.1600-079X.2007.00531.x.; Shah P.N., Mhatre M.C., Kothari L.S. Effect of melatonin on mammary carcinogenesis in intact and pinealectomized rats in varying photoperiods. Cancer Res. 1984 Aug; 44(8): 3403–7.; Tamarkin L., Cohen M., Roselle D., Reichert C, Lippman M., Chabner B. Melatonin inhibition and pinealectomy enhancement of 7,12-dimethylbenz(a)anthracene-induced mammary tumors in the rat. Cancer Res. 1981 Nov; 41(11 Pt 1): 4432–6.; Van Dycke K.C., Rodenburg W., van Oostrom C.T., van Kerkhof L.W., Pennings J.L., Roenneberg T., van Steeg H., van der Horst G.T. Chronically Alternating Light Cycles Increase Breast Cancer Risk in Mice. Curr Biol. 2015 Jul 20; 25(14): 1932–7. doi:10.1016/j.cub.2015.06.012.; Dakup P.P., Porter K.I., Little A.A., Gajula R.P., Zhang H., Skornyakov E., Kemp M.G., Van Dongen H.P.A., Gaddameedhi S. The circadian clock regulates cisplatin-induced toxicity and tumor regression in melanoma mouse and human models. Oncotarget. 2018; 9(18): 14524–14538. doi:10.18632/oncotarget.24539.; Huisman S.A., Oklejewicz M., Ahmadi A.R., Tamanini F., Ijzermans J.N., van der Horst G.T., de Bruin R.W. Colorectal liver metastases with a disrupted circadian rhythm phase shift the peripheral clock in liver and kidney. Int J Cancer. 2015 Mar 1; 136(5): 1024–32. doi:10.1002/ijc.29089.; de Assis L.V.M., Moraes M.N., Magalhães-Marques K.K., Kinker G.S., da Silveira Cruz-Machado S., Castrucci A.M.L. Non-Metastatic Cutaneous Melanoma Induces Chronodisruption in Central and Peripheral Circadian Clocks. Int J Mol Sci. 2018 Apr 3; 19(4): 1065. doi:10.3390/ijms19041065.; Kiessling S., Beaulieu-Laroche L., Blum I.D., Landgraf D., Welsh D.K., Storch K.F., Labrecque N., Cermakian N. Enhancing circadian clock function in cancer cells inhibits tumor growth. BMC Biol. 2017 Feb 14; 15(1): 13. doi:10.1186/s12915-017-0349-7.; Altman B.J., Hsieh A.L., Sengupta A., Krishnanaiah S.Y., Stine Z.E., Walton Z.E., Gouw A.M., Venkataraman A., Li B., Goraksha-Hicks P., Diskin S.J., Bellovin D.I., Simon M.C., Rathmell J.C., Lazar M.A., Maris J.M., Felsher D.W., Hogenesch J.B., Weljie A.M., Dang C.V. MYC Disrupts the Circadian Clock and Metabolism in Cancer Cells. Cell Metab. 2015 Dec 1; 22(6): 1009–19. doi:10.1016/j.cmet.2015.09.003.; Ye H., Yang K., Tan X.M., Fu X.J., Li H.X. Daily rhythm variations of the clock gene PER1 and cancer-related genes during various stages of carcinogenesis in a golden hamster model of buccal mucosa carcinoma. Onco Targets Ther. 2015; 8: 1419–26. doi:10.2147/OTT.S83710.; Tan X.M., Ye H., Yang K., Chen D., Wang Q.Q., Tang H., Zhao N.B. Circadian variations of clock gene Per2 and cell cycle genes in different stages of carcinogenesis in golden hamster buccal mucosa. Sci Rep. 2015 May 7; 5: 9997. doi:10.1038/srep09997.; Otte J.L., Carpenter J.S., Manchanda S., Rand K.L., Skaar T.C., Weaver M., Chernyak Y., Zhong X., Igega C., Landis C. Systematic review of sleep disorders in cancer patients: can the prevalence of sleep disorders be ascertained? Cancer Med. 2015 Feb; 4(2): 183–200. doi:10.1002/cam4.356.; Schrepf A., Thaker P.H., Goodheart M.J., Bender D., Slavich G.M., Dahmoush L., Penedo F., DeGeest K., Mendez L., Lubaroff D.M., Cole S.W., Sood A.K., Lutgendorf S.K. Diurnal cortisol and survival in epithelial ovarian cancer. Psychoneuroendocrinology. 2015; 53: 256–67. doi:10.1016/j.psyneuen.2015.01.010.; Borniger J.C., Walker Ii W.H., Surbhi, Emmer K.M., Zhang N., Zalenski A.A., Muscarella S.L., Fitzgerald J.A., Smith A.N., Braam C.J., TinKai T., Magalang U.J., Lustberg M.B., Nelson R.J., DeVries A.C. A Role for Hypocretin/Orexin in Metabolic and Sleep Abnormalities in a Mouse Model of Non-metastatic Breast Cancer. Cell Metab. 2018; 28(1): 118–129.e5. doi:10.1016/j.cmet.2018.04.021.; Hojo H., Enya S., Arai M., Suzuki Y., Nojiri T., Kangawa K., Koyama S., Kawaoka S. Remote reprogramming of hepatic circadian transcriptome by breast cancer. Oncotarget. 2017; 8(21): 34128–40. doi:10.18632/oncotarget.16699.; Soták M., Polidarová L., Ergang P., Sumová A., Pácha J. An association between clock genes and clock-controlled cell cycle genes in murine colorectal tumors. Int J Cancer. 2013 Mar 1; 132(5): 1032–41. doi:10.1002/ijc.27760.; Masri S., Papagiannakopoulos T., Kinouchi K., Liu Y., Cervantes M., Baldi P., Jacks T., Sassone-Corsi P. Lung Adenocarcinoma Distally Rewires Hepatic Circadian Homeostasis. Cell. 2016 May 5; 165(4): 896–909. doi:10.1016/j.cell.2016.04.039.; Kovacs C.J., Evans M.J., Schenken L.L., Burholt D.R. Alterations in gastrointestinal steady-state kinetics associated with the growth of experimental tumours. Cell Tissue Kinet. 1981 May; 14(3): 241–50. doi:10.1111/j.1365-2184.1981.tb00529.x.; Barbeito C.G., Albarenque S.M., Reyna J.C., Flamini M.A., Laube P.F., Badrán A.F. Mitotic activity of the duodenal crypt enterocytes in mice transplanted with EA21a mammary carcinoma. Cell Biol Int. 2002; 26(1): 123–5. doi:10.1006/cbir.2001.0824.; Губарева Е.А., Майдин М.А., Тындык М.Л., Виноградова И.А., Панченко А.В. Суточные ритмы пролиферации в кишечном эпителии и опухолях молочной железы у HER-2/neu трансгенных мышей и мышей FVB/N дикого типа и их коррекция мелатонином. Вопросы онкологии. 2019; 65(1): 154–8.; Surur J.M., Catalano V.A., Flamini M.A., Barbeito C.G. Effects of tumors on the daily mitotic activity of mouse pars intermedia. Cell Biol Int. 2005 Feb; 29(2): 173–5. doi:10.1016/j.cellbi.2004.11.017.; Ashok Kumar P.V., Dakup P.P., Sarkar S., Modasia J.B., Motzner M.S., Gaddameedhi S. It’s About Time: Advances in Understanding the Circadian Regulation of DNA Damage and Repair in Carcinogenesis and Cancer Treatment Outcomes. Yale J Biol Med. 2019 Jun 27; 92(2): 305–316.; https://www.siboncoj.ru/jour/article/view/1821

  15. 15
  16. 16
  17. 17
    Academic Journal

    Source: Acta Biomedica Scientifica; Том 5, № 2 (2020); 90-95 ; 2587-9596 ; 2541-9420

    File Description: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/2310/2032; Земляной В.П., Сигуа Б.В., Филенко Б.П., Глушков Н.И., Курков А.А., Игнатенко В.А. Еще раз к вопросу о дренировании брюшной полости. Вестник хирургии имени И.И. Грекова. 2018; 177(4): 86-88. doi:10.24884/0042-4625-2018-177-4-86-88; Зубрицкий В.Ф., Покровский К.А., Забелин М.В., Голубев И.В., Розберг Е.П., Савенков С.В., и др. Дренирование брюшной полости после абдоминальных операций. Рациональный взгляд на проблему. Анналы хирургии. 2012; (1): 67-70.; Messager M, Sabbagh C, Denost Q, Regimbeau JM, Laurent C, Rullier E, et al. Is there still a need for prophylactic intra-ab-dominal drainage in elective major gastro-intestinal surgery? J Visc Surg. 2015; 152(5): 305-313. doi:10.1016/j.jviscsurg.2015.09.008; Корымасов Е.А., Горбунов Ю.В., Кричмар А.М. Дренирование в абдоминальной хирургии: стандарты или здравый смысл? Вестник экспериментальной и клинической хирургии. 2012; 5(3): 525-527.; Wilmore DW, Kehlet H. Management of patients in fast track surgery. British Medical Journal. 2001; (322): 473-476. doi:10.1136/bmj.322.7284.473; Салахов Е.К., Кусманович С.К. Современные подходы к дренированию брюшной полости при распространённом перитоните. Казанский медицинский журнал. 2015; 96(3): 385390. doi:10.17750/KMJ2015-385; Khan S, Rai P, Misra G. Is prophylactic drainage of peritoneal cavity after gut surgery necessary?: A non-randomized comparative study from a teaching hospital. J Clin Diagn Res. 2015; 9(10): PC01- PC03. doi:10.7860/JCDR/2015/8293.6577; Аюшинова Н.И., Лепехова С.А., Шурыгина И.А., Рой Т.А., Шурыгин М.Г., Зарицкая Л.В., и др. Способ моделирования спаечного процесса в брюшной полости. Патент на изобретение RU 2467401 C1, 20.11.2012.; Аюшинова Н.И., Шурыгина И.А., Шурыгин М.Г., Лепехова С.А., Балыкина А.В., Малгатаева Е.Р., и др. Экспериментальная модель для разработки способов профилактики спаечного процесса в брюшной полости. Сибирский медицинский журнал (Иркутск). 2012; 109(2): 51-53.; https://www.actabiomedica.ru/jour/article/view/2310

  18. 18
  19. 19
  20. 20