Showing 1 - 20 results of 153 for search '"экзополисахариды"', query time: 0.63s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
    Academic Journal

    Source: VII Пущинская конференция «Биохимия, физиология и биосферная роль микроорганизмов», шко- ла-конференция для молодых ученых, аспирантов и студентов «Генетические технологии в микробио- логии и микробное разнообразие».

  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
    Academic Journal

    Contributors: The work was supported financially by the Ministry of Science and Higher Education of the Russian Federation (grant of the President of the Russian Federation), project no. MK-484.2022.1.4 (agreement no. 075-15-2022-393)., Работа выполнена при финансовой поддержке Министерства науки и Высшего образования Российской Федерации (грант Президента Российской Федерации), проект № МК-484.2022.1.4 (соглашение № 075-15-2022-393).

    Source: Food systems; Vol 5, No 4 (2022); 289-297 ; Пищевые системы; Vol 5, No 4 (2022); 289-297 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2022-5-4

    File Description: application/pdf

    Relation: https://www.fsjour.com/jour/article/view/202/205; Rizwan, M., Mujtaba, G., Memon, S. A., Lee, K., Rashid, N. (2018). Exploring the potential of microalgae for new biotechnology applications and beyond: A review. Renewable and Sustainable Energy Reviews, 92, 394-404. https://doi.org/10.1016/j.rser.2018.04.034; Villarruel-Lopez, A., Ascencio, F., Nuno, K. (2017). Microalgae, a potential natural functional food source — A review. Polish Journal of Food and Nutrition Sciences, 67(4), 251-263. https://doi.org/10.1515/pjfns-2017-0017; Sprague, M., Betancor, M. B., Tocher, D. R. (2017). Microbial and genetically engineered oils as replacements for fish oil in aquaculture feeds. Biotechnology Letters, 39(11), 1599-1609. https://doi.org/10.1007/s10529-017-2402-6; Ferreira, G. F., Ri'os Pinto, L. F., Maciel Filho, R., Fregolente, L. V. (2019). A review on lipid production from microalgae: Association between cultivation using waste streams and fatty acid profiles. Renewable and Sustainable Energy Reviews, 109, 448-466. https://doi.org/10.1016/j.rser.2019.04.052; Scharff, C., Domurath, N., Wensch-Dorendorf, M., Schroder, F.-G. (2017). Effect of different photoperiods on the biochemical profile of the green algae C. vulgaris and S. obliquus. Acta Horticulturae, 1170, 1149-1156. https://doi.org/10.17660/ActaHortic.2017.1170.148; Borowitzka, M. A. (2013). High-value products from microalgae — their development and commercialization. Journal of Applied Phycology, 25(3), 743-756. https://doi.org/10.1007/s10811-013-9983-9; Suganya. T., Varman, M., Masjuki, H. H., Renganathan, S. (2016). Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renewable and Sustainable Energy Reviews, 55, 909-941. https://doi.org/ 10.1016/j.rser.2015.11.026; Santiago-Morales, I. S., Trujillo-Valle, L., Marquez-Rocha, F. J., Hernandez, J.F.L. (2018). Tocopherols, phycocyanin and superoxide dismutase from microalgae: As potential food antioxidants. Applied Food Biotechnology, 5(1), 19-27. https://doi.org/10.22037/afb.v5i1.17884; Hu, J., Nagarajan, D., Zhang, Q., Chang, J.-S., Lee, D.-J. (2018). Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnology Advances, 36(1), 54-67. https://doi.org/10.1016/j.bio-techadv.2017.09.009; Mazumdar, N., Novis, P. M., Visnovsky, G., Gostomski, P. A. (2019). Effect of nutrients on the growth of a new alpine strain of Haematococcus (Chlorophyceae) from New Zealand. Phycological Research, 67(1), 21-27. https://doi.org/10.1111/pre.12344; Mantzorou, A., Ververidis, F. (2019). Microalgal biofilms: A further step over current microalgal cultivation techniques. Science of the Total Environment, 651, 3187-3201. https://doi.org/10.1016/j.scitotenv.2018.09.355; Nguyen, H. C., Su, C.-H., Yu, Y.-K., Huong, D. T. M. (2018). Sugarcane bagasse as a novel carbon source for heterotrophic cultivation of oleaginous microalga Schizochytrium sp. Industrial Crops and Products, 121, 99-105. https://doi.org/10.1016/j.indcrop.2018.05.005; Lafarga, T. (2019). Cultured microalgae and compounds derived thereof for food applications: Strain selection and cultivation, drying, and processing strategies. Food Reviews International, 36(6), 559-583. https://doi.org/10.1080/87559129.2019.1655572; Li, Z., Li, Y., Zhang, X., Tan, T. (2015). Lipid extraction from non-broken and high water content microalgae Chlorella spp. by three-phase partitioning. Algal Research, 10, 218-223. https://doi.org/10.1016/j.al-gal.2015.04.021; Zhao, G., Chen, X., Wang, L. Zhou, S., Feng, H., Chen, W. N. et al. (2013). Ultrasound assisted extraction of carbohydrates from microalgae as feedstock for yeast fermentation. Bioresource Technology, 128, 337-344. https://doi.org/10.1016/j.biortech.2012.10.038; Bleakley, S., Hayes, M. (2017). Algal proteins: extraction, application, and challenges concerning production. Foods, 6(5), Article 33, 1-34. https://doi.org/10.3390/foods6050033; Chen, J., Li, J., Dong, W., Zhang, X., Tyagi, R. D., Drogui, P. et al. (2018). The potential of microalgae in biodiesel production. Renewable and Sustainable Energy Reviews, 90, 336-346. https://doi.org/10.1016/j.rser.2018.03.073; Su, Y., Song, K., Zhang, P. Su, Y., Cheng, J., Chen, X. (2017). Progress of microalgae biofuel's commercialization. Renewable and Sustainable Energy Reviews, 74, 402-411. https://doi.org/10.1016/j.rser.2016.12.078; Amorim, M. L., Soares, J., Coimbra, J. S. D. R., Leite, M. D O., Albino, L. F. T., Martins, M. A. (2020). Microalgae proteins: Production, separation, isolation, quantification, and application in food and feed. Critical Reviews in Food Science and Nutrition, 61(12), 1976-2002. https://doi.org/10.1080/10408398.2020.1768046; Phong, W. N., Show, P. L., Ling, T. C., Juan, J. C., Ng, E.-P., Chang, J.-S. (2018). Mild cell disruption methods for bio-functional proteins recovery from microalgae — Recent developments and future perspectives. Algal Research, 31, 506-516. https://doi.org/10.1016/j.algal.2017.04.005; Zielinski, D., Fraczyk, J., Debowski, M., Zielinski, M., Kaminski, Z., Kregiel, D. et al. (2020). Biological activity of hydrophilic extract of Chlorella vulgaris grown on post-fermentation leachate from a biogas plant supplied with stillage and maize silage. Molecules, 25(8), Article 25081790. https://doi.org/10.3390/molecules25081790; Frazzini, S., Scaglia, E., Dell'anno, M., Reggi, S., Panseri, S., Giromini, C. et al. (2022). Antioxidant and antimicrobial activity of algal and cyanobacterial extracts: An in vitro study. Antioxidants, 11, Article 992. https://doi.org/10.3390/antiox11050992; Селиванова, Е. А., Игнатенко, М. Е., Немцева, Н. В. (2014). Антагонистическая активность новых штаммов зеленых микроводорослей Журнал микробиологии эпидемиологии и иммунобиологии, 4, 72-76.; Pina-Perez, M. C., Rivas, A., Martinez, A., Rodrigo, D. (2017). Antimicrobial potential of macro and microalgae against pathogenic and spoilage microorganisms in food. Food Chemistry, 235, 34-44. https://doi.org/10.1016/j.foodchem.2017.05.033; Singh, M., Singh, S., Prasad, S., Gambhir, I. (2008). Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Digest Journal of Nanomaterials and Biostructures, 3(3), 115-122.; Ru, I. T. K., Sung, Y. Y., Jusoh, M., Wahid, M. E. A., Nagappan, T. (2020). Chlorella vulgaris: a perspective on its potential for combining high biomass with high value bioproducts. Applied Phycology, 1(1), 1-10. https://doi.org/10.1080/26388081.2020.1715256; Mostafa, S. M. S. (2012). Microalgal biotechnology: Prospects and applications. Chapter in a book: Plant Science. London, UK: IntechOpen Ltd, 2012. https://doi.org/10.5772/53694; Ahmad, M. T., Shariff, M., Yusoff, F. M., Goh, Y. M., Banerjee, S. (2018). Applications of microalga Chlorella vulgaris in aquaculture. Reviews in Aquaculture, 1, 1-19. https://doi.org/10.1111/raq.12320; Safi, C., Zebib, B., Merah, O., Pontalier, P.-Y., Vaca-Garcia, C. (2014). Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews, 35, 265-278. https://doi.org/10.1016/j.rser.2014.04.007; Tabarsa, M., Shin, I. S., Lee, J. H., Surayot, U., Park, W., You, S. (2015). An immune-enhancing water-soluble a glucan from Chlorella vulgaris and structural characteristics. Food Science and Biotechnology, 24(6), 19331941. https://doi.org/10.1007/s10068-015-0255-0; Scott, A. M., Beller, E., Glasziou, P., Clark, J., Ranakusuma, R. W., Byambasuren, O. et al. (2018). Is antimicrobial administration to food animals a direct threat to human health? A rapid systematic review. International Journal of Antimicrobial Agents, 52(3), 316-323. https://doi.org/10.1016/j.ijantimicag.2018.04.005; Sharma, C., Rokana, N., Chandra, M., Singh, B. P., Gulhane, R. D., Gill, J. P. S. et al. (2018). Antimicrobial resistance: Its surveillance, impact, and alterative management strategies in dairy animals. Frontiers in Veterinary Science, 4(JAN), Article 237. https://doi.org/10.3389/fvets.2017.00237; Caprarulo, V., Hejna, M., Giromini, C., Liu, Y., Dell'Anno, M., Sotira, S. et al. (2020). Evaluation of dietary administration of chestnut and quebracho tannins on growth, serum metabolites and fecal parameters of weaned piglets. Animals, 10(11), Article 1945. https://doi.org/10.3390/ani10111945; Ricky, R., Chiampo, F., Shanthakumar, S. (2022). Efficacy of ciprofloxacin and amoxicillin removal and the effect on the biochemical composition of chlorella vulgaris. Bioengineering, 9(4), Article 134. https://doi.org/10.3390/bioengineering9040134; Rathi Bhuvaneswari, G., Shukla, S. P., Makesh, M., Thirumalaiselvan, S., Arun Sudhagar, S., Kothari, D. C. et al. (2013). Antibacterial activity of spirulina (arthospira platensisgeitler) against bacterial pathogens in aquaculture. The Israeli Journal of Aquaculture — Bamidgeh, 932(8), 1-8.; Salido, J., Sanchez, C., Ruiz-Santaquiteria, J., Cristobal, G., Blanco, S., Bueno, G. (2020). A low-cost automated digital microscopy platform for automatic identification of diatoms. Applied Sciences, 10, Article 6033. https://doi.org/10.3390/app10176033; Mu, P., Plummer, D.T. (2001). Introduction to practical biochemistry. Chapter in a book: Tata McGraw-Hill Education: New York, NY, USA, 2001.; Erbland, P., Caron, S., Peterson, M., Alyokhin, A. (2020). Design and performance of a low-cost, automated, large-scale photobioreactor for microalgae production, Aquacultural Engineering, 90, Article 102103. https://doi.org/10.1016/j.aquaeng.2020.102103; Eilertsen, H. C., Eriksen, G. K., Bergum, J.-S., Stromholt, J., Elvevoll, E., Eilertsen, K.-E. et al. (2022). Mass cultivation of microalgae: I. Experiences with vertical column airlift photobioreactors, diatoms and CO2 sequestration. Applied Sciences, 12, Article 3082. https://doi.org/10.3390/app12063082; Барский, Е, Л., Лебедева, А. Ф., Саянина, Я.В. (1999). Изменения окислительно-восстановительного потенциала среды культивирования бактерий Pseudomonas diminuta, устойчивых к тяжелым металлам: связь с высвобождением металлотионеиноподобных белков из клеток. Вестник Московского Университета. Серия 16: Биология, 2, 11-15.; Maeda, K, Owada, M, Kimura, N, Omata, K, Karube, I. (1995). CO2 fixation from flue gas on coal fired thermal power plant by microalgae. Energy Conversion and Management, 36(6-9), 717-720. https://doi.org/10.1016/0196-8904(95)00105-M; Darias, J., Rovirosa, J., San Martin, A., Di'az, A.-R., Dorta, E., Cueto, M. (2001). Furoplocamioids A-C, novel polyhalogenated furanoid monoterpenes from plocamium cartilagineum. Journal of Natural Products, 64(11), 1383-1387. https://doi.org/10.1021/np010297u; Barreto, M., Meyer, J. J. M. (2006). Isolation and antimicrobial activity of a lanosol derivative from osmundaria serrata (rhodophyta) and a visual exploration of its biofilm covering. South African Journal of Botany, 72(4), 521-528. https://doi.org/10.1016/j.sajb.2006.01.006; Kavita, K., Singh, V. K., Jha, B. (2014). 24-Branched Д5 sterols from laurencia papillosa red seaweed with antibacterial activity against human pathogenic bacteria. Microbiological Research, 169(4), 301-306. https://doi.org/10.1016/j.micres.2013.07.002; dos Santos Amorim, R.N., Rodrigues, J.A.G., Holanda, M.L., Ouindere, A. L. G., de Paula, R. C. M., Melo, V. M. M. et al. (2012). Antimicrobial effect of a crude sulfated polysaccharide from the red seaweed gracilaria ornata. Brazilian Archives of Biology and Technology, 55(2), 171-181. https://doi.org/10.1590/S1516-89132012000200001; Abdel-Moneim, A.-M. E., El-Saadony, M. T., Shehata, A. M., Saad, A. M., Aldhumri, S. A., Ouda, S.M. et al. (2022). Antioxidant and antimicrobial activities of spirulina platensis extracts and biogenic selenium nanoparticles against selected pathogenic bacteria and fungi. Saudi Journal of Biological Sciences, 29(2), 1197-1209. https://doi.org/10.1016/j.sjbs.2021.09.046; https://www.fsjour.com/jour/article/view/202

  16. 16
  17. 17
  18. 18
  19. 19
  20. 20
    Academic Journal

    Source: Microbiology&Biotechnology; No. 3(53) (2021); 44-59 ; Микробиология и биотехнология; № 3(53) (2021); 44-59 ; Мікробіологія і біотехнологія; № 3(53) (2021); 44-59 ; 2307-4663 ; 2076-0558

    File Description: application/pdf