Showing 1 - 14 results of 14 for search '"широкозонные полупроводники"', query time: 0.51s Refine Results
  1. 1
  2. 2
    Academic Journal

    Source: Journal of the Russian Universities. Radioelectronics; Том 26, № 4 (2023); 33-55 ; Известия высших учебных заведений России. Радиоэлектроника; Том 26, № 4 (2023); 33-55 ; 2658-4794 ; 1993-8985

    File Description: application/pdf

    Relation: https://re.eltech.ru/jour/article/view/776/698; Connecting Chips with More Than 100 GHz Bandwidth / W. Heinrich, M. Hossain, S. Sinha, F.- J. Schmückle, R. Doerner, V. Krozer, N. Weimann // IEEE J. Microw. 2021. Vol. 1, № 1. P. 364–373. doi:10.1109/JMW.2020.3032879; Heterogeneously Integrated RF Circuits Using Highly Scaled off-the-Shelf GaN HEMT Chiplets / F. Herrault, J. C. Wong, Y. Tang, H. Y. Tai, I. Ramos // IEEE Microwave and Wireless Components Let. 2020. Vol. 30, № 11. P. 1061–1064. doi:10.1109/LMWC.2020.3025126; III-V/III-N technologies for next generation high-capacity wireless communication / N. Collaert, A. Alian, A. Banerjee, G. Boccardi P. Cardinael et al. // Intern. Electron Devices Meeting (IEDM). San Francisco, USA, 03–07 Dec. 2022. IEEE, 2022. P. 11.5.1– 11.5.4. doi:10.1109/IEDM45625.2022.10019555; OMMIC D01PH технологический процесс. URL: https://www.macom.com/european-semiconductor-center/mesc-processes (дата обращения 24.08.2023); High Performance and High Reliability of 0.1μm InP HEMT MMIC Technology on 100 mm InP Substrates / R. Lai, Y. C. Chou, L. J. Lee, P. H. Liu, D. Leung, Q. Kan, X. Mei, C. H. Lin, D. Farkas, M. Barsky, D. Eng, A. Cavus, M. Lange, P. Chin, M. Wojtowicz, T. Block, A. Oki // IEEE 19th Intern. Conf. on Indium Phosphide & Related Materials, Matsue, Japan, 14–18 May 2007. IEEE, 2007. P. 63–66. doi:10.1109/ICIPRM.2007.381123; 6W Ka Band Power Amplifier and 1.2dB NF X-Band Amplifier Using a 100nm GaN/Si Process / R. Leblanc, N. Santos Ibeas, A. Gasmi, F. Auvray, J. Poulain, F. Lecourt, G. Dagher, P. Frijlink // IEEE Compound Semiconductor Integrated Circuit Symp. (CSICS), Austin, TX, USA, 23–26 Oct. 2016. IEEE, 2016. P. 1–4. doi:10.1109/CSICS.2016.7751009; 0.13 μ m SiGe BiCMOS Technology Fully Dedicated to mm-Wave Applications / G. Avenier, M. Diop, P. Chevalier, G. Troillard, N. Loubet et al. // IEEE J. of Solid-State Circuits. 2009. Vol. 44, № 9. P. 2312–2321. doi:10.1109/JSSC.2009.2024102; A 0.13-/spl mu/m SOI CMOS technology for lowpower digital and RF applications / N. Zamdmer, A. Ray, J.-O. Plouchart, L. Wagner, N. Fong, K. A. Jenkins, W. Jin, P. Smeys, I. Yang, G. Shahidi, F. Assaderghi // Symp. on VLSI Technology. Digest of Technical Papers, Kyoto, Japan, 12–14 June 2001. IEEE, 2001. P. 85–86. doi:10.1109/VLSIT.2001.934959; A Novel Si–GaN Monolithic Integration Technology for a High-Voltage Cascoded Diode / J. Ren, C. Liu, C. W. Tang, K. M. Lau, J. K. O. Sin // IEEE Electron Device Let. 2017. Vol. 38, № 4. P. 501–504. doi:10.1109/LED.2017.2665698; Pat. US 8823146B1. Semiconductor structure having silicon devices, column III-Nitride devices, and column III-non-Nitride or Column II-VI devices / W. E. Hoke. 02.09. 2014.; Kazior T. E. Beyond CMOS: heterogeneous integration of III–V devices, RF MEMS and other dissimilar materials/devices with Si CMOS to create intelligent microsystems // Phil. Trans. R. Soc. A. 2014. Vol. 372, № 2012. P. 20130105. doi:10.1098/rsta.2013.0105; Silicon-on-insulator with hybrid orientations for heterogeneous integration of GaN on Si (100) substrate / R. Zhang, B. Zhao, K. Huang, T. You, Q. Jia, J. Lin, S. Zhang, Y. Yan, A. Yi, M. Zhou, X. Ou // AIP Advances. 2018. Vol. 8, № 5. P. 055323. doi:10.1063/1.5030776; Kazior T. E., LaRoche J. R., Hoke W. E. More Than Moore: GaN HEMTs and Si CMOS Get It Together // IEEE Compound Semiconductor Integrated Circuit Symp. (CSICS), Monterey, CA, USA, 13– 16 Oct. 2013. IEEE, 2013. P. 1–4. doi:10.1109/CSICS.2013.6659239; Mendes J. C., Liehr M., Li C. Diamond/GaN HEMTs: Where from and Where to? // Materials. 2022. Vol. 15, № 2. P. 415. doi:10.3390/ma15020415; Heteroepitaxial Growth of III-V Semiconductors on Silicon / J.-S. Park, M. Tang, S. Chen, H. Liu // Crystals. 2020. Vol. 10, iss. 12. P. 1163. doi:10.3390/cryst10121163; A review of silicon-based wafer bonding processes, an approach to realize the monolithic integration of Si-CMOS and III–V-on-Si wafers / S. Bao, Y. Wang, K. Lina, L. Zhang, B. Wang, W. A. Sasangka, K. E. K. Lee, S. J. Chua, J. Michel, E. Fitzgerald, C. S. Tan, K. H. Lee // J. Semicond. 2021. Vol. 42, № 2. P. 023106. doi:10.1088/1674-4926/42/2/023106; InAlN/GaN-on-Si HEMT with 4.5 W/mm in a 200-mm CMOS-Compatible MMIC Process for 3D Integration / S. Warnock, C.-L.Chen, J. Knechtl, R. Molnar et al. // IEEE/MTT-S Intern. Microwave Symp. (IMS). 2020. Los Angeles, CA, USA, 04–06 Aug. 2020. IEEE, 2020. P. 289–292. doi:10.1109/IMS30576.2020.9224061; Si/InP Heterogeneous Integration Techniques from the Wafer-Scale (Hybrid Wafer Bonding) to the Discrete Transistor (Micro-Transfer Printing) / A. D. Carter, M. E. Urteaga, Z. M. Griffith, K.-J. Lee, J. Roderick, P. Rowell, J. Bergman, S. Hong, R. Patti, C. Petteway, G. Fountain, K. Ghosel, C. A. Bower // IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conf. (S3S), Burlingame, CA, USA, 15–18 Oct. 2018. IEEE, 2018. P. 1–4. doi:10.1109/S3S.2018.8640196; LaRoche J. Towards a Si foundry-compatible GaN-on-Si MMIC process on 200 mm Si with Cu damascene BEOL (Conf. Presentation) // Proc. SPIE 11280, Gallium Nitride Materials and Devices XV, 112801G, 10 March 2020. doi:10.1117/12.2543913; A Hetero-Integrated W-Band Transmitter Module in InP-on-BiCMOS Technology / M. Hossain, M. H. Eissa, M. Hrobak, D. Stoppel, N. Weimann, A. Malignaggi, A. Mai, D. Kissinger, W. Heinrich, V. Krozer // 13th European Microwave Integrated Circuits Conf. (EuMIC), Madrid, Spain, 23–25 Sept. 2018. IEEE, 2018. P. 97–100. doi:10.23919/EuMIC.2018.8539915; Transfer print techniques for heterogeneous integration of photonic components / B. Corbett, R. Loi, W. Zhou, D. Liu, Z. Ma // Progress in Quantum Electronics. 2017. Vol. 52. P. 1–17. doi:10.1016/j.pquantelec.2017.01.001; Gong Z. Layer-Scale and Chip-Scale Transfer Techniques for Functional Devices and Systems: A Review // Nanomaterials. 2021. Vol. 11, iss. 4. Art. 842. P. 1–47. doi:10.3390/nano11040842; Moutanabbir O., Gösele U. Heterogeneous Integration of Compound Semiconductors // Annual Review of Materials Research. 2010. Vol. 40, iss. 1. P. 469–500. doi:10.1146/annurev-matsci-070909-104448; Lerner R., Hansen N. H. Commercial Sweet Spots for GaN and CMOS Integration by Micro-Transfer-Printing // ISPS’21 Proc. Prague, Czech Technical University. 2021. P. 99–106. doi:10.14311/ISPS.2021.015; Micro-transfer Printing of GaN HEMTs for Heterogeneous Integration and Flexible RF Circuit Design / B. P. Downey, A. Xie, S. Mack, D. S. Katzer, J. G. Champlain, Yu Cao, N. Nepal, T. A. Growden, V. J. Gokhale, R. L. Coffie, M. T. Hardy, E. Beam, C. Lee, D. J. Meyer // Device Research Conf., Columbus, OH, USA, 21–24 June 2020. IEEE, 2020. P. 1–2. doi:10.1109/DRC50226.2020.9135179; A compact and low-profile GaN power amplifier using interposer-based MMIC technology / D. Kim, J. M. Yook, S. J. An, S. R. Kim, J.-G. Yook, J. C. Kim // IEEE 16th Electronics Packaging Technology Conf., Singapore, 03–05 Dec. 2014. IEEE, 2014. P. 672–675. doi:10.1109/EPTC.2014.7028416; Kompa G., Wasige E., Joodaki M. Quasi Monolithic Hybrid Technology Based on Si Micromachining and Low-Temperature Thin-Film Processing // World Micro-technologies Congress of MICROTEC. 2000. Sep. P. 109–114.; Metal-Embedded Chiplet Assembly for Microwave Integrated Circuits / F. Herrault, J. C. Wong, D. Regan, D. F. Brown, H. Fung, Y. Tang, H. Sharifi // IEEE Transactions on Components, Packaging and Manufacturing Technology. 2020. Vol. 10, № 9. P. 1579–1582. doi:10.1109/TCPMT.2020.3012505; Si-Embedded IC Package for W-band Applications: Interconnection Analysis / H.-B. Lee, B.-W. Min, Y.-G. Kim, J. M. Yook, S. Kim, W. Kim // IEEE AsiaPacific Microwave Conf., Singapore, 10–13 Dec. 2019. IEEE, 2019. P. 1080–1082. doi:10.1109/APMC46564.2019.9038484; Metal-Embedded Chip Assembly Processing for Enhanced RF Circuit Performance / A. Estrada, G. Lasser, M. Pinto, F. Herrault, Z. Popović // IEEE Transactions on Microwave Theory and Techniques. 2019. Vol. 67, № 9. P. 3537–3546. doi:10.1109/TMTT.2019.2931010; Monolithically Integrated Self-Biased Circulator for mmWave T/R MMIC Applications / Y. Cui, H.-Y. Chen, S. Chen, D. Linkhart, H. Tan et al. // IEEE Intern. Electron Devices Meeting. 2021. P. 4.2.1–4.2.4. doi:10.1109/IEDM19574.2021.9720611; Additively Manufactured mm-Wave Multichip Modules with Fully Printed ‘Smart’ Encapsulation Structures / X. He, B. K. Tehrani, R. Bahr, W. Su, M. M. Tentzeris // IEEE Trans. Microwave Theory Techn. 2020. Vol. 68, № 7. P. 2716–2724. doi:10.1109/TMTT.2019.2956934; Additive Manufacturing of a W-Band Systemon-Package / M. T. Craton, X. Konstantinou, J. D. Albrecht, P. Chahal, J. Papapolymerou // IEEE Transactions on Microwave Theory and Techniques. 2021. Vol. 69, № 9. P. 4191–4198. doi:10.1109/TMTT.2021.3076066; Cung G., Spence T., Borodulin P. Enabling broadband, highly integrated phased array radiating elements through additive manufacturing // IEEE Intern. Symp. on Phased Array Systems and Technology, Waltham, MA, USA, 18–21 Oct. 2016. IEEE, 2016. P. 1–9. doi:10.1109/ARRAY.2016.7832632; Kolias N. J., Borkowski M. T. The development of T/R modules for radar applications // IEEE/MTT-S Intern. Microwave Symp. Digest, Montreal, QC, Canada, 17–22 June 2012. IEEE, 2012. P. 1–3. doi:10.1109/MWSYM.2012.6259727; A Low-Cost 30-W Class X-Band GaN-on-Si MMIC Power Amplifier with a GaAs MMIC Output Matching Circuit / J. Kamioka, Y. Kawamura, Y. Tarui, K. Nakahara, Y. Kamo, H. Okazaki, M. Hangai, K. Yamanaka, H. Fukumoto // 13th European Microwave Integrated Circuits Conf., Madrid, Spain, 23– 25 Sep. 2018. IEEE, 2018. P. 93–96. doi:10.23919/EuMIC.2018.8539903; Interconnects Analyses in Quasi-Monolithic Integration Technology / M. Joodaki, A. Kricke, H. Hillmer, G. Kompa // IEEE Electrical Performane of Electronic Packaging, Scottsdale, AZ, USA, 23–25 Oct. 2006. IEEE, 2006. P. 229–232. doi:10.1109/EPEP.2006.321236; A Cost-Effective Flip-Chip Interconnection for Applications from DC until 200 GHz / P. V. Testa, H. Morath, P. Goran, C. Carta, F. Ellinger // IEEE AsiaPacific Conf. on Applied Electromagnetics, Melacca, Malaysia, 25–27 Nov. 2019. IEEE, 2019. P. 1–6. doi:10.1109/APACE47377.2019.9021003; Design considerations for a new generation of SiPMs with unprecedented timing resolution / S. Enoch, A. Gola, P. Lecoq, A. Rivetti // J. Inst. 2021. Vol. 16, № 02. P. P02019–P02019. doi:10.1088/1748-0221/16/02/P02019; Generational changes of flip chip interconnection technology / W. S. Tsai, C. Y. Huang, C. K. Chung, K. H. Yu, C. F. Lin // 12th Intern. Microsystems, Packaging, Assembly and Circuits Technology Conf. (IMPACT), Taipei, Taiwan, 25–27 Oct. 2017. IEEE, 2017. P. 306–310. doi:10.1109/IMPACT.2017.8255955; Path to 3D heterogeneous integration / D. S. Green, C. L. Dohrman, J. Demmin, T.-H. Chang // Intern. 3D Systems Integration Conf. (3DIC), Sendai, Japan, 31 Aug.–02 Sep. 2015. IEEE, 2015. P. FS7.1–FS7.3. doi:10.1109/3DIC.2015.7334469; Wafer-level Au–Au bonding in the 350–450 °C temperature range / H. R Tofteberg, K. Schjølberg-Henriksen, E. J. Fasting, A. S. Moen, M. M. V. Taklo, E. U. Poppe, C. J. Simensen // J. of Micromechanics and Microengineering. 2014. Vol. 24, iss. 8. P. 084002. doi:10.1088/0960-1317/24/8/084002; Recent progress in SLID bonding in novel 3DIC technologies / L. Sun, M.-H. Chen, L. Zhang, P. He, L.-S. Xie // J. of Alloys and Compounds. 2020. Vol. 818. Art. 152825. doi:10.1016/j.jallcom.2019.152825; Technology for the Heterointegration of InP DHBT Chiplets on a SiGe BiCMOS Chip for mm-wave MMICs / M. Rausch, T. Flisgen, C. Stolmacker, A. Stranz, A. Thies, R. Doerner, H. Yacoub, W. Heinrich // 52nd European Microwave Conf. (EuMC), Milan, Italy, 27–29 Sep. 2022. IEEE, 2022. P. 28–31. doi:10.23919/EuMC54642.2022.9924451; Flip-Chip Integration of III-V Chips on Wafer for mmW Applications / A. S. Efimov, A. A. Zaycev, A. S. Kurochka, A. M. Temnov, K. V. Dudinov, A. M. Emelianov, D. D. Korolkova, A. D. Rudina, Y. S. Ranzhin // IEEE 8th All-Russ. Microwave Conf. (RMC), Moscow, Russia, 23–25 Nov. 2022. IEEE, 2022. P. 220–222. doi:10.1109/RMC55984.2022.10079408; Li C.-H., Hsieh W.-T., Chiu T.-Y. A Flip-Chip-Assembled W-Band Receiver in 90-nm CMOS and IPD Technologies // IEEE Transactions on Microwave Theory and Techniques. 2019. Vol. 67, № 4. P. 1628– 1639. doi:10.1109/TMTT.2019.2894426; Encapsulated Organic Package Technology for Wideband Integration of Heterogeneous MMICs / S. Pavlidis, G. Alexopoulos, A. Ç. Ulusoy, M. Cho, J. Papapolymerou // IEEE Transactions on Microwave Theory and Techniques. 2017. Vol. 65, № 2. P. 438– 448. doi:10.1109/TMTT.2016.2630067; Heinrich W. The flip-chip approach for millimeter wave packaging // IEEE Microwave Magazine. 2005. Vol. 6, № 3. P. 36–45. doi:10.1109/MMW.2005.1511912; Fan-out Wafer Level Packaging of GaN Traveling Wafer Amplifier / D. Schwantuschke, E. Ture, T. Braun, T. D. Nguyen, M. Wohrmann, M. Pretl, S. Engels // IEEE/MTT-S Intern. Microwave Symp. - IMS 2022, Denver, CO, USA, 19–24 June 2022. IEEE, 2022. P. 579–582. doi:10.1109/IMS37962.2022.9865579; Feghhi R., Joodaki M. Thermal analysis of microwave GaN-HEMTs in conventional and flip-chip assemblies // Intern. J. of RF and Microwave Computer-Aided Engineering. 2018. Vol. 28, iss. 8. Art. e21513. doi:10.1002/mmce.21513; A Millimeter-Wave System-on-Package Technology Using a Thin-Film Substrate With a Flip-Chip Interconnection / S. Song, Y. Kim, J. Maeng, H. Lee, Y. Kwon, K.-S. Seo // IEEE Transactions on Advanced Packaging. 2009. Vol. 32, no. 1. P. 101–108. doi:10.1109/TADVP.2008.2006626; Transceiver MMIC's for street surveillance radar / K. Tsukashima, O. Anegawa, T. Kawasaki, A. Otsuka, M. Kubota, T. Tokumitsu, S. Ogita // 11th European Microwave Integrated Circuits Conf. (EuMIC), London, UK, 03–04 Oct. 2016. IEEE, 2016. P. 329–332. doi:10.1109/EuMIC.2016.7777557; DBIT-direct backside interconnect technology: a manufacturable, bond wire free interconnect technology for microwave and millimeter wave MMICs / T. E. Kazior, H. N. Atkins, A. Fatemi, Y. Chen, F. Y. Colomb, J. P. Wendler // IEEE MTT-S Intern. Microwave Symp., Digest. Denver, CO, USA, 08–13 June 1997. IEEE, 1997. P. 723–726. doi:10.1109/MWSYM.1997.602892; A Hot-via Chip-to-substrate Interconnect for Ultra-compact System Package Application up to W Band / J. Yang, B. Zou, J. Xu, J. Zhou // PIER Let. 2022. Vol. 107. P. 75–81. doi:10.2528/PIERL22020201; Millimetre-wave Hot-Via interconnect-based GaAs chip-set for automotive RADAR and security sensors / PF. Alleaume, C. Toussain, C. Auvinet, D. Domnesque, P. Quentin, M. Camiade // European Microwave Integrated Circuit Conf., Amsterdam, Netherlands, 27–28 Oct. 2008. IEEE, 2008. P. 52–55. doi:10.1109/EMICC.2008.4772226; https://re.eltech.ru/jour/article/view/776

  3. 3
    Academic Journal

    Source: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 25, № 2 (2022); 107-114 ; Известия высших учебных заведений. Материалы электронной техники; Том 25, № 2 (2022); 107-114 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2022-2

    File Description: application/pdf

    Relation: https://met.misis.ru/jour/article/view/481/371; Isshiki M., Wang J. II-IV semiconductors for optoelectronics: CdS, CdSe, CdTe. In: Kasap S., Capper P. (eds.) Springer handbook of electronic and photonic materials. Cham, Switzerland: Springer; 2017: 853—865. https://doi.org/10.1007/978-3-319-48933-9_33; Triboulet R., Siffert P. CdTe and related compounds; physics, defects, hetero- and nano-structures, crystal growth, surfaces and applications. Elsevier; 2010. 296 p. https://doi.org/10.1016/C2009-0-17817-0; Tinedert I.E., Pezzimenti F., Megherbi M.L., Tumer T.O. Tumer O.T., Finger M.H., Gordon E.E., Ramsey B.D., Rhiger D.R., Sharma D.P. Test results of preliminary CdZnTe pixel detectors for possible application to HXT on the Constellation-X mission. Proceedings of SPIE. X-ray and Gamma-ray instrumentation for Astronomy XIII. 2004; 5165: 548—554. https://doi.org/10.1117/12.515619; Del Sordo S., Abbene L., Caroli E., Mancini A.M., Zappettini A., Ubertini P. Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications. Sensors. 2009; 9(5): 3491—3526. https://doi.org/10.3390/s90503491; Дворянкин В.Ф., Дворянкина Г.Г., Иванов Ю.М., Кудряшов А.А., Петров А.Г. Фотовольтаические детекторы рентгеновского излучения на основе кристаллов CdTe с p-n-переходом. Журнал технической физики. 2010; 80(7): 156—158.; Tinedert I.E., Pezzimenti F., Megherbi M.L., Saadoune A. Design and simulation of a high efficiency CdS/CdTe solar cell. Optik. 2020; 208: 164112. https://doi.org/10.1016/j.ijleo.2019.164112; Bosio A., Rosa G., Romeo N. Past, present and future of the thin film CdTe/CdS solar cells. Solar Energy. 2018; 175: 31—43. https://doi.org/10.1016/j.solener.2018.01.018; Baines T., Shalvey T.P., Major J.D. Pt 10. CdTe solar cells. In: A Comprehensive guide to solar energy systems. Elsevier; 2018: 215—232. https://doi.org/10.1016/B978-0-12-811479-7.00010-5; Scheiber C., Giakos G.C. Medical applications of CdTe and CdZnTe detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2001; 458(1–2): 12—25. https://doi.org/10.1016/S0168-9002(00)01032-9; Kroger F.A. The chemistry of imperfect crystals. Amsterdam: North-Holland; 1964. 1039 p.; Ivanov Y.M. Configuration of the cadmium telluride homogeneity boundaries. Russian Journal of Inorganic Chemistry. 2014; 59(14): 1705—1714. https://doi.org/10.1134/S0036023614140034; Avetisov I. Mozhevitina E., Khomyakov A., Avetisov R. Nonstoichiometry of AIIBVI semiconductors. Crystal Research and Technology. 2015; 50(1): 115—123. https://doi.org/10.1002/crat.201400215; Avetisov I., Mozhevitina E., Khomyakov A., Khanh T. Universal approach for nonstoichiometry determination in binary chemical compounds. Crystall Reserch Technology. 2015; 50(1): 93—100. https://doi.org/10.1002/crat.201400201; Иванов Ю.М., Яковлева В.Т., Андрейчук А.Н., Морозова Л.П. Метод концентрирования избыточного компонента для определения его концентрации в нестехиометрических соединениях. Известия АН СССР. Неорганические материалы. 1977; (6): 1082.; Зломанов В.П., Аветисов И.Х., Можевитина Е.Н. Физическая химия твердого тела. Р-Т-х диаграммы фазовых равновесий. М.: РХТУ им. Д. И. Менделеева; 2019. 184 с.; Аветисов И.Х. Фазовые равновесия в системах А(II)В(VI). В сб.: Высокочистые вещества. М.: Научный мир; 2018: 704—753.; Rudolph P. Fundamental studies on Bridgman growth of CdTe. Progress in Crystal Growth and Characterization of Materials. 1994; 29(1–4): 275—381. https://doi.org/10.1016/0960-8974(94)90009-4; Yellin N., Szapiro Y. Calculation of the partial vapor pressures of tellurium and cadmium over non-stoichiometric CdTe in the temperature range 750—1050 °C. Journal of Crystal Growth. 1985; 73(1): 77—82. https://doi.org/10.1016/0022-0248(85)90333-1; Шалимова К.В. Физика полупроводников. СПб.: Лань; 2010. 400 с.; Kröger F.A. The defect structure of CdTe. Revue de Physique Appliquee. 1977; 12(2): 205—210. https://doi.org/10.1051/rphysap:01977001202020500; Медведев С.А., Максимовский С.Н., Киселева К.В., Клевков Ю.В., Сентюрина Н.Н. О природе точечных дефектов в нелегированном CdTe. Известия АН СССР. Неорганические материалы. 1973; 9(3): 356—360.; Медведев С.А., Мартынов В.Н, Кобелева С.П. О возможности существования антиструктурных дефектов в нелегированном CdTe. Известия АН СССР. Кристаллография. 1983; 28(2): 394.; Fochuk P., Grill R., Panchuk O. The nature of point defects in CdTe. Journal of Electronic Materials. 2006; 35(6): 1354—1359. https://doi.org/10.1007/s11664-006-0268-9; Вerding М.А. Native defects in CdTe. Physical Review B. 1999; 60(12): 8943—8950. https://doi.org/10.1103/PhysRevB.60.8943; Kosyak V.V., Opanasyak A.S., Protsenko I.Yu. Ensemble of point defects in CdTe single crystals and films in the case of full equilibrium and quenching. Functional Materials. 2005; 12(4): 797—806.; Brebric R.F., Strauss A.J. Partial pressures in equilibrium with group IV tellurides. I. Optical absorption method and results for PbTe. Journal of Chemical Physics. 1964; 40: 3230—3235. https://doi.org/10.1063/1.1724990; Медведев С.А., Мартынов В.Н., Кобелева С.П. Исследование температурной зависимости парциальных давлений компонентов над теллуридом кадмия. Электронная техника. Серия 6. Материалы. 1980; (8(145)): 53—58.; https://met.misis.ru/jour/article/view/481

  4. 4
  5. 5
  6. 6
    Academic Journal

    File Description: application/pdf

    Relation: Об экспериментальных испытаниях двухтактного квази-ипедансного преобразователя постоянного напряжения с полупроводниковыми элементами на основе карбида кремния / А. Б. Блинов [и др.] // Энергосбережение. Энергетика. Энергоаудит = Energy saving. Power engineering. Energy audit. – 2013. – № 8. – Спец. вып. Т. 1 : К 50-летию со дня основания кафедры промышленной и биомедицинской электроники Национального технического университета “Харьковского политехнического института”. – С. 51-58.; http://repository.kpi.kharkov.ua/handle/KhPI-Press/8432

  7. 7
    Academic Journal

    Source: Energy saving. Power engineering. Energy audit.; Vol. 1 No. 8СВ (2013): Energy saving. Power engineering. Energy audit.; 51-58 ; Энергосбережение. Энергетика. Энергоаудит.; Том 1 № 8СВ (2013): Энергосбережение. Энергетика. Энергоаудит.; 51-58 ; Загальнодержавний науково-виробничий та інформаційний журнал «Енергозбереження. Енергетика. Енергоаудит»; Том 1 № 8СВ (2013): Енергозбереження. Енергетика. Енергоаудит.; 51-58 ; 2313-8890

    File Description: application/pdf

  8. 8
  9. 9
  10. 10
    Academic Journal

    Source: Energy saving. Power engineering. Energy audit.; Том 1, № 8СВ (2013): Энергосбережение. Энергетика. Энергоаудит.; 51-58
    Энергосбережение. Энергетика. Энергоаудит.; Том 1, № 8СВ (2013): Энергосбережение. Энергетика. Энергоаудит.; 51-58
    Енергозбереження. Енергетика. Енергоаудит.; Том 1, № 8СВ (2013): Энергосбережение. Энергетика. Энергоаудит.; 51-58

    File Description: application/pdf

  11. 11
  12. 12
    Dissertation/ Thesis

    File Description: application/pdf

    Relation: Банзак О. В. Разработка детектора ионизирующего излучения для дозиметрии / О. В. Банзак // Актуальні проблеми автоматики та приладобудування : матеріали 2-ї Міжнар. наук.-техн. конф., 06-07 грудня 2018 р. – Харків : Панов А. М., 2018. – С. 159-160.; http://repository.kpi.kharkov.ua/handle/KhPI-Press/39507

  13. 13
  14. 14