Showing 1 - 20 results of 288 for search '"чистый дисконтированный доход"', query time: 0.78s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
    Academic Journal

    Source: YASHIL IQTISODIYOT VA TARAQQIYOT; Vol. 1 No. 2 (2024): «Yashil iqtisodiyot va taraqqiyot» jurnali ; YASHIL IQTISODIYOT VA TARAQQIYOT; Том 1 № 2 (2024): «Yashil iqtisodiyot va taraqqiyot» журнали ; YASHIL IQTISODIYOT VA TARAQQIYOT; Том 1 № 2 (2024): «Yashil iqtisodiyot va taraqqiyot» jurnali ; 2992-8982 ; 0000-0000 ; 10.55439/GED/vol1_iss2

    File Description: application/pdf

  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
    Academic Journal

    Source: Strategies of Sustainable Development: Social, Law and External-economic Aspects; 80-81 ; Стратегии устойчивого развития: социальные, экономические и юридические аспекты; 80-81

    File Description: text/html

    Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-907688-10-0; https://phsreda.com/e-articles/10461/Action10461-105047.pdf; Чернаков Е.А. Финансовый анализ бизнес-плана инвестиционного проекта / Е.А. Чернаков. – Омск: ОмГТУ, 2018. – С. 204–207.; Ахметова Г.З. Бизнес-план как инструмент управления развитием организации / Г.З. Ахметова // Проблемы и перспективы развития менеджмента в России. – Омск: ОмГТУ, 2017. – С. 7–9.; Алехина О.А. Инвестиционная деятельность предприятий / О.А. Алехина // Аллея Науки. – 2018. – №1 (17). – С. 2–5.; Парахина В.Н. Теория менеджмента: учебник / В.Н. Парахина, О.А. Борис, Н.П. Харченко. – Ставрополь: СКФУ, 2018 – С. 109–112.; https://phsreda.com/article/105047/discussion_platform

  12. 12
  13. 13
    Academic Journal

    Source: ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations; Том 65, № 4 (2022); 366-380 ; Энергетика. Известия высших учебных заведений и энергетических объединений СНГ; Том 65, № 4 (2022); 366-380 ; 2414-0341 ; 1029-7448 ; 10.21122/1029-7448-2022-65-4

    File Description: application/pdf

    Relation: https://energy.bntu.by/jour/article/view/2182/1837; Zheng J., Zhou Zh., Zhao J., Wang J. (2018) Integrated Heat and Power Dispatch Truly Utilizing Thermal Inertia of District Heating Network for Wind Power Integration. Applied Energy, 211, 865–874. https://doi.org/10.1016/j.apenergy.2017.11.080.; Gu W., Wang J., Lu S., Luo Z., Wu C. (2017) Optimal Operation for Integrated Energy System Considering Thermal Inertia of District Heating Network and Buildings. Applied Energy, 199, 234–246. https://doi.org/10.1016/j.apenergy.2017.05.004.; Dorotić H., Ban M., Pukšec T., Duić N. (2020) Impact of Wind Penetration in Electricity Markets on Optimal Power-to-Heat Capacities in a Local District Heating System. Renewable and Sustainable Energy Reviews, 132, 110095. https://doi.org/10.1016/j.rser.2020.110095.; Li G., Zhang R., Jiang T., Chen H., Bai L., Cui H., Li X. (2017) Optimal Dispatch Strategy for Integrated Energy Systems with CCHP and Wind Power. Applied Energy, 192, 408–419. https://doi.org/10.1016/j.apenergy.2016.08.139.; Bezhan A. V., Minin V. A. (2017) Estimation of Efficiency of the Heat Supply System Based on a Boiler House and a Wind Turbine in the Northern Environment. Thermal Engineering, 64 (3), 201–208. https://doi.org/10.1134/S0040601516100013.; Minin V. A., Furtaev A. I. (2019) Wind Potency in the Western Sector of the Russian Arctic and its Possible Uses. IOP Conference Series: Earth and Environmental Science. 4th International Scientific Conference Arctic: History and Modernity, 302, 012067. https://doi.org/10.1088/1755-1315/302/1/012067.; Bezhan A. V. (2020) Performance Improvement of Heat Supply Systems through the Implementation of Wind Power Plants. Enеrgеtika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 63 (3), 285–296. https://doi.org/10.21122/1029-7448-2020-63-3-285-296 (in Russian).; Kotel’nikov A. V., Shevlyugin M. V., Zhumatova A. A. (2017) Distributed Generation of Electric Energy in Traction Power-Supply Systems of Railways Based on Wind-Power Plants. Russian Electrical Engineering, 88 (9), 586–591. https://doi.org/10.3103/s1068371217090085.; Makarov Yu. V., Loutan C., Ma Ji., Mello Ph. (2009) Operational Impacts of Wind Generation on California Power Systems. IEEE Transactions on Power Systems, 24 (2), 1039–1050. https://doi.org/10.1109/tpwrs.2009.2016364.; Sen R., Bhattacharyya S. C. (2014) Off-Grid Electricity Generation with Renewable Energy Technologies in India: An Application of HOMER. Renewable Energy, 62, 388–398. https://doi.org/10.1016/j.renene.2013.07.028.; Strbac G., Shakoor A., Black M., Pudjianto D., Bopp T. (2007) Impact of Wind Generation on the Operation and Development of the UK Electricity Systems. Electrical Power Systems Research, 77 (9), 1214–1227. https://doi.org/10.1016/j.epsr.2006.08.014.; Petrusha U. S., Papkova N. A. (2019) The Prospects for Wind Energy Development in the Republic of Belarus. Enеrgеtika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations,, 62 (2), 124–134. https://doi.org/10.21122/1029-7448-2019-62-2-124-134 (in Russian).; De Alegría I., Andreu J., Martín J., Ibañez P., Villate J., Camblong H. (2007) Connection Requirements for Wind Farms: A Survey on Technical Requierements and Regulation. Renewable and Sustainable Energy Reviews, 11 (8), 1858–1872. https://doi.org/10.1016/j.rser.2006.01.008.; Ibrahima H., Ghandourb M., Dimitrovaa M., Ilincac A., Perrond J. (2011) Integration of Wind Energy into Electricity Systems: Technical Challenges and Actual Solutions. Energy Procedia, 6, 815–824. https://doi.org/10.1016/j.egypro.2011.05.092.; Roy R.-B., Rokonuzzaman Md. (2014) STATCOM Model for Integration of Wind Turbine to Grid. TELKOMNIKA. Indonesian Journal of Electrical Engineering, 12 (9), 6519–6525. https://doi.org/10.11591/telkomnika.v12i9.6155.; Celik A. (2002) Optimisation and Techno-Economic Analysis of Autonomous Photovoltaic – Wind Hybrid Energy Systems in Comparison to Single Photovoltaic and Wind Systems. Energy Conversion and Management, 43 (18), 2453–2468. https://doi.org/10.1016/s0196-8904(01)00198-4.; Vendoti S., Muralidhar M., Kiranmayi R. (2021) Techno-Economic Analysis of Off-Grid Solar/Wind/Biogas/Biomass/ Fuel Cell/Battery System for Electrification in a Cluster of Villages by HOMER Software. Environment Development and Sustainability, 23 (1), 351–372. https://doi.org/10.1007/s10668-019-00583-2.; Haghighat Mamaghani A., Avella Escandon S. A., Najafi B., Shirazi A., Rinaldi F. (2016) Techno-Economic Feasibility of Photovoltaic, Wind, Diesel and Hybrid Electrification Systems for off-Grid Rural Electrification in Colombia. Renewable Energy, 97, 293–305. https://doi.org/10.1016/j.renene.2016.05.08.; Sagani A., Vrettakos G., Dedoussis V. (2017) Viability Assessment of a Combined Hybrid Electricity and Heat System for Remote Household Applications. Solar Energy, 151, 33–47. https://doi.org/10.1016/j.solener.2017.05.011.; Miao C., Teng K., Wang Y., Jiang L. (2020) Technoeconomic Analysis on a Hybrid Power System for the UK Household Using Renewable Energy: A Case Study. Energies, 13 (12), 3231. https://doi.org/10.3390/en13123231.; Figaj R., Zoladek M., Goryl W. (2020) Dynamic Simulation and Energy Economic Analysis of a Household Hybrid Ground-Solar-Wind System Using TRNSYS Software. Energies, 13 (14), 3523. https://doi.org/10.3390/en13143523.; Ozgener O. (2010) Use of Solar Assisted Geothermal Heat Pump and Small Wind Turbine Systems for Heating Agricultural and Residential Buildings. Energy, 35 (1), 262–268. https://doi.org/10.1016/j.energy.2009.09.018.; Evseev E., Kisel T. (2018) Management in the Heat-Supplying Organizations on the Basis of Balance Models. MATEC Web of Conferences, 170, 01112. https://doi.org/10.1051/matecconf/201817001112.; Möller B., Wiechers E., Persson U., Grundahl L., Lund R. S., Mathiesen B. V. (2019) Heat Roadmap Europe: Towards EU-Wide, Local Heat Supply Strategies. Energy, 177, 554–564. https://doi.org/10.1016/j.energy.2019.04.098.; Mednikova (Iakimetc) E. E., Stennikov V. A., Postnikov I. V. (2017) Heat Supply Systems Development: The Influence of External Factors and Reliability. Energy Procedia, 105, 3152–3157. https://doi.org/10.1016/j.egypro.2017.03.683.; Giordano N., Raymond J. (2019) Alternative and Sustainable Heat Production for Drinking Water Needs in a Subarctic Climate (Nunavik, Canada): Borehole Thermal Energy Storage to Reduce Fossil Fuel Dependency in Off-Grid Communities. Applied Energy, 252, 113463. https://doi.org/10.1016/j.apenergy.2019.113463.; Zore Z., Čuček L., Širovnik D., Novak Pintarič Z., Kravanja Z. (2018) Maximizing the Sustainability Net Present Value of Renewable Energy Supply Networks. Chemical Engineering Research and Design, 131, 245–265. https://doi.org/10.1016/j.cherd.2018.01.035.; Žižlavský O. (2014) Net Present Value Approach: Method for Economic Assessment of Innovation Projects. Procedia – Social and Behavioral Sciences, 156, 506–512. https://doi.org/10.1016/j.sbspro.2014.11.230.; Fedorova E. A., Musienko S. O., Afanas’ev D. O. (2020) Impact of the Russian Stock Market on Economic Growth. Finance: Theory and Practice, 24 (3), 161–173. https://doi.org/10.26794/2587-5671-2020-24-3-161-173.; Ramli M. A. M., Hiendro A., Al-Turki Y. A. (2016) Techno-Economic Energy Analysis of Wind/Solar Hybrid System: Case Study for Western Coastal Area of Saudi Arabia. Renewable Energy, 91, 374–385. https://doi.org/10.1016/j.renene.2016.01.071.; Di Piazza A., Di Piazza M. C., Ragusa A., Vitale G. (2010) Statistical Processing of Wind Speed Data for Energy Forecast and Planning. Renewable Energy and Power Quality Journal, 1 (08), 1417–1422. https://doi.org/10.24084/repqj08.680.; Moemken J., Reyers M., Feldmann H., Pinto J. G. (2018) Future Changes of Wind Speed and Wind Energy Potentials in EURO-CORDEX Ensemble Simulations. Journal of Geophysical Research: Atmospheres, 123 (12), 6373–6389. https://doi.org/10.1029/2018jd028473.; Nigim K. A., Parker P. (2007) Heuristic and Probabilistic Wind Power Availability Estimation Procedures: Improved Tools for Technology and Site Selection. Renewable Energy, 32 (4), 638–648. https://doi.org/10.1016/j.renene.2006.03.001.; Ayodele T. R., Jimoh A. A., Munda J. L., Agee J. T. (2013) A Statistical Analysis of Wind Distribution and Wind Power Potential in the Coastal Region of South Africa. International Journal of Green Energy, 10 (8), 814–834. https://doi.org/10.1080/15435075.2012.727112.; Bezhan A. V. (2020) Evaluation of Expediency of Using Wind Energy for Heat Supply on the Barents Sea Coast of Russia. 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). Vladivostok, 1–4. https://doi.org/10.1109/FarEastCon50210.2020.9271641.; Martín H., Coronas S., Alonso A., De la Hoz J., Matas J. (2020) Renewable Energy Auction Prices: Near Subsidy-Free. Energies, 13 (13), 3383. https://doi.org/10.3390/en13133383.; Cardoso J., Silva V., Eusébio D. (2019) Techno-Economic Analysis of a Biomass Gasification Power Plant Dealing with Forestry Residues Blends for Electricity Production in Portugal. Journal of Cleaner Production, 212, 741–753. https://doi.org/10.1016/j.jclepro.2018.12.054; Duc Luong N. (2015) A Critical Review on Potential and Current Status of Wind Energy in Vietnam. Renewable and Sustainable Energy Reviews, 43, 440–448. https://doi.org/10.1016/j.rser.2014.11.060.; Simsek Y., Mata-Torres C., Guzmán A. M., Cardemil J. M., Escobar R. (2018) Sensitivity and Effectiveness Analysis of Incentives for Concentrated Solar Power Projects in Chile. Renewable Energy, 129, Part A, 214–224. https://doi.org/10.1016/j.renene.2018.06.012.; https://energy.bntu.by/jour/article/view/2182

  14. 14
    Academic Journal

    Source: Alternative Energy and Ecology (ISJAEE); № 4-6 (2021); 61-72 ; Альтернативная энергетика и экология (ISJAEE); № 4-6 (2021); 61-72 ; 1608-8298

    File Description: application/pdf

    Relation: https://www.isjaee.com/jour/article/view/2068/1709; Филиппов, С.П. Распределенная генерация и устойчивое развитие регионов [Текст] / С. П. Филиппов, М.Д. Дильман, П.В. Илюшин // Теплоэнергетика. - 2019. - №12. - С.4-17.; Макаров, А.А. Стратегические перспективы электроэнергетики России / А.А. Макаров [и др.] // Теплоэнергетика. - 2017. - №11. - С.40-52.; Безруких П.П., Безруких П.П. (мл.), Грибков С.В. Ветроэнергетика: Справочно-методическое издание/ Справочно-методическое издание/Под общей редакцией П.П. Безруких. – М.: «ИнтехэнергоИздат», «Теплоэнергетика», 2014. – 304 с.; Ani, A. Design of a reliable hybrid (PV/Diesel) power system with energy storage in batteries for remote residential home / A. Ani // Hindawi publishing corporation journal of energy. - 2016. Vol. 2016. 16 p.; Gan, L. Hybrid wind–photovoltaic–diesel-battery system sizing tool development using empirical approach, life-cycle cost and performance analysis: A case study in Scotland / L. Gan, J. Shek, M. Mueller // Energy Conversion and Management. - 2015. Vol. 106. - P. 479-494.; Maleki, A. Optimization of grid independent diesel-based hybrid system for power generation using improved particle swarm optimization algorithm. 30th Power System Conference (PSC2015), 23-25 November 2015, Niroo Research Institute, Tehran, Iran. pp. 111-117.; Fodhil, F. Potential, optimization and sensitivity analysis of photovoltaic-diesel-battery hybrid energy system for rural electrification in Algeria / F. Fodhil, A. Hamidat, O. Nadjemi // Energy. - 2019. Vol.169. - P. 613-624.; Обухов, С.Г. Анализ режимов работы накопителей энергии в автономных гибридных электростанциях с возобновляемыми источниками энергии / С.Г. Обухов, И.А. Плотников, В.Г. Масолов // Международный научный журнал «Альтернативная энергетика и экология». - 2018. - №13-15(261-263). - С.55-67.; Киселева, С.В. О возможности использования суперконденсаторных накопителей энергии в составе автономных ветродизельных комплексов / С.В. Киселева, А.Б. Тарасенко // Международный научный журнал «Альтернативная энергетика и экология». - 2018. - №19-21(267-269). - С.23-33.; Нефедкин, С.И. Автономное энергоснабжение с использованием ветроэнергетического комплекса и водородного аккумулирования энергии / С.И. Нефедкин [и др.] // Международный научный журнал «Альтернативная энергетика и экология». 2019. - №16-18 (300-302). - С.12-26.; Askarzadeh, A. A novel framework for optimization of a grid independent hybrid renewable energy system: A case study of Iran / A. Askarzadeh, L. Coelho // Solar energy. - 2015. - Vol. 112, - P. 383-396.; Makhdoomi, S. Optimizing operation of a photovoltaic/diesel generator hybrid energy system with pumped hydro storage by a modified crow search algorithm / S. Makhdoomi, A. Askarzadeh // Journal of Energy Storage. - 2020. - Vol.27, - P. 1-13.; Jung, W. Optimization of hybrid off-grid system consisting of renewables and Li-ion batteries / W. Jung [et al.] // Journal of Power Sources. 2020. Vol 451, pp.1-12.; Mohammed O., Amirat Ya., Benbousid M. Particle swarm optimization of a hybrid wind/tidal/PV/battery energy system. Application to a remote area in Bretagne, France / O. Mohammed, Ya. Amirat, M. Benbousid // Energy procadia. - 2019. - Vol. 162, - P.87-96.; Официальный сайт NASA. [Электронный ресурс]. – Режим доступа: https://power.larc.nasa.gov. – (Дата обращения: 20.04.2020).; Официальный сайт компании «Leitwind» [Электронный ресурс]. – Режим доступа: https://www.leitwind.com. – (Дата обращения: 20.04.2020.).; Рынок систем накопления электроэнергии в России: потенциал развития: экспертно-аналитический доклад; под редакцией Ю. Удальцова, Д. Холкина. Москва, 2018. 65 с.; Ветроэнергетика Красноярского края / А.В. Бастрон [и др.]. Краснояр. Гос. Аграр. Ун-т. Красноярск, 2015. 252 с.; Adnan Z. Amin, 2017. Renewable power generation cost in 2017. In: Adnan Z. Amin, (Ed.), IRENA Working Paper. International Renewable Energy Agency (IRENA).; Quinna, R. A parametric investigation into the effect of low induction rotor (LIR) wind turbines on the levelised cost of electricity for a 1 GW offshore wind farm in a North Sea wind climate / R. Quinna, G. Schepersb, B. Bulderb // Energy Procedia. 2016. – Vol. 94, - P. 164-172. doi:10.1016/j.egypro.2016.09.213.; https://www.isjaee.com/jour/article/view/2068

  15. 15
  16. 16
    Academic Journal

    Source: World of Transport and Transportation; Том 18, № 4 (2020); 98-107 ; Мир транспорта; Том 18, № 4 (2020); 98-107 ; 1992-3252

    File Description: application/pdf

    Relation: https://mirtr.elpub.ru/jour/article/view/1925/2374; https://mirtr.elpub.ru/jour/article/view/1925/2375; Волков Б. А., В. В. Соловьёв, А.Ю. Добрин, Н.С. Лобанова. Экономика строительства железных дорог. – М.: УМЦ по образованию на железнодорожном транспорте», 2018. – С. 125–128.; Федеральный закон «Устав железнодорожного транспорта Российской Федерации» от 10.01.2003 г. № 18-ФЗ. [Электронный ресурс]: http://www.kremlin.ru/acts/bank/19008. Доступ 21.05.2020.; Sacks, R., Eastman, C., Lee, G., Teicholz, P. BIM Handbook: A Guide to Building Information Modeling for Owners, Designers, Engineers, Contractors, and Facility Managers. John Wiley & Sons, Inc., Hoboken, 2018. DOI: https://doi.org/10.1002/9781119287568.; Лёвин Б. А., Цветков В. Я. Кибер-физические системы в управлении транспортом // Мир транспорта. – 2018. – Т. 16. – № 2. – С. 138–145. [Электронный ресурс]: https://www.elibrary.ru/item.asp?id=35215359. Доступ 21.05.2020.; Куприяновский В. П. и др. Экономика инноваций цифровой железной дороги. Опыт Великобритании // International Journal of Open Information Technologies. – 2017. – Т. 5. – № 3. – С. 79–99. [Электронный ресурс]: https://www.elibrary.ru/item.asp?id=28426697. Доступ 21.05.2020.; Telyatnikova, N., Spiridonov, E., Boyarinov, D. Innovation, Informatization and Digitalization of the Infrastructure Facilities Design and Construction of Highspeed Railways in Russia & Eurasian Union. Proceedings of 22nd International scientific conference. Transport Means 2018. Kaunas, Kaunas University of Technology, 2018, pp. 1161–1166.; Гасников А. В. и др. Введение в математическое моделирование транспортных потоков: Учеб. пособие. – Изд. 2-e, испр. и доп. – М.: МЦНМО, 2013. – 427 с.; Соловьёв В. В. Анализ компонентов стоимости строительной продукции // Мир транспорта. – 2017. – Т. 15. – № 5. – С. 106–117. [Электронный ресурс]: https://www.elibrary.ru/item.asp?id=32311911. Доступ 21.05.2020.; Волкодав В. А., Волкодав И. А. Разработка структуры и состава классификатора строительной информации для применения BIM‑технологий // Вестник МГСУ. – 2020. – Т. 15. – Вып. 6. – С. 867–906. [Электронный ресурс]: https://cyberleninka.ru/article/n/razrabotka-struktury-i-sostava-klassifikatorastroitelnoy-informatsii-dlya-primeneniya-bim-tehnologiy. Доступ 21.05.2020.; Knjazuk, E. M., Mirza, N. S. The use of building classifications for information modeling of roads. [Электронный ресурс]: CAD & GIS of Highways, 2017, Vol. 1 (8), pp. 13–19. Доступ 21.05.2020. DOI:10.22227/1997-0935.2019.12.1628-1637.; Edirisinghe, R., London, K. Comparative analysis of international and national level BIM standardization efforts and BIM adoption. Proceeding of the 32nd CIB W78 Conference. Eindhoven. The Netherlands, 2015, pp. 149–158. [Электронный ресурс]: https://www.researchgate.net/ publication/286496233_Comparative_Analysis_of_International_and_National_Level_BIM_Standardization_Efforts_and_BIM_adoption/. Доступ 21.05.2020.; Balslev, H. The Reference Designation System (RDS) a common naming convention for systems and their elements. INCOSE International Symposium, 2016, Vol. 26 (1), pp. 1639–1656. DOI:10.1002/j.2334-5837.2016.00251.; Синягов С. А., Куприяновский В. П., Куренков П. В. и др. Строительство и инженерия на основе стандартов BIM как основа трансформаций инфраструктур в цифровой экономике // International Journal of Open Information Technologies. – 2017. – Т. 5. – № 5. – С. 46–79. [Электронный ресурс]: https://www.elibrary.ru/item.asp?id=29226715. Доступ 21.05.2020.; https://mirtr.elpub.ru/jour/article/view/1925

  17. 17
  18. 18
  19. 19
  20. 20