Εμφανίζονται 1 - 1 Αποτελέσματα από 1 για την αναζήτηση '"цинк–пептидный простатический комплекс"', χρόνος αναζήτησης: 0,40δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: Andrology and Genital Surgery; Том 25, № 1 (2024); 40-48 ; Андрология и генитальная хирургия; Том 25, № 1 (2024); 40-48 ; 2412-8902 ; 2070-9781

    Περιγραφή αρχείου: application/pdf

    Relation: https://agx.abvpress.ru/jour/article/view/734/565; Саяпина И.Ю., Целуйко С.С., Чередниченко О.А. Биологическая роль цинка в предстательной железе (молекулярные аспекты). Дальневосточный медицинский журнал. 2015;2: 137–43.; Hennigar S.R., Kelleher S.L. Zinc networks: the cell-specific compartmentalization of zinc for specialized functions. Biol Chem. 2012;393(7):565–78. DOI:10.1515/hsz-2012-0128.; Miyata S. Zinc deficiency in the elderly. Nihon Ronen Igakkai Zasshi. 2007;44(6):677–89. PMID:18200755.; Rahmati M., Safdarian F., Zakeri M., Zare S. The prevalence of zinc deficiency in 6-month to 12-year old children in Bandar Abbas in 2013. Electron Physician. 2017;9(8):5088–91. DOI:10.19082/5088.; Jung A., Spira D., Steinhagen-Thiessen E. et al. Zinc Deficiency Is associated With Depressive Symptoms-Results From the Berlin Aging Study II. J Gerontol A Biol Sci Med Sci. 2017;72(8):1149–54. DOI:10.1093/gerona/glw218.; Braun L.A., Ou R., Kure C. et al. Prevalence of Zinc Deficiency in Cardiac Surgery Patients. Heart Lung Circ. 2017 Aug 14. pii: S1443- 9506(17)31342-2. DOI:10.1016/j.hlc.2017.07.009.; Cembranel F., González-Chica D.A., d’Orsi E. Inadequate dietary micronutrient intake in men and women in southern Brazil: the EpiFloripa Adults Study, 2012. Cad Saude Publica. 2016; 32(8): e00164015. DOI:10.1590/0102-311X00164015.; Rotter I., Kosik-Bogacka D.I., Dołęgowska B. et al. Analysis of the relationship between the blood concentration of several metals, macro- and micronutrients and endocrine disorders associated with male aging. Environ Geochem Health. 2016;38(3):749–61. DOI:10.1007/s10653-015-9758-0.; Owen, D.H., Katz, D.F. A review of the physical and chemical prop-erties of human semen and the formulation of a semen simulant. J. Androl. 2005; 26: 459–69]. DOI:10.2164/jandrol.04104.; Marconi M., Pilatz A., Wagenlehner F. et al. Impact of infection on the secretory capacity of the male accessoryglands. Int. Braz. J. Urol.2009; 35: 299–308, discussion 308-309. DOI:10.1590/s1677-55382009000300006.; Costello L.C., Franklin R.B, Feng P. Mitochondrial function, zinc, and intermediary metabolism relationships in normal prostate and prostate cancer. Mitochondrion. 2005; 5 (3): 143–53. DOI:10.1016/j.mito.2005.02.001.; Sorensen M.B., Stoltenberg M., Danscher G., Ernst E. Chelation of intracellular zinc ions affects human sperm cell motility. Mol Hum Reprod. 1999; 5: 338–41. DOI:10.1093/molehr/5.4.338.; Yoshida K., Kawano N., Yoshiike M. et al. Physiological roles of semenogelin I and zinc in sperm motility and semen coagulation on ejaculation in humans. Mol Hum Reprod. 2008;14: 151–6. DOI:10.1093/molehr/gan003.; Elzanaty S. Association between age and epididymal and accessory sex gland function and their relation to sperm motility. Arch Androl. 2007; 53:149–56. DOI:10.1080/01485010701225667.; Iguchi K., Morihara N., Usui S. et al. Castration- and aging-induced changes in the expression of zinс transporter and metallothionein in rat prostate. J Androl. 2011; 32(2):144–50. DOI:10.2164/jandrol.110.011205.; Guo L., Lichten L.A., Ryu M.S. et al. STAT5-glucocorticoid receptor interaction and MTF-1 regulate the expression of ZnT2 (Slc30a2) in pancreatic acinar cells. Proc Natl Acad Sci USA. 2010; 107:2818–23. DOI:10.1073/pnas.0914941107.; Chen Q.G. Zhang Z., Yang Q., et al. The role of zinc transporter ZIP 4 in prostate carcinoma. Urol. Oncol. 2012; 30 (6): 906–11. DOI:10.1016/j.urolonc.2010.11.010.; Desouki M.M., Geradts J., Milon B. et al. hZip2 and hZip3 zinc transporters are down regulated in human prostate adenocarcinomatous glands. Mol. Cancer. 2007; 6: 37. DOI:10.1186/1476-4598-6-37.; Ding W.Q., Lind S.E. Metal ionophores – an emerging class of anticancer drugs. IUBMB Life. 2009; 61: 1013–8. DOI:10.1002/iub.253.; Huang L., Kirschke C.P., Zhang Y. Decreased intracellular zinc in human tumorigenic prostate epithelial cells: a possible role in prostate cancer progression. Cancer Cell Int. 2006; 6 (10): 1–13. DOI:10.1186/1475-2867-6-10.; Johnson L.A., Kanak M.A., Kajdacsy-Balla A. et al. Differential zinc accumulation and expression of human zinc transporter 1 (hZIP1) in prostate glands. Methods. 2010; 52: 316–21. DOI:10.1016/j.ymeth.2010.08.004.; Iguchi K., Otsuka T., Usui S. et al. Correlation between ZIP2 messenger RNA expression and zinc level in rat lateral prostate. Biol Trace Elem Res. 2006; 112: 159–67. DOI:10.1385/BTER:112:2:159.; Franklin R.B., Feng P., Milon B. et al. hZIP1 zinc uptake transporter down regulation and zinc depletion in prostate cancer. Mol Cancer. 2005; 4:32–45. DOI:10.1186/1476-4598-4-32.; Guerinot M.L. The ZIP family of metal transporters. Biochim Biophys Acta. 2000;1465 (1–2): 190–8. DOI:10.1016/s0005-2736(00)00138-3.; Kambe T., Yamaguchi-Iwai Y., Sasaki R. et al. Overview of mammalian zinc transporters. Cell. Mol. Life Sci. 2004; 61: 49–68. DOI:10.1007/s00018-003-3148- г.; Kirschke C.P., Huang L. Expression of the ZNT (SLC30) family members in the epithelium of the mouse prostate during sexual maturation. J Mol Histol. 2008; 39:359–70. DOI:10.1007/s10735-008-9174-1.; Fujimoto N., Akimoto Y., Suzuki T. et al. Identification of prostatic-secreted proteins in mice by mass spectrometric analysis and evaluation of lobe-specific and androgen-dependent mRNA expression. J Endocrinol. 2006; 190: 793–803. DOI:10.1677/joe.1.06733.; Ishihara K., Yamazaki T., Ishida Y. et al. Zinc transport complexes contribute to the homeostatic maintenance of secretory pathway function in vertebrate cells. J Biol Chem. 2006; 281:17743–50. DOI:10.1074/jbc.M602470200.; Ellis C.D., Macdiarmid C.W., Eide D.J. Heteromeric protein complexes mediate zinc transport into the secretory pathway of eukaryotic cells. J Biol Chem. 2005; 280:28811–8. DOI:10.1074/jbc.M505500200.; Fukunaka A., Suzuki T., Kurokawa Y. et al. Demonstration and characterization of the heterodimerization of ZnT5 and ZnT6 in the early secretory pathway. J Biol Chem. 2009; 284:30798–806. DOI:10.1074/jbc.M109.026435.; McCormick N., Velasquez V., Finney L. et al. X-ray fluorescence microscopy reveals accumulation and secretion of discrete intracellular zinc pools in the lactating mouse mammary gland. PLoS ONE. 2010;5: e11078. DOI:10.1371/journal.pone.0011078.; Kelleher S.L., McCormick N.H., Velasquez V., Lopez V. Zinc in specialized secretory tissues: roles in the pancreas, prostate, and mammary gland. Adv Nutr. 2011; 2(2):101–11. DOI:10.3945/an.110.000232.; Costello L.C., Franklin R.B. Novel role of zinc in the regulation of prostate citrate metabolism and its implications in prostate cancer. Prostate. 1998; 35:285–96. DOI:10.1002/(sici)1097-0045(19980601)35:43.0.co;2-f.; Costello L.C., Franklin R.B. Cytotoxic/tumor suppressor role of zinc for the treatment of cancer: an enigma and an opportunity. Expert. Rev. Anticancer Ther. 2012; 12 (1): 121–8. DOI:10.1586/era.11.190.; Costello L.C., Franklin R.B. Zinc is decreased in prostate cancer: an established relationship of prostate cancer. J. Biol. Inorg. Chem. 2011;16 (1): 3–8. DOI:10.1007/s00775-010-0736-9.; Liu Y., Franklin R.B., Costello L.C. Prolactin and testosterone regulation of mitochondrial zinc in prostate epithelial cells. Prostate. 1997; 30:26–32. DOI:10.1002/(sici)1097-0045(19970101)30:13.0.co;2-j.; Kolenko V., Teper E., Kutikov A. et al. Zinc and zinc transporters in prostate carcinogenesis. Nat. Rev. Urol. 2013;10 (4): 219–226. DOI:10.1038/nrurol.2013.43.; Singh K.K., Desouki M.M., Franklin R.B. et al. Mitochondrial aconitase and citrate metabolism in malignant and nonmalignant human prostate tissues. Mol. Cancer. 2006; 5: 14. DOI:10.1186/1476-4598-5-14.; Franz M.C., Anderle P., Bürzle M. et al. Zinc transporters in prostate cancer. Mol. Aspects Med. 2013; 34 (2–3):735–41. DOI:10.1016/j.mam.2012.11.007.; Golovine K., Uzzo R.G., Makhov P. Depletion of intracellular zinc increases expression of tumorigenic cytokines VEGF, IL-6 and IL-8 in prostate cancer cells via NF-kappaB-dependent pathway. Prostate. 2008; 68 (13):1443–9. DOI:10.1002/pros.20810.; Ku J.H., Seo S.Y., Kwak C. et al. The role of survivin and Bcl-2 in zinc-induced apoptosis in prostate cancer cells. Urol. Oncol. 2012;30 (5): 562–8. DOI:10.1016/j.urolonc.2010.06.001.; Zaichick V.Y., Sviridova T.V., Zaichick S.V. Zinc in the human prostate gland: normal, hyperplastic and cancerous. Int Urol Nephrol. 1997;29: 565–74. DOI:10.1007/BF02552202.; Zaichick V.Y., Sviridova T.V., Zaichick SV. Zinc concentration in human prostatic fluid: normal, chronic prostatitis, adenoma and cancer. Int Urol Nephrol. 1996; 28:687–94. DOI:10.1007/BF02552165.; Feng P., Li T., Guan Z. et al. The involvement of Bax in zincinduced mitochondrial apoptogenesis in malignant prostate cells. Mol Cancer. 2008;7: 25–30. DOI:10.1186/1476-4598-7-25.; Franklin R.B., Costello L.C. Zinc as an anti-tumor agent in prostate cancer and in other cancers. Arch Biochem Biophys. 2007;463: 211–7. DOI:10.1016/j.abb.2007.02.033.; Bianchi-Frias D., Vakar-Lopez F., Coleman I.M. et al. The effects of aging on the molecular and cellular composition of the prostate microenvironment. PLoS ONE. 2010; 5:12501–16. DOI:10.1371/journal.pone.0012501.; Song Y., Elias V., Loban A. et al. Marginal zinc deficiency increases oxidative DNA damage in the prostate after chronic exercise. Free Radic Biol Med. 2010; 48:82–8. DOI:10.1016/j.freeradbiomed.2009.10.030.; Yan M., Song Y., Wong C.P. et al. Zinc deficiency alters DNA damage response genes in normal human prostate epithelial cells. J Nutr. 2008;138: 667–73. DOI:10.1093/jn/138.4.667.; Golovine K., Makhov P., Uzzo R.G. et al. Overexpression of the zinc uptake transporter hZIP1 inhibits nuclear factor-kappa B and reduces the malignant potential of prostate cancer cells in vitro and in vivo. Clin. Cancer Res. 2008; 14: 5376–84. DOI:10.1158/1078-0432.CCR-08-0455.; Uzzo R.G. Diverse effects of zinc on NF-kappaB and AP-1 transcription factors: implications for prostate cancer progression. Carcinogenesis. 2006; 27:1980–90. DOI:10.1093/carcin/bgl034.; Ku J.H., Seo S.Y., Kwak C. et al. The role of survivin and Bcl-2 in zinc-induced apoptosis in prostate cancer cells. Urol. Oncol. 2012; 30 (5): 562–8. DOI: doi:10.1016/j.urolonc.2010.06.001.; Zhao J., Wu Q., Hu X. et al. Comparative study of serum zinc concentrations in benign and malignant prostate disease: A Systematic Review and Meta-Analysis. Sci Rep. 2016; 6: 25778. DOI:10.1038/srep25778.; Cui D., Han G., Shang Y. et al. The effect of chronic prostatitis on zinc concentration of prostatic fluid and seminal plasma: a systematic review and meta-analysis. Curr Med Res Opin. 2015;31(9):1763–9. DOI:10.1185/03007995.2015.1072707.; Gumulec J., Masarik M., Adam V. et al. Serum and tissue zinc in epithelial malignancies: a meta-analysis. PLoS One. 2014;9(6): e99790. DOI:10.1371/journal.pone.0099790.; Mahmoud A.M., Al-Alem U, Dabbous F. et al. Zinc Intake and Risk of Prostate Cancer: Case-Control Study and Meta-Analysis. PLoS One. 2016;11(11): e0165956. DOI:10.1371/journal.pone0165956.; Fair W.R., Couch J., Wehner N. Prostatic antibacterial factor. Identity and significance. Urology. 1976; 7:169–77. DOI:10.1016/0090-4295(76)90305-8.; Mårdh P.A., Colleen S. Antimicrobial activity of human seminal fluid. Scand J Urol Nephrol. 1975;9(1):17–23. DOI:10.3109/00365597509139907.; Colleen S., Mårdh P.A., Schytz A. Magnesium and zinc in seminal fluid of healthy males and patients with non-acute prostatitis with and without gonorrhoea. Scand J Urol Nephrol. 1975;9(3):192–7. DOI:10.3109/00365597509134210.; Canale D., Bartelloni M., Negroni A. et al. Zinc in human semen. Int J Androl. 1986;9(6):477–80. DOI:10.1111/j.1365-2605.1986tb00909.x.; Neal D.E.Jr., Kaack M.B., Fussell E.N., Roberts J.A. Changes in seminal fluid zinc during experimental prostatitis. Urol Res. 1993;21(1):71–4. DOI:10.1007/BF00295197.; Mo L.J., Chen X., Wang X.M. et al. Reduced zinc concentration in expressed prostatic secretion relates to the pain symptoms of types III and IV prostatitis. Zhonghua Nan Ke Xue. 2016;22(6):496–500. PMID: 28963836.; Gómez Y., Arocha F., Espinoza F. et al. Zinc levels in prostatic fluid of patients with prostate pathologies. Invest Clin. 2007;48(3):287–94. PMID: 17853788.; Roumeguère T., Sfeir J., El Rassy E. et al. Oxidative stress and prostatic diseases. Mol Clin Oncol. 2017;7(5):723–8. DOI: 10.389/mco.2017.1413.; Kaya E., Ozgok Y., Zor M. et al. Oxidative stress parameters in patients with prostate cancer, benign prostatic hyperplasia and asymptomatic inflammatory prostatitis: A prospective controlled study. Adv Clin Exp Med. 2017;26(7):1095–9. DOI:10.17219acem/66837.; Xiong Y., Qiu X., Shi W. et al. Anti-inflammatory and antioxidant effect of modified Bazhengsan in a rat model of chronic bacterial prostatitis. J Ethnopharmacol. 2017;198:73–80. DOI: 10.101/j.jep.2016.12.039.; Hu Y., Niu X., Wang G. et al. Chronic prostatitis/chronic pelvic pain syndrome impairs erectile function through increased endothelial dysfunction, oxidative stress, apoptosis, and corporal fibrosis in a rat model. Androl. 2016;4(6):1209–16. DOI:10.1111/andr.12273.; Goodarzi D., Cyrus A., Baghinia M.R. et al. The efficacy of zinc for treatment of chronic prostatitis. Acta Med Indones. 2013;45(4):259–64. PMID: 24448329.; Condorelli R.A., Russo G.I., Calogero A.E. et al. Chronic prostatitis and its detrimental impact on sperm parameters: a systematic review and meta-analysis. J Endocrinol Invest. 2017;40(11):1209–18. DOI: doi:10.1007/s40618-017-0684-0.; https://agx.abvpress.ru/jour/article/view/734