Εμφανίζονται 1 - 14 Αποτελέσματα από 14 για την αναζήτηση '"цефалометрический"', χρόνος αναζήτησης: 0,61δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Πηγή: Український стоматологічний альманах, Iss 1 (2020)

    Περιγραφή αρχείου: application/pdf

  3. 3
    Academic Journal

    Πηγή: Medical Visualization; Том 26, № 3 (2022); 114-122 ; Медицинская визуализация; Том 26, № 3 (2022); 114-122 ; 2408-9516 ; 1607-0763

    Περιγραφή αρχείου: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/1103/754; Steimann F. On the use and usefulness of fuzzy sets in medical AI. Artif. Intell. Med. 2001; 21 (1–3): 131–137. http://doi.org/10.1016/s0933-3657(00)00077-4; McCulloch W.S., Pitts W. A logical calculus of the ideas imminent in nervous activity. Bull. Math. Biophys. 1943; 5: 115–133.; Poulton M.M. Computational neural networks for geophysical data processing: Elsevier, 2001. 10 p.; Newell A., Simon H.A. Computer science as empirical inquiry: Symbols and search. Commun. ACM. 1976; 19: 113 126.; Nilsson N. The Quest for Artificial Intelligence. New York: Cambridge University Press, 2010.; Rosenblatt F. The Perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958; 65: 386–408.; Bowling M., Fürnkranz J., Graepel T., Musick R. Machine learning and games. Mach. Learn. 2006; 63: 211 215. http://doi.org/10.1007/s10994-006-8919-x; Werbos P. Beyond regression: new tools for prediction and analysis in the behavioral sciences. PhD Thesis, Harvard University, 1974.; Hopfield J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA. 1982; 79: 2554–2558.; Park J., Sandberg I.W. Universal approximation using radial-basis-function networks. Neural. Comput. 1991; 3: 246–257.; Carpenter G.A., Grossberg S. The ART of adaptive pattern recognition by a self-organizing neural network. Computer. 1988; 21: 77–88.; Baxt W.G. Use of an artificial neural network for data analysis in clinical decision-making: the diagnosis of acute coronary occlusion. Neural. Comput. 1990; 2: 480–489.; Boon M.E., Kok L.P. Neural network processing can provide means to catch errors that slip through human screening of pap smears. Diagn. Cytopathol. 1993; 9: 411–416.; Muraev A.A., Tsai P., Kibardin I. et al. Frontal cephalometric landmarking: humans vs artificial neural networks. Int. J. Comput. Dent. 2020; 23 (2): 139–148.; Muraev A.A., Kibardin I.A., Oborotistov N.Yu., Ivanov S.S. Use of neural network algorithms for the automated arrangement of cephalometric markers on lateral cefalograms. REJR. 2018; 8 (4): 16–22. http://doi.org/10.21569/2222-7415-2018-8-2-16-22; Ezhov M., Gusarev M., Golitsyna M., et al. Clinically applicable artificial intelligence system for dental diagnosis with CBCT. Sci. Rep. 2021; 11 (1): 15006. http://doi.org/10.1038/s41598-021-94093-9; Solovyh E.A., Obrubov A.A., Arranz I. et al. Artificial Intelligence DENTOMO: Opportunities and Prospects for Interpretation of Cone Beam CT in Dentistry. Bull. Exp. Biol. Med. 2021; 170 (5): 686–688. http://doi.org/10.1007/s10517-021-05133-3; Lee J.H., Kim D.H., Jeong S.N., Choi S.H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J. Dent. 2018; 77: 106–111. http://doi.org/10.1016/j.jdent.2018.07.015; Kim E.Y., Lim K.O., Rhee H.S. Predictive modeling of dental pain using neural network. Stud. Health Technol. Inform. 2009; 146: 745 746.; Prados-Privado M., García Villalón J., Martínez-Martínez C.H. et al. Dental Caries Diagnosis and Detection Using Neural Networks: A Systematic Review. J. Clin. Med. 2020; 9 (11): 3579. http://doi.org/10.3390/jcm9113579; Schwendicke F., Golla T., Dreher M., Krois J. Convolutional neural networks for dental image diagnostics: A scoping review. J. Dent. 2019; 91: 103226. http://doi.org/10.1016/j.jdent.2019.103226; Orhan K., Bayrakdar I.S., Ezhov M., Kravtsov A., Özyürek T. Evaluation of artificial intelligence for detecting periapical pathosis on cone-beam computed tomography scans. Int. Endod. J. 2020; 53 (5): 680–689. http://doi.org/10.1111/iej.13265; Orhan K., Bilgir E., Bayrakdar I.S. et al. Evaluation of artificial intelligence for detecting impacted third molars on cone-beam computed tomography scans. J. Stomatol. Oral. Maxillofac. Surg. 2021; 122 (4): 333–337. http://doi.org/10.1016/j.jormas.2020.12.006; Bayrakdar K.S., Orhan K., Bayrakdar I.S. et al. A deep learning approach for dental implant planning in conebeam computed tomography images. BMC Med. Imaging. 2021; 21 (1): 86. http://doi.org/10.1186/s12880-021-00618-z; Siddiqui N.R., Hodges S., Sharif M.O. Availability of orthodontic smartphone apps. J. Orthod. 2019; 46 (3): 235–241. http://doi.org/10.1177/1465312519851183; Мураев А.А., Гусейнов Н.А., Цай П.А., Кибардин И.А., Буренчев Д.В., Иванов С.С., Оборотистов Н.Ю., Матюта М.А., Грачев Н.С., Ларин С.С. Искусственные нейронные сети в лучевой диагностике, в стоматологии и в челюстно-лицевой хирургии (обзор литературы). Клиническая стоматология. 2020; 3 (95): 72–80. http://doi.org/10.37988/1811-153X_2020_3_76; Broadbent B. A new X-ray technique and its application to orthodontia. Angle Orthod. 1931; 1: 45–66.; Wang C.W., Huang C.T., Hsieh M.C. et al. Evaluation and Comparison of Anatomical Landmark Detection Methods for Cephalometric X-Ray Images: A Grand Challenge. IEEE Trans. Med. Imaging. 2015; 34 (9): 1890–1900. http://doi.org/10.1109/TMI.2015.2412951; Wang C.W., Huang C.T., Lee J.H. et al. A benchmark for comparison of dental radiography analysis algorithms. Med. Image Anal. 2016; 31: 63–76. http://doi.org/10.1016/j.media.2016.02.004; Alam M.K., Alfawzan A.A. Dental Characteristics of Different Types of Cleft and Non-cleft Individuals. Front. Cell. Dev. Biol. 2020; 8: 789. http://doi.org/10.3389/fcell.2020.00789; Yassir Y.A., Salman A.R., Nabbat S.A. The accuracy and reliability of WebCeph for cephalometric analysis. J. Taibah. Univ. Med. Sci. 2021; 17 (1): 57–66. http://doi.org/10.1016/j.jtumed.2021.08.010; Alqahtani H. Evaluation of an online website-based platform for cephalometric analysis. J. Stomatol. Oral. Maxillofac. Surg. 2020; 121 (1): 53–57. http://doi.org/10.1016/j.jormas.2019.04.017; Meriç P., Naoumova J. Web-based Fully Automated Cephalometric Analysis: Comparisons between Appaided, Computerized, and Manual Tracings. Turk. J. Orthod. 2020; 33 (3): 142–149. Published 2020 Aug 11. http://doi.org/10.5152/TurkJOrthod.2020.20062; Silva T.P., Hughes M.M., Menezes L.D.S. et al.Artificial intelligence-based cephalometric landmark annotation and measurements according to Arnett's analysis: can we trust a bot to do that? Dentomaxillofac Radiol. 2021; 20200548. http://doi.org/10.1259/dmfr.20200548; Mamta J., Poojita G., Ravinder K. et al. A review on cephalometric landmark detection techniques. Biomed. Signal Processing Control. 2021; 66: 102486. http://doi.org/10.1016/j.bspc.2021.102486; Rao G.K.L., Mokhtar N., Iskandar Y.H.P., Srinivasa A.C. Learning orthodontic cephalometry through augmented reality: A conceptual machine learning validation approach. 2018 International Conference on Electrical Engineering and Informatics (ICELTICs). 2018; 133–138. http://doi.org/10.1109/ICELTICS.2018.8548939; Sawchuk D., Alhadlaq A., Alkhadra T. et al. Comparison of two three-dimensional cephalometric analysis computer software. J. Orthod. Sci. 2014; 3 (4): 111–117. http://doi.org/10.4103/2278-0203.143230; https://medvis.vidar.ru/jour/article/view/1103

  4. 4
    Academic Journal
  5. 5
    Academic Journal

    Πηγή: Bulletin of Medical Science; Vol. 20 No. 4 (2020): Bulletin of Medical Science; 5-9 ; Бюллетень медицинской науки; Том 20 № 4 (2020): Бюллетень медицинской науки; 5-9 ; 2541-8475

    Περιγραφή αρχείου: application/pdf

    Διαθεσιμότητα: https://newbmn.asmu.ru/bmn/article/view/100

  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
    Academic Journal
  13. 13
  14. 14