Showing 1 - 7 results of 7 for search '"центробежное СВС-литье"', query time: 0.49s Refine Results
  1. 1
    Academic Journal

    Contributors: This research was supported by the Russian Science Foundation, grant № 19-79-10226, https://rscf.ru/project/19-79-10226/, Исследование выполнено за счет гранта Российского научного фонда № 19-79-10226, https://rscf.ru/project/19-79-10226/

    Source: Izvestiya. Non-Ferrous Metallurgy; № 1 (2024); 24-41 ; Izvestiya Vuzov. Tsvetnaya Metallurgiya; № 1 (2024); 24-41 ; 2412-8783 ; 0021-3438

    File Description: application/pdf

    Relation: https://cvmet.misis.ru/jour/article/view/1583/718; https://cvmet.misis.ru/jour/article/view/1583/725; Ying Wang, Hong-bo Guo, Hui Peng, Li-quan Peng, Sheng-kai Gong. Diffusion barrier behaviors of (Ru,Ni) Al/NiAl coatings on Ni-based superalloy substrate. Intermetallics. 2011;19(2):191—195. https://doi.org/10.1016/j.intermet.2010.08.016; Dongjun Wang, Ying Liang, Hanwei Ning, Bao Wang. Effects of Zr and Co on the microstructure and mechanical properties of NiAl-based alloys. Journal of Alloys and Compounds. 2021;883:160815. https://doi.org/10.1016/j.jallcom.2021.160815; Sui X., Lu J., Wei D., Zhang L., Wang R., Zhao W., Zhang W. Unveiling the influence of TiN on the microstructure and high-temperature oxidation behavior of Ti—Al—Cr composite coating. Corrosion Science. 2022;206:110539. https://doi.org/10.1016/j.corsci.2022.110539; Shang Z., Shen J., Wang L., Du Y., Xiong Y., Fu H. Investigations on the microstructure and room temperature fracture toughness of directionally solidified NiAl—Cr(Mo) eutectic alloy. Intermetallics. 2015;57:25—33. https://doi.org/10.1016/j.intermet.2014.09.012; Hu L., Zhang G., Hu W., Gottstein G., Bogner S., Bührig-Polaczek A. Tensile creep of directionally solidified NiAl—9Mo in situ composites. Acta Materialia. 2013;61(19):7155—7165. https://doi.org/10.1016/j.actamat.2013.08.017; Grabke H.J. Oxidation of NiAl and FeAl. Intermetallics. 1999;7(10):1153—1158. https://doi.org/10.1016/S0966-9795(99)00037-0; Kovalev A., Wainstein D., Rashkovskiy A. Influence of Al grain boundaries segregations and La-doping on embrittlement of intermetallic NiAl. Applied Surface Science. 2015;354:323-327. https://doi.org/10.1016/j.apsusc.2015.06.110; Kaplansckii Yu.Yu., Levashov E.A., Korotitskiy A.V., Loginov P.A., Sentyurina Zh.A., Mazalov A.B. Influence of aging and HIP treatment on the structure and properties of NiAl-based turbine blades manufactured by laser powder bed fusion. Additive Manufacturing. 2020;31:100999 https://doi.org/10.1016/j.addma.2019.100999; Levashov E.A., Mukasyan A.S., Rogachev A.S., Shtansky D.V. Self-propagating high-temperature synthesis of advanced materials and coatings. International Materials Reviews. 2017; 62(4): 203—239. https://doi.org/10.1080/09506608.2016.1243291; Kurbatkina V.V. Nickel aluminides. In: Concise encyclopedia of self-propagating high-temperature synthesis. Elsevier, 2017. P. 212—213. https://doi.org/10.1016/B978-0-12-804173-4.00099-5; Sanin V.V., Kaplansky Y.Y., Aheiev M.I., Levashov E.A., Petrzhik M.I., Bychkova M.Ya., Samokhin A.V., Fadeev A.A., Sanin V.N. Structure and properties of heatresistant alloys NiAl—Cr—Co—X (X = La, Mo, Zr, Ta, Re) and fabrication of powders for additive manufacturing. Materials. 2021;14(12):3144. https://doi.org/10.3390/ma14123144; Zaitsev A.A., Sentyurina Zh.A., Levashov E.A., Pogozhev Yu.S., Sanin V.N., Loginov P.A., Petrzhik M.I. Structure and properties of NiAl—Cr(Co,Hf) alloys prepared by centrifugal SHS casting. Part 1 — Room temperature investigations. Materials Science and Engineering: A. 2017;690:463—472. https://doi.org/10.1016/j.msea.2016.09.075; Klumpes R., Maree C.H.M., Schramm E., de Wit J.H.W. The influence of chromium on the oxidation of β-NiAl at 1000 °C. Materials and Corrosion. 1996;47(11):619—624. https://doi.org/10.1002/maco.19960471105; Bo Li, Fei Liu, Cong Li, Yimin Gao, Congmin Fon, Xiaohu Hou. Effect of Cr element on the microstructure and oxidation resistance of novel NiAl-based high temperature lubricating composites. Corrosion Science. 2021;188:109554. https://doi.org/10.1016/j.corsci.2021.109554; Gao W., Li Z., Wu Z., Li S., He Y. Oxidation behavior of Ni3Al and FeAl intermetallics under low oxygen partial pressures. Intermetallics. 2002;10(3):263—270. https://doi.org/10.1016/S0966-9795(01)00132-7; Zaitsev A.A., Sentyurina Zh.A., Levashov E.A., Pogozhev Yu.S., Sanin V.N., Sidorenko D.A. Structure and properties of NiAl—Cr(Co,Hf) alloys prepared by centrifugal SHS casting followed by vacuum induction remelting. Part 2 — Evolution of the structure and mechanical behavior at high temperature. Materials Science and Engineering: A. 2017;690:473—481. http://doi.org/10.1016/j.msea.2017.02.089; Kaplanskii Yu.Yu., Zaitsev A.A., Levashov E.A., Pogozhev Yu.S., Loginov P.A., Sentyurina Zh.A., Logacheva A.I. The structure and properties of pre-alloyed NiAl— Cr(Co,Hf) spherical powders produced by plasma rotating electrode processing for additive manufacturing. Journal of Materials Research and Technology. 2018;7(4):461—468. https://doi.org/10.1016/j.jmrt.2018.01.003; Агеев М.И., Санин В.В., Швындина Н.В., Капланский Ю.Ю., Левашов Е.А. Кинетика и механизм окисления никелевых сплавов. Известия вузов. Порошковая металлургия и функциональные покрытия. 2022;(3):4—23.; Sanin V.V., Aheiev M.I., Kaplanskii Yu.Yu., Loginov P.A., Bychkova M.Ya., Levashov E.A. The effect of dopants on structure formation and properties of cast SHS alloys based on nickel monoaluminide. Materials. 2023;16(9):3299. https://doi.org/10.3390/ma16093299; Логунов А.В. Жаропрочные никелевые сплавы для лопаток и дисков газовых турбин. М.: Газотурбинные технологии, 2017. 854 с.; Zhang W.L., Li S.M., Fu L.B., Li W., Sun J., Wang T.G., Jiang S.M., Gong J., Sun C. Preparation and cyclic oxidation resistance of Hf-doped NiAl coating. Corrosion Science. 2022;195:110014. https://doi.org/10.1016/j.corsci.2021.110014; Dingding Zhu, Xinli Wang, Peng Jia, Canying Cai, Jianyu Huang, Guangwen Zhou. One-dimensional γ-Al2O3 growth from the oxidation of NiAl. Corrosion Science. 2023;216:111069. https://doi.org/10.1016/j.corsci.2023.111069; https://cvmet.misis.ru/jour/article/view/1583

  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7