Showing 1 - 18 results of 18 for search '"целлюлолитическая активность"', query time: 0.59s Refine Results
  1. 1
    Academic Journal

    Source: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 79, № 2 (2024); 121-128 ; Вестник Московского университета. Серия 16. Биология; Том 79, № 2 (2024); 121-128 ; 0137-0952

    File Description: application/pdf

    Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/1370/671; Berendsen R.L, Pieterse C.M, Bakker P.A. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012;17(8):478–486.; Turner T.R, James E.K, Poole P.S. The plant microbiome. Genome Biol. 2013;14(6):209.; Rey T, Dumas B. Plenty is no plague: Streptomyces symbiosis with crops. Trends Plant Sci. 2017;22(1):30–37.; Vurukonda S.S.K.P, Giovanardi D, Stefani E. Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. Int. J. Mol. Sci. 2018;19(4):952.; Devi S., Sharma P., Rana A., Pal J., Kumari A. Diversity and plant growth-promoting potential of actinomycetes associated with the rhizosphere of Arnebia euchroma from Himachal Pradesh (India). J. Environ. Biol. 2021;42(4):964–972.; Wahyudi A.T., Priyanto J.A., Fijrina H.N., Mariastuti H.D., Nawangsih A.A. Streptomyces spp. from rhizosphere soil of maize with potential as plant growth promoter. Biodiversitas. 2019;20(9):2547–2553.; Fatmawati U., Meryandini A., Nawangsih A.A., Wahyudi A.T. Screening and characterization of actinomycetes isolated from soybean rhizosphere for promoting plant growth. Biodiversitas. 2019;20(10):2970–2977.; Cinkocki R., Lipkova N., Javorekova J., Makova J., Medo J., Ducsay L. The Impact of growth-promoting Streptomycetes isolated from Rhizosphere and bulk soil on Oilseed Rape (Brassica napus L.) growth parameters. Sustainability. 2021;13(10):5704.; Nalini M.S, Prakash H.S. Diversity and bioprospecting of actinomycete endophytes from the medicinal plants. Lett. Appl. Microbiol. 2017;64(4):261–270.; Harrison J.G, Griffin E.A. The diversity and distribution of endophytes across biomes, plant phylogeny and host tissues: how far have we come and where do we go from here? Environ. Microbiol. 2020;22(6):2107–2123.; Syiemiong D., Jha D.K., Adhikari S., Mylliemngap D., Kharbuki R., Lyngdoh D., Warlarpih J.P., Paul N., Lamare K.M., Wahlang C., Lyngkhoi R. Rhizospheres of Rubus ellipticus and Ageratina riparia from Meghalaya exhibit Actinomycetota that promote plant growth. J. Appl. Biol. Biotechnol. 2023;11(2):114–122.; Gonzalez-Franco A.C., Robles-Hernández L. Antagonist activities and phylogenetic relationships of actinomycetes isolated from an Artemisia habitat. Rev. Argent. Microbiol. 2022;54(4):326–334.; Mahulette F., Utarti E., Kurnia T.S. Isolation and potency of Actinomycetes from rhizosphere of nutmeg (Myristica fragrans Houtt). Biogenesis: Jurnal Ilmiah Biologi. 2023;11(1):59–68.; Wang C., Wang Y., Ma J., Hou Q., Liu K., Ding Y., Du B. Screening and whole-genome sequencing of two Streptomyces species from the rhizosphere soil of peony reveal their characteristics as plant growth-promoting rhizobacteria. BioMed Res. Int. 2018;2018(1):2419686.; Гаузе Г.Ф., Преображенская Т.П., Свешникова М.А., Терехова Л.П., Максимова Т.С. Определитель актиномицетов. М.: Наука; 1983. 246 с.; Шешегова Т.К., Щеклеина Л.М., Лисицын Е.М. Генотипическая и физиологическая адаптация сортов ячменя селекции ФАНЦ Северо-Востока к грибным болезням. Вестник КрасГАУ. 2022;8(185):33–41.; Билай В.И. Методы экспериментальной микологии. М.: Рипол Классик; 1973. 240 с.; Wood P.J., Erfle J.D., Teather R.M. Use of complex formation between Congo Red and polysaccharides in detection and assay of polysaccharide hydrolases. Methods Enzymoly: Biomass Part A: Cellulose and Hemicellulose, vol. 160. Eds. W.A. Wood and S.T. Kellogg. Elsevier Inc.; 1988:59–74.; Егоршина А.А., Хайруллин Р.М., Лукьянцев М.А., Курамшина З.М., Смирнова Ю.В. Фосфатмобилизующая активность эндофитных штаммов Bacillus subtilis и их влияние на степень микоризации корней пшеницы. Журнал СФУ. Биология. 2011;2:172–182.; Libbert E., Risch H. Interactions between plants and epiphytic bacteria regarding their auxin metabolism. Physiol. Plant. 1969;22(2):51–58.; Ling N., Zhang W., Wang D., Mao J., Huang Q., Guo S., Shen Q. Root exudates from grafted-root watermelon showed a certain contribution in inhibiting Fusarium oxysporum f. sp. niveum. PLoS One. 2013;8(5):e63383.; Compant S., Samad A., Faist H., Sessitsch A. A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. J. Adv. Res. 2019;19:29–37.; Trivedi P., Leach J.E., Tringe S.G., Sa T., Singh B.K. Plant-microbiome interactions, from community assembly to plant health. Nat. Rev. Microbiol. 2020;18(11):607–621.; Frantzeskakis L., Di Pietro A., Rep M., Schirawski J., Wu C.H., Panstruga R. Rapid evolution in plant– microbe interactions – a molecular genomics perspective. New Phytol. 2020;225(3):1134–1142.; Etalo D.W., Jeon J.S., Raaijmakers J.M. Modulation of plant chemistry by beneficial root microbiota. Nat. Prod. Rep. 2018;35(5):398–409.; Pandey S.S., Singh S., Babu C.S., Shanker K., Srivastava N.K., Kalra A. Endophytes of opium poppy differentially modulate host plant productivity and genes for the biosynthetic pathway of benzylisoquinoline alkaloids. Planta. 2016;243(5):1097–1114.; Pandey S.S., Singh S., Pandey H., Srivastava M., Ray T., Soni S., Pandey A., Shanker K., Babu C.S.V., Banerjee S., Gupta M.M., Kalra A. Endophytes of Withania somnifera modulate in planta content and the site of withanolide biosynthesis. Sci. Rep. 2018;8(1):5450.; Tsavkelova E.A., Klimova S.Y., Cherdyntseva T.A. Microorganisms–producers of growth stimulants and their practical application. Appl. Biochem. Microbiol. 2006;42(2):133–143.

  2. 2
  3. 3
  4. 4
    Academic Journal

    Source: chemistry of plant raw material; No 1 (2018); 193-199
    Химия растительного сырья; № 1 (2018); 193-199

    File Description: application/pdf

  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18