Showing 1 - 20 results of 59 for search '"хроническая тромбоэмболическая легочная гипертензия"', query time: 1.06s Refine Results
  1. 1
  2. 2
    Academic Journal

    Contributors: This work was carried out within the framework of the state assignment of the Ministry of Health of the Russian Federation No. 124022000090-0, Данная работа была выполнена в рамках государственного задания Министерства здравоохранения Российской Федерации № 124022000090-0

    Source: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 14, № 1 (2025); 196-202 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 14, № 1 (2025); 196-202 ; 2541-8017 ; 2223-9022

    File Description: application/pdf

    Relation: https://www.jnmp.ru/jour/article/view/2088/1583; https://www.jnmp.ru/jour/article/view/2088/1699; Чазова И.Е. Хроническая тромбоэмболическая легочная гипертензия: современные возможности диагностики и лечения. Терапевтический архив. 2023;95(12):1017–1021. https://doi.org/10.26442/00403660.2023.12.202495; Каменская О.В., Клинкова А.С., Логинова И.Ю., Поротникова С. С., Волкова И.И., Доронин Д.В. и др. Клинико-функциональный статус и послеоперационные осложнения у больных хронической тромбоэмболической легочной гипертензией в возрастном аспекте. Системные гипертензии. 2023;20(4):31–37. https://doi.org/10.38109/2075-082X-2023-4-31-37; Чернявский А.М., Едемский А.Г., Чернявский М.А., Таркова А.Р., Новикова Н.В., Иванов С.В. Хирургические технологии в лечении больных с хронической постэмболической легочной гипертензией. Кардиология и сердечно-сосудистая хирургия. 2016;(6):38–43. https://doi.org/10.17116/kardio20169638-43; Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al.; American Society of Echocardiography’s Nomenclature and Standards Committee; Task Force on Chamber Quantification; American College of Cardiology Echocardiography Committee; American Heart Association; European Association of Echocardiography, European Society of Cardiology. Recommendations for chamber quantification. Eur J Echocardiogr. 2006;7(2):79–108. PMID: 16458610 https://doi.org/10.1016/j.euje.2005.12.014; Голицын С.П., Кропачева Е.С., Майков Е.Б. Миронов Н.Ю., Панченко Е.П., Соколов С.Ф. и др. Диагностика и лечение нарушений ритма сердца и проводимости. Клинические рекомендации. Часть I. Кардиологический вестник. 2014;9(2):3–52.; Liu Z, Liu X, Lin F, Zheng X, Yang Y, Zhang Y, et al. Duration of regional cerebral oxygen saturation under 40% is a risk factor for neurological injury following pulmonary thromboendarterectomy: A prospective observational study. J Card Surg. 2022;37(9):2610–2617. PMID: 35599016 https://doi.org/10.1111/jocs.16615; Raffa GM, Agnello F, Occhipinti G, Miraglia R, Lo Re V, Marrone G, et al. Neurological complications after cardiac surgery: a retrospective case-control study of risk factors and outcome. J Cardiothorac Surg. 2019;14(1):23. PMID: 30683130 https://doi.org/10.1186/s13019-019-0844-8; Киртбая Л.Н. Эпидемиология и механизм развития фибрилляции предсердий после коронарных вмешательств. Анналы аритмологии. 2021;18(4):247–253. https://doi.org/10.15275/annaritmol.2021.4.7; Чазова И.Е., Мартынюк Т.В. Проблемы диагностики и лечения хронической тромбоэмболической легочной гипертензии. Тихоокеанский медицинский журнал. 2017;4(70):6–16. https://doi.org/10.17238/PmJ1609-1175.2017.4.6-16; https://www.jnmp.ru/jour/article/view/2088

  3. 3
    Academic Journal

    Source: Siberian Journal of Clinical and Experimental Medicine; Том 40, № 1 (2025); 85-94 ; Сибирский журнал клинической и экспериментальной медицины; Том 40, № 1 (2025); 85-94 ; 2713-265X ; 2713-2927

    File Description: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/2636/1051; Simonneau G., Torbicki A., Dorfmüller P., Kim N. The pathophysiology of chronic thromboembolic pulmonary hypertension. Eur. Respir. Rev. 2017;26(143):160112. https://doi.org/10.1183/16000617.0112-2016; Васильцева О.Я., Едемский А.Г., Гранкин Д.С., Кливер Е.Н., Чернявский А.М. Путь от тромбоэмболии легочной артерии к хронической тромбоэмболической легочной гипертензии: факторы риска. Патология кровообращения и кардиохирургия. 2021;25(3):11–19. https://doi.org/10.21688/1681-3472-2021-3-11-19; Ruaro B., Baratella E., Caforio G., Confalonieri P., Wade B., Marrocchio C. et al. Chronic thromboembolic pulmonary hypertension: an update. Diagnostics. 2022;12(2):235. https://doi.org/10.3390/diagnostics12020235; Cannon J.E., Su L., Kiely D.G., Page K., Toshner M., Swietlik E. et al. Dynamic risk stratification of patient long-term outcome after pulmonary endarterectomy: results from the United Kingdom National Cohort. Circulation. 2016;133(18):1761–1771. https://doi.org/10.1161/circulationaha.115.019470; Madani M.M. Pulmonary endarterectomy for chronic thromboembolic pulmonary hypertension: state-of-the-art. Pulmonary Circulation. 2021;11(2):1–6. https://doi.org/10.1177/20458940211007372; Чернявский А.М., Едемский А.Г., Новикова Н.В. и др.; под общ. ред. Чернявского А.М. Хирургическое лечение хронической тромбоэмболической легочной гипертензии; ФГБУ «НМИЦ им. ак. Е.Н. Мешалкина» Минздрава России. Новосибирск: Изд-во СО РАН. 2019:169–173.; Kim N.H., Delcroix M., Jais X., Madani M.M., Matsubara H., Mayer E. et al. Chronic thromboembolic pulmonary hypertension. Eur. Respir. J. 2019;53(1):1801915. https://doi.org/10.1183/13993003.01915-2018; Papamatheakis D.G., Poch D.S., Fernandes T.M., Kerr K.M., Kim N.H., Fedullo P.F. Chronic thromboembolic pulmonary hypertension: JACC focus seminar. J. Am. Coll. Cardiol. 2020;(76):2155–2169. https://doi.org/10.1016/j.jacc.2020.08.074; Hsieh W.C., Jansa P., Huang W.C., Nižnanský M., Omara M., Lindner J. Residual pulmonary hypertension after pulmonary endarterectomy: A meta-analysis. J. Thorac. Cardiovasc. Surg. 2018;156(3):1275– 1287. https://doi.org/10.1016/j.jtcvs.2018.04.110; Hobohm L., Below M., Farmakis I.T., Barco S., Munzel T., Konstantinides S. et al. Incidence of chronic thromboembolic pulmonary Hypertension after acute pulmonary embolism in real-world practice. Eur. Heart J. 2023;44(Suppl_2):ehad655-2010. https://doi.org/10.1093/eurheartj/ehad655.2010; Pang W., Zhang Z., Wang Z., Zhen K., Zhang M., Zhang Y. et al. Higher incidence of chronic thromboembolic pulmonary hypertension after acute pulmonary embolism in Asians than in Europeans: a meta-analysis. Front. Med. (Lausanne). 2021;8:721294. https://doi.org/10.3389%2Ffmed.2021.721294; Bhakta N.R., McGowan A., Ramsey K.A., Borg B., Kivastik J., Knight S.L. European Respiratory Society. American Thoracic Society technical statement: standardisation of the measurement of lung volumes, 2023 update. Eur. Respir. J. 2023;62(4):15–23. https://doi.org/10.1183/13993003.01519-2022; Duan A., Li X., Jin Q., Zhang Y., Zhao Z., Zhao Q. et al. Prognostic implication of noninvasive right ventricle-to-pulmonary artery coupling in chronic thromboembolic pulmonary hypertension. Ther. Adv. Chronic Dis. 2022;13: 20406223221102803. https://doi.org/10.1177/20406223221102803; Ishida K., Kohno H., Matsuura K., Sugiura T., Sanada T. J., Naito A. et al. Impact of residual pulmonary hypertension on long‐term outcomes after pulmonary endarterectomy in the modern era. Pulm. Circ. 2023;13(2):e12215. https://doi.org/10.1002/pul2.12215; Jujo T., Sakao S., Ishibashi-Ueda H., Ishida K., Naito A., Sugiura T. et al. Evaluation of the microcirculation in chronic thromboembolic pulmonary hypertension patients: the impact of pulmonary arterial remodeling on postoperative and follow-up pulmonary arterial pressure and vascular resistance. PLoS One. 2015;10(8):e0133167. https://doi.org/10.1371/journal.pone.0133167; D’Armini A.M., Morsolini M., Mattiucci G., Grazioli V., Pin M., Sciortino A. et al. Chronic thromboembolic pulmonary hypertension: from transplantation to distal pulmonary endarterectomy. J. Heart Lung Transplant. 2016;35(6):827–831. https://doi.org/10.1016/j.healun.2015.12.029; Delcroix M., Torbicki A., Gopalan D., Sitbon O., Klok F.A., Lang I. et al. ERS statement on chronic thromboembolic pulmonary hypertension. Eur. Respir. J. 2021;57(6):2002828. https://doi.org/10.1183/13993003.02828-2020; https://www.sibjcem.ru/jour/article/view/2636

  4. 4
    Academic Journal

    Source: PULMONOLOGIYA; Том 34, № 4 (2024); 595-598 ; Пульмонология; Том 34, № 4 (2024); 595-598 ; 2541-9617 ; 0869-0189

    File Description: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/4540/3674; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4540/2793; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4540/2795; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4540/2796; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4540/2797; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4540/2801; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4540/2868; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4540/2869; Царева Н.А. Современная классификация и диагностика легочной гипертензии. Consilium Medicum. 2017; 19 (3): 66–71. Доступно на: https://consilium.orscience.ru/2075-1753/article/view/94816; Holcomb B.W. Jr, Loyd J.E., Ely E.W. et al. Pulmonary veno-occlusive disease: a case series and new observations. Chest. 2000; 118 (6): 1671–1679. DOI:10.1378/chest.67.4.487.; Siddiqui N.A., Charoenpong P. Pulmonary veno-occlusive disease. Treasure Island (FL): StatPearls; 2023. Available at: https://www.ncbi.nlm.nih.gov/books/NBK585129/; Жук Е.А., Кириченко Н.В., Мясоедова С.Е. и др. Особенности диагностики легочной вено-окклюзионной болезни. Российский кардиологический журнал. 2012; (3): 88–90. Доступно на: https://russjcardiol.elpub.ru/jour/article/view/1234; Легочная гипертензия. Диагностика и лечение. Европейские клинические рекомендации (2015) (часть 3-я). Пульмонология. 2017; 27 (5): 573–606. Доступно на: https://journal.pulmonology.ru/pulm/article/view/915; Montani D., Lau E.M., Descatha A. et al. Occupational exposure to organic solvents: a risk factor for pulmonary veno-occlusive disease. Eur. Respir. J. 2015; 46 (6): 1721–1731. DOI:10.1183/13993003.00814-2015.; Montani D.; Achouh L.; Dorfmüller P. et al. Pulmonary veno-occlusive disease: clinical, functional, radiologic, and hemodynamic characteristics and outcome of 24 cases confirmed by histology. Medicine (Baltimore). 2008; 87 (4): 220–233. DOI:10.1097/MD.0b013e31818193bb.; Humbert M., Kovacs G., Hoeper M.M. et al. 2022 ESC/ERS scientific document group. 2022 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Respir. J. 2023; 61 (1): 2200879. DOI:10.1183/13993003.00879-2022.; Fakili F., Duzen I.V., Kaplan M., Bayram N.G. A 24-year-old woman with dyspnea, chest pain, and dry cough. Chest. 2021; 160 (5): e503–506. DOI:10.1016/j.chest.2021.05.064.; Царева Н.А. Идиопатическая легочная артериальная гипертензия: современный подход к диагностике и лекарственной терапии. Пульмонология. 2017; 27 (2): 216–231. DOI:10.18093/0869-0189-2017-27-2-216-231.; https://journal.pulmonology.ru/pulm/article/view/4540

  5. 5
    Academic Journal

    Source: Diagnostic radiology and radiotherapy; Том 13, № 4 (2022); 65-74 ; Лучевая диагностика и терапия; Том 13, № 4 (2022); 65-74 ; 2079-5343

    File Description: application/pdf

    Relation: https://radiag.bmoc-spb.ru/jour/article/view/805/575; Kim N.H., Delcroix M., Jais X., Madani M.M., Matsubara H., Mayer E. et al. Chronic thromboembolic pulmonary hypertension // European Respiratory Journal. 2019. Vol. 53, No. 1. Р. 1801915. doi:10.1183/13993003.01915-2018.; Lang I.M., Pesavento R., Bonderman D. et al. Risk factors and basic mechanisms of chronic thromboembolic pulmonary hypertension: a current understanding // European Respiratory Journal. 2013. Vol. 41. Р. 462–468. doi:10.1183/09031936.00049312.; von Siebenthal C., Aubert J-D., Mitsakis P., Yerly P., Prior J.O., Nicod L.P. Pulmonary Hypertension and Indicators of Right Ventricular Function // Front. Med. 2016. Vol. 3. Р. 23. doi:10.3389/fmed.2016.00023.; Delcroix M., Vonk Noordegraaf A., Fadel E., Lang I., Simonneau G., Naeije R. Vascular and right ventricular remodelling in chronic thromboembolic pulmonary hypertension // Eur. Respir. J. 2013. Vol. 41, No. 1. Р. 224–232. doi:10.1183/09031936.00047712.; Matthews D.T., Hemnes A.R. Current concepts in the pathogenesis of chronic thromboembolic pulmonary hypertension // Pulm Circ. 2016. Vol. 6, No. 2. Р. 145–154. doi:10.1086/686011; Farrell C., Balasubramanian A., Hays A.G., Hsu S., Rowe S., Zimmerman S.L. et al. A Clinical Approach to Multimodality Imaging in Pulmonary Hypertension // Front. Cardiovasc. Med. 2022. Vol. 8. Р. 794706. doi:10.3389/fcvm.2021.794706.; Xu W., Janocha A.J., Erzurum S.C. Metabolism in pulmonary hypertension // Annu Rev Physiol. 2021. Vol. 83. Р. 551–576. doi:10.1146/annurev-physiol-031620-123956.; Farha S., Comhair S., Hou Y., Park M.M., Sharp J., Peterson L. et al. Metabolic endophenotype associated with right ventricular glucose uptake in pulmonary hypertension // Pulmonary Circulation. 2021. Vol. 11. Р. 1–12. doi:10.1177/20458940211054325; Koop A.C., Bossers G.P.L., Ploegstra M-J., Hagdorn Q.A.J., Berger R.M.F., Silljé H.H.W. et al. Metabolic Remodeling in the Pressure-Loaded Right Ventricle: Shifts in Glucose and Fatty Acid Metabolism-A Systematic Review and Meta-Analysis // J. Am. Heart Assoc. 2019. Vol. 8, No. 21. Р. e012086. doi:10.1161/JAHA.119.012086.; Piao L., Fang Y.H., Cadete V.J., Wietholt C., Urboniene D., Toth P.T. et al. The inhibition of pyruvate dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two models of right ventricular hypertrophy: resuscitating the hibernating right ventricle // J. Mol. Med. (Berl). 2010. Vol. 88, No. 1. Р. 47–60. doi:10.1007/s00109-009-0524-6.; Oikawa M., Kagaya Y., Otani H., Sakuma M., Demachi J., Suzuki J. et al. Increased [18F]fluorodeoxyglucose accumulation in right ventricular free wall in patients with pulmonary hypertension and the effect of epoprostenol // J Am Coll Cardiol. 2005. Vol. 45. Р. 1849–1855. doi:10.1016/j.jacc.2005.02.065.; Saygin D., Highland K.B., Farha S., Park M., Sharp J., Roach E.C. et al. Metabolic and functional evaluation of the heart and lungs in pulmonary hypertension by gated 2-[18F]-Fluoro-2-deoxy-D-glucose positron emission tomography // Pulm. Circ. 2017. Vol. 7. Р. 428–438. doi:10.1177/2045893217701917.; Tatebe S., Fukumoto Y., Oikawa-Wakayama M., Sugimura K., Satoh K., Miura Y. et al. Enhanced [18F]fluorodeoxyglucose accumulation in the right ventricular free wall predicts long-term prognosis of patients with pulmonary hypertension: a preliminary observational study // Eur. Heart J. Cardiovasc Imaging. 2014. Vol. 15. Р. 666–672. doi:10.1093/ehjci/jet276.; Kluge R., Barthel H., Pankau H., Seese A., Schauer J., Wirtz H. et al. Different mechanisms for changes in glucose uptake of the right and left ventricular myocardium in pulmonary hypertension // J. Nucl. Med. 2005. Vol. 46, No. 1. Р. 25–31.; Oguz M., Kivrak T., Sunbul M., Dede F., Yildizeli B., Mutlu B. Diagnostic modality for evaluation of right ventricle in chronic thromboembolic pulmonary hypertension patients // Int. J. Cardiovasc. Acad. 2019. Vol. 5. Р. 152–158. doi:10.4103/IJCA.IJCA_35_19.; Ahmadi A., Thornhill R.E., Pena E., Renaud J.M., Promislow S., Chandy G. et al. Effects of Riociguat on Right Ventricular Remodelling in Chronic Thromboembolic Pulmonary Hypertension Patients: A Prospective Study // Can. J. Cardiol. 2018. Vol. 34, No. 9. doi:10.1016/j.cjca.2018.06.007.; Молокова Е.Р., Симакова М.А., Моисеева О.М., Рыжкова Д.В. Исследование перфузии и метаболизма правого желудочка методом позитронной эмиссионной томографии при хронической тромбоэмболической легочной гипертензии // REJR. 2022. Т. 12, № 2. С. 74–84. doi:10.21569/2222-7415-2022-12-2-74-84.; Vitale G.D., deKemp R.A., Ruddy T.D., Williams K., Beanlands R.S.B. Myocardial Glucose Utilization and Optimization of 18F-FDG PET Imaging in Patients with Non– Insulin-Dependent Diabetes Mellitus, Coronary Artery Disease, and Left Ventricular Dysfunction // Journal of Nuclear Medicine. 2001. Vol. 42, No. 12. Р. 1730–1736.; Li W., Wang L., Xiong C.M., Yang T., Zhang Y., Gu Q. et al. The Prognostic Value of 18F-FDG Uptake Ratio Between the Right and Left Ventricles in Idiopathic Pulmonary Arterial Hypertension // Clin. Nucl. Med. 2015. Vol. 40, No. 11. Р. 859–863. doi:10.1097/RLU.0000000000000956. PMID: 26359560.; Condliffe R., Kiely D.G., Gibbs J.S.R., Corris P.A., Peacock A.J., Jenkins D.P. et al. Prognostic and aetiological factors in chronic thromboembolic pulmonary hypertension // European Respiratory Journal. 2009. Vol. 33. Р. 332–338. doi:10.1183/09031936.00092008.; Kazimierczyk R., Szumowski P., Nekolla S.G. et al. Prognostic role of PET/MRI hybrid imaging in patients with pulmonary arterial hypertension // Heart. 2021. Vol. 107. Р. 54–60. doi:10.1136/heartjnl-2020-316741.

  6. 6
    Academic Journal

    Contributors: 0

    Source: Annals of the Russian academy of medical sciences; Vol 78, No 4 (2023); 297-304 ; Вестник Российской академии медицинских наук; Vol 78, No 4 (2023); 297-304 ; 2414-3545 ; 0869-6047 ; 10.15690/vramn.784

    File Description: application/pdf

  7. 7
    Academic Journal

    Source: Diagnostic radiology and radiotherapy; Том 13, № 3 (2022); 51-57 ; Лучевая диагностика и терапия; Том 13, № 3 (2022); 51-57 ; 2079-5343

    File Description: application/pdf

    Relation: https://radiag.bmoc-spb.ru/jour/article/view/754/560; Hoeper M.M., Humbet M., Souza R. et al. A global view of pulmonary hypertension // Lancet Respir. Med. 2016. Vol. 4, No. 4. P. 306–322. doi:10.1016/S22132600(15)00543-3.; Gilbertson A. Pulmonary artery catheterization and wedge pressure measurement in the general intensive care unit // Survey of anesthesiology. 1975. Vol. 19, No. 3. P. 291. doi:10.1093/bja/46.2.97.; Okajima Y., Ohno Y., Washko G. et al. Assessment of Pulmonary Hypertension: What CT and MRI Can Provide // Academic Radiology. 2011. Vol. 18, No. 4. P. 437–453. doi:10.1016/j.acra.2011.01.003.; Muller N.L., Stapels C.A., Miller R.R. et al. «Density Mask»: an objective method to quantitate mphysema using computed tomography // Chest. 1998. Vol. 94. P. 782–787. doi:10.1378/chest.94.4.782.; Uppaluri R., Mitsa T., Sonka M. et al. Quantification of pulmonary emphysema from lung computed tomography images // American Journal of Respiratory аnd Critical Care Medicine. 1997. Vol. 156, No. 1. P. 248–254. doi:10.1164/ajrccm.156.1.9606093.; Bankier A.A., de Maertelaer V., Keyzer C. et al. CT of pulmonary emphysema: subjective assessment and objective quantification by densitometry and macroscopic morphometry; Detection of emphysema with computed tomography: correlation with pulmonary function tests and chest radiography) // Radiology. 1999. Vol. 211, No. 3. P. 851–858. doi:10.1148/radiology.211.3.r99jn05851.; Lauge S., Mads N., Jens P. et al. Chronic obstructive pulmonary disease quantification using CT texture analysis and densitometry: Results from the Danish lung cancer screening trial // American Journal of Roengenology. 2020. Vol. 214. P. 1269–1279. doi:10.2214/AJR.19.22300.; Marialuisa B., Dario B., Michele D., Performance of a new quantitative computed tomography index for interstitial lung disease assessment in systemic sclerosis // Scientific reports. 2019. Vol. 9, No. 1. 9468. doi:10.1038/s41598-019-45990-7.; Cottin V., Brown K.K. Interstitial lung disease associated with systemic sclerosis (SSc-ILD) // Respir. Res. 2019. Vol. 20, No. 1. Р. 13. doi:10.1186/s12931-0190980-7.; Van Royen F.S. et al. Automated CT quantification methods for the assessment of interstitial lung disease in collagen vascular diseases: A systematic review // Eur. J. Radiol. 2019. Vol. 112. P. 200–206. doi:10.1016/j.ejrad.2019.01.024.; Simonneau G., Montani D., Celermajer D.S. et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension // Eur. Respir. J. 2019. Vol. 53, No. 1. Р. 1–13. doi:10.1183/13993003.01913-2018.; Swetabh P., Arsh G., Vinod J. еt al. Evaluation of Pulmonary Hypertension in Stable Chronic Obstructive Pulmonary Disease Patients using Transthoracic Echocardiography // Biomedical and Biotechnology Research Journal (BBRJ). 2019. Vol. 3, No. 1. P. 53–56. doi:10.4103/bbrj.bbrj_4_19.

  8. 8
    Academic Journal

    Contributors: This article was prepared with the support of Bayer, Статья подготовлена при поддержке АО «Байер»

    Source: Rational Pharmacotherapy in Cardiology; Vol 18, No 3 (2022); 342-349 ; Рациональная Фармакотерапия в Кардиологии; Vol 18, No 3 (2022); 342-349 ; 2225-3653 ; 1819-6446

    File Description: application/pdf

    Relation: https://www.rpcardio.com/jour/article/view/2757/2323; Легочная гипертензия, в том числе хроническая тромбоэмболическая легочная гипертензия. Российские клинические рекомендации, 2020 [цитировано 10.03.2022. Доступно из: https://cr.minzdrav.gov.ru/recomend/159_1].; Чазова И.Е., Мартынюк Т.В., Валиева З.С., и др. Евразийские клинические рекомендации по диагностике и лечению легочной гипертензии (2019). Евразийский Кардиологический Журнал. 2020;(1):78-124. DOI:10.24411/2076-4766-2020-10002.; Чазова И.Е., Мартынюк Т.В., Валиева З.С., и др. Евразийские рекомендации по диагностике и лечению хронической тромбоэмболической легочной гипертензии (2020). Евразийский Кардиологический Журнал. 2021;(1):6-43. DOI:10.38109/2225-1685-2021-16-43.; Galié N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2016;37(1):67-119. DOI:10.1093/eurheartj/ehv317.; Channick RN, Simonneau G, Sitbon O, et al. Effects of the dual endothelin-receptor antagonist bosentan in patients with pulmonary hypertension: a randomised placebo-controlled study. Lancet. 2001;358(9288):1119-23. DOI:10.1016/S0140-6736(01)06250-X.; Rubin LJ, Badesch DB, Barst RJ, et al. Bosentan therapy for pulmonary arterial hypertension. N Engl J Med. 2002;346(12):896-903. DOI:10.1056/NEJMoa012212.; Galiè N, Rubin Lj, Hoeper M, et al. Treatment of patients with mildly symptomatic pulmonary arterial hypertension with bosentan (EARLY study): a double-blind, randomised controlled trial. Lancet. 2008;371(9630):2093-100. DOI:10.1016/S0140-6736(08)60919-8.; Sastry BK, Narasimhan C, Reddy NK, Raju BS. Clinical efficacy of sildenafil in primary pulmonary hypertension: a randomized, placebo-controlled, double-blind, crossover study. J Am Coll Cardiol. 2004;43(7):1149-53. DOI:10.1016/j.jacc.2003.10.056.; Galiè N, Ghofrani HA, Torbicki A, et al. Sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med. 2005;353(20):2148-57. DOI:10.1056/NEJMoa050010.; Singh TP, Rohit M, Grover A, et al. A randomized, placebo-controlled, double-blind, crossover study to evaluate the efficacy of oral sildenafil therapy in severe pulmonary artery hypertension. Am Heart J. 2006;151(4):851.e1-5. DOI:10.1016/j.ahj.2005.09.006.; Galiè N, Olschewski H, Oudiz RJ, et al. Ambrisentan in Pulmonary Arterial Hypertension, Randomized, Double-Blind, Placebo-Controlled, Multicenter, Efficacy Studies (ARIES) Group. Ambrisentan for the treatment of pulmonary arterial hypertension: results of the ambrisentan in pulmonary arterial hypertension, randomized, double-blind, placebo-controlled, multicenter, efficacy (ARIES) study 1 and 2. Circulation. 2008;117(23):3010-9. DOI:10.1161/CIRCULATIONAHA.107.742510.; Pulido T, Adzerikho I, Channick RN, et al. Macitentan and morbidity and mortality in pulmonary arterial hypertension. N Engl J Med. 2013;369(9):809-18. DOI:10.1056/NEJMoa1213917.; Sitbon O, Channick R, Chin KM, et al. Selexipag for the Treatment of Pulmonary Arterial Hypertension. N Engl J Med. 2015;373(26):2522-33. DOI:10.1056/NEJMoa1503184.; Ghofrani HA, Galiè N, Grimminger F, et al. PATENT-1 Study Group. Riociguat for the treatment of pulmonary arterial hypertension. N Engl J Med. 2013;369(4):330-40. DOI:10.1056/NEJMoa1209655.; Ghofrani HA, D'Armini AM, Grimminger F, et al. CHEST-1 Study Group. Riociguat for the treatment of chronic thromboembolic pulmonary hypertension. N Engl J Med. 2013;369(4):319-29. DOI:10.1056/NEJMoa1209657.; Hoeper MM, Al-Hiti H, Benza RL, et al. Switching to riociguat versus maintenance therapy with phosphodiesterase-5 inhibitors in patients with pulmonary arterial hypertension (REPLACE): a multicentre, open-label, randomised controlled trial. Lancet Respir Med. 2021;9(6):573-84. DOI:10.1016/S2213-2600(20)30532-4.; Olschewski H, Simonneau G, Galiè N, et al. Aerosolized Iloprost Randomized Study Group. Inhaled iloprost for severe pulmonary hypertension. N Engl J Med. 2002;347(5):322-9. DOI:10.1056/NEJMoa020204.; Liu HL, Chen XY, Li JR, et al. Efficacy and Safety of Pulmonary Arterial Hypertension-specific Therapy in Pulmonary Arterial Hypertension: A Meta-analysis of Randomized Controlled Trials. Chest. 2016;150(2):353-66. DOI:10.1016/j.chest.2016.03.031.; Lajoie AC, Lauzière G, Lega JC, et al. Combination therapy versus monotherapy for pulmonary arterial hypertension: a meta-analysis. Lancet Respir Med. 2016;4(4):291-305. DOI:10.1016/S22132600(16)00027-8.; Boucly A, Savale L, Jaïs X, et al. Association between Initial Treatment Strategy and Long-Term Survival in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med. 2021;204(7):842-54. DOI:10.1164/rccm.202009-3698OC.; ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166(1):111-7. DOI:10.1164/ajrccm.166.1.at1102.; Глушко Л.А., Шмальц А.А. Оценка состояния кардиореспираторной системы при легочной гипертензии, ассоциированной с врожденными пороками сердца. Креативная Кардиология. 2021;15(2):167-79. DOI:10.24022/19973187-2021-15-2-167-179.; Demir R, Küçükoğlu MS. Six-minute walk test in pulmonary arterial hypertension. Anatol J Cardiol. 2015;15(3):249-54. DOI:10.5152/akd.2015.5834.; Deboeck G. The 6-min walk test in pulmonary arterial hypertension: only for bad news? Respiration. 2015;89(5):363-4. DOI:10.1159/000377708.; Sitbon O, Humbert M, Nunes H, et al. Long-term intravenous epoprostenol infusion in primary pulmonary hypertension: prognostic factors and survival. J Am Coll Cardiol. 2002;40(4):780-8. DOI:10.1016/s0735-1097(02)02012-0.; Gabler NB, French B, Strom BL, et al. Validation of 6-minute walk distance as a surrogate end point in pulmonary arterial hypertension trials. Circulation. 2012;126(3):349-56. DOI:10.1161/CIRCULATIONAHA.112.105890.; Fritz JS, Blair C, Oudiz RJ, et al. Baseline and follow-up 6-min walk distance and brain natriuretic peptide predict 2-year mortality in pulmonary arterial hypertension. Chest. 2013;143(2):315-323. DOI:10.1378/chest.12-0270.; Nickel N, Golpon H, Greer M, et al. The prognostic impact of follow-up assessments in patients with idiopathic pulmonary arterial hypertension. Eur Respir J. 2012;39(3):589-96. DOI:10.1183/09031936.00092311.; Souza R, Channick RN, Delcroix M, et al. Association between six-minute walk distance and longterm outcomes in patients with pulmonary arterial hypertension: Data from the randomized SERAPHIN trial. PLoS One. 2018;13(3):e0193226. DOI:10.1371/journal.pone.0193226.; Macchia A, Marchioli R, Marfisi R, et al. A meta-analysis of trials of pulmonary hypertension: a clinical condition looking for drugs and research methodology. Am Heart J. 2007;153(6):1037-47. DOI:10.1016/j.ahj.2007.02.037.; Savarese G, Paolillo S, Costanzo P, et al. Do changes of 6-minute walk distance predict clinical events in patients with pulmonary arterial hypertension? A meta-analysis of 22 randomized trials. J Am Coll Cardiol. 2012;60(13):1192-201. DOI:10.1016/j.jacc.2012.01.083.; Miyamoto S, Nagaya N, Satoh T, et al. Clinical correlates and prognostic significance of six-minute walk test in patients with primary pulmonary hypertension. Comparison with cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2000;161(2 Pt 1):487-92. DOI:10.1164/ajrccm.161.2.9906015.; Costa GOS, Ramos RP, Oliveira RKF, et al. Prognostic value of six-minute walk distance at a South American pulmonary hypertension referral center. Pulm Circ. 2020;10(2):2045894019888422. DOI:10.1177/2045894019888422.; Groepenhoff H, Vonk-Noordegraaf A, van de Veerdonk MC, et al. Prognostic relevance of changes in exercise test variables in pulmonary arterial hypertension. PLoS One. 2013;8(9):e72013. DOI:10.1371/journal.pone.0072013.; Benza RL, Gomberg-Maitland M, Naeije R, et al. Prognostic factors associated with increased survival in patients with pulmonary arterial hypertension treated with subcutaneous treprostinil in randomized, placebo-controlled trials. J Heart Lung Transplant. 2011;30(9):982-9. DOI:10.1016/j.healun.2011.03.011.; Farber HW, Miller DP, McGoon MD, et al. Predicting outcomes in pulmonary arterial hypertension based on the 6-minute walk distance. J Heart Lung Transplant. 2015;34(3):362-8. DOI:10.1016/j.healun.2014.08.020; Zelniker TA, Huscher D, Vonk-Noordegraaf A, et al. The 6MWT as a prognostic tool in pulmonary arterial hypertension: results from the COMPERA registry. Clin Res Cardiol. 2018;107(6):460-70. DOI:10.1007/s00392-018-1207-5.; Heresi GA, Rao Y. Follow-Up Functional Class and 6-Minute Walk Distance Identify Long-Term Survival in Pulmonary Arterial Hypertension. Lung. 2020;198(6):933-8. DOI:10.1007/s00408-02000402-w.; Gaine S, Simonneau G. The need to move from 6-minute walk distance to outcome trials in pulmonary arterial hypertension. Eur Respir Rev. 2013;22(130):487-94. DOI:10.1183/09059180.00006213.; Peacock A, Keogh A, Humbert M. Endpoints in pulmonary arterial hypertension: the role of clinical worsening. Curr Opin Pulm Med. 2010;16 Suppl 1:S1-9. DOI:10.1097/01.mcp.0000370205.22885.98.; Chakinala MM, Barst R. From short-term benefits to long-term outcomes: the evolution of clinical trials in pulmonary arterial hypertension. Pulm Circ. 2013;3(3):507-22. DOI:10.1086/674456.; Frost AE, Badesch DB, Miller DP, et al. Evaluation of the predictive value of a clinical worsening definition using 2-year outcomes in patients with pulmonary arterial hypertension: a REVEAL Registry analysis. Chest. 2013;144(5):1521-9. DOI:10.1378/chest.12-3023.; McLaughlin VV, Badesch DB, Delcroix M, et al. End points and clinical trial design in pulmonary arterial hypertension. J Am Coll Cardiol. 2009;54(1 Suppl):S97-S107. DOI:10.1016/j.jacc.2009.04.007.; Gomberg-Maitland M, Bull TM, Saggar R, et al. New trial designs and potential therapies for pulmonary artery hypertension. J Am Coll Cardiol. 2013;62(25 Suppl):D82-91. DOI:10.1016/j.jacc.2013.10.026.; Sitbon O, Gomberg-Maitland M, Granton J, et al. Clinical trial design and new therapies for pulmonary arterial hypertension. Eur Respir J. 2019;53(1):1801908. DOI:10.1183/13993003.019082018.; Мартынюк Т.В., Шмальц А.А., Горбачевский С.В., Чазова И.Е. Оптимизация специфической терапии легочной гипертензии: возможности риоцигуата. Терапевтический Архив. 2021;93(9):1117-24. DOI:10.26442/00403660.2021.09.201014.; Huang J, Mehta S, Mura M. Early decline in six-minute walk distance from the time of diagnosis predicts clinical worsening in pulmonary arterial hypertension. Respiration. 2015;89(5):365-73. DOI:10.1159/000370124.; Naeije R. The 6-min walk distance in pulmonary arterial hypertension: "Je t'aime, moi non plus". Chest. 2010;137(6):1258-60. DOI:10.1378/chest.10-0351.; Jaïs X, D'Armini AM, Jansa P, et al. Bosentan Effects in iNopErable Forms of chronIc Thromboembolic pulmonary hypertension Study Group. Bosentan for treatment of inoperable chronic thromboembolic pulmonary hypertension: BENEFiT (Bosentan Effects in iNopErable Forms of chronIc Thromboembolic pulmonary hypertension), a randomized, placebo-controlled trial. J Am Coll Cardiol. 2008;52(25): 2127-34. DOI:10.1016/j.jacc.2008.08.059.; Zeren M, Demir R, Sinan UY, et al. Prevalence of musculoskeletal pain and its impact on quality of life and functional exercise capacity in patients with pulmonary arterial hypertension. Respir Med. 2022;193:106759. DOI:10.1016/j.rmed.2022.106759.; Ozcan Kahraman B, Ozsoy I, Akdeniz B, et al. Test-retest reliability and validity of the timed up and go test and 30-second sit to stand test in patients with pulmonary hypertension. Int J Cardiol. 2020;304:159-163. DOI:10.1016/j.ijcard.2020.01.028.; Degano B, Sitbon O, Savale L, et al. Characterization of pulmonary arterial hypertension patients walking more than 450 m in 6 min at diagnosis. Chest. 2010;137(6):1297-303. DOI:10.1378/chest.09-2060.; Klinger JR, Elliott CG, Levine DJ, et al. Therapy for Pulmonary Arterial Hypertension in Adults: Update of the CHEST Guideline and Expert Panel Report. Chest. 2019;155(3):565-86. DOI:10.1016/j.chest.2018.11.030; Шмальц А.А., Горбачевский С.В. Систематический обзор как основа клинических рекомендаций: рекомендации CHEST-2019 по терапии легочной артериальной гипертензии у взрослых. Терапевтический Архив. 2019;91(12):105-14. DOI:10.26442/00403660.2019.12.000468.; Kim NH, D'Armini AM, Grimminger F, et al. Haemodynamic effects of riociguat in inoperable/recurrent chronic thromboembolic pulmonary hypertension. Heart. 2017;103(8):599-606. DOI:10.1136/heartjnl-2016-309621.; Suntharalingam J, Treacy CM, Doughty NJ, et al. Long-term use of sildenafil in inoperable chronic thromboembolic pulmonary hypertension. Chest. 2008;134(2):229-36. DOI:10.1378/chest.072681.; Gilbert C, Brown MCJ, Cappelleri JC, et al. Estimating a minimally important difference in pulmonary arterial hypertension following treatment with sildenafil. Chest. 2009;135(1):137-42. DOI:10.1378/chest.07-0275.; Mathai SC, Puhan MA, Lam D, Wise RA. The minimal important difference in the 6-minute walk test for patients with pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012;186(5):42833. DOI:10.1164/rccm.201203-0480OC.; Lee WT, Peacock AJ, Johnson MK. The role of per cent predicted 6-min walk distance in pulmonary arterial hypertension. Eur Respir J. 2010;36(6):1294-301. DOI:10.1183/09031936.00155009.; La Patra T, Baird GL, Goodman R, et al. Remote Six-Minute Walk Testing in Patients with Pulmonary Hypertension: A Pilot Study. Am J Respir Crit Care Med. 2022;205(7):851-4. DOI:10.1164/rccm.202110-2421LE.; https://www.rpcardio.com/jour/article/view/2757

  9. 9
  10. 10
    Academic Journal

    Contributors: Работа выполнена в рамках государственного задания № 056-00109-21-01.

    Source: Translational Medicine; Том 8, № 2 (2021); 46-57 ; Трансляционная медицина; Том 8, № 2 (2021); 46-57 ; 2410-5155 ; 2311-4495 ; 10.18705/2311-4495-2021-8-2

    File Description: application/pdf

    Relation: https://transmed.almazovcentre.ru/jour/article/view/607/426; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/607/1158; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/607/1159; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/607/1161; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/607/1162; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/607/1192; https://transmed.almazovcentre.ru/jour/article/downloadSuppFile/607/1193; Raskob GE, Angchaisuksiri P, Blanco AN, et al. Thrombosis: a major contributor to global disease burden. Arterioscler Thromb Vasc Biol. 2014;34(11):2363–2371. DOI:10.1161/ATVBAHA.114.304488.; Jimenez D, de Miguel-Diez J, Guijarro R, et al. Trends in the management and outcomes of acute pulmonary embolism: analysis from the RIETE Registry. J Am Coll Cardiol. 2016;67(2):162–170. DOI:10.1016/j.jacc.2015.10.060.; Nikulina NN, Terekhovskaya YuV. Epidemiology of pulmonary embolism in today’s context: analysis of incidence, mortality and problems of their study. Russian Journal of Cardiology. 2019;24(6):103–108. DOI:10.15829/1560-4071-2019-6-103-108. In Russian [Никулина Н.Н., Тереховская Ю.В. Эпидемиология тромбоэмболии легочной артерии в современном мире: анализ заболеваемости, смертности и проблем их изучения. Российский кардиологический журнал. 2019;24(6):103– 108. DOI:10.15829/1560-4071-2019-6-103-108].; Konstantinides SV, Meyer G, Becattini C, et al. 2019 ESC guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur Heart J. 2020;41(4):543–603. DOI:10.1093/eurheartj/ehz405.; Keller K, Hobohm L, Ebner M, et al. Trends in thrombolytic treatment and outcomes of acute pulmonary embolism in Germany. Eur Heart J. 2020;41(4):522–529. DOI:10.1093/eurheartj/ehz236.; Lehnert P, Lange T, Moller CH, et al. Acute pulmonary embolism in a national Danish cohort: increasing incidence and decreasing mortality. Thromb Haemost. 2018;118(3):539–546. DOI:10.1160/TH17-08-0531.; Riedel M, Stanek V, Widimsky J, et al. Longterm follow-up of patients with pulmonary thromboembolism. Late prognosis and evolution of hemodynamic and respiratory data. Chest. 1982;81(2):151–158. DOI:10.1378/chest.81.2.151.; Crikis S, Zhang XM, Dezfouli S, et al. Antiinflammatory and anticoagulant effects of transgenic expression of human thrombomodulin in mice. Am J Transplant. 2010;10(2):242–250. DOI:10.1111/j.1600-6143.2009.02939.x.; Frattani FS, Coriolano EO, Lima LM, et al. Oral antithrombotic effects of acylhydrazone derivatives. J Atheroscler Thromb. 2013;20(3):287–295. DOI:10.5551/jat.14886.; Teng CM, Wu CC, Ko FN, et al. YC-1, a nitric oxide-independent activator of soluble guanylate cyclase, inhibits platelet-rich thrombosis in mice. Eur J Pharmacol. 1997;320(2–3):161–166. DOI:10.1016/s0014-2999(96)00911-9.; Fidler TP, Middleton EA, Rowley JW, et al. Glucose transporter 3 potentiates degranulation and is required for platelet activation. Arterioscler Thromb Vasc Biol. 2017;37(9):1628–1639. DOI:10.1161/ATVBAHA.117.309184.; Huang S-W, Kuo H-L, Hsu M-T, et al. A novel thromboxane receptor antagonist, nstpbp5185, inhibits platelet aggregation and thrombus formation in animal models. Thromb haemost. 2016;116(2):285–299. DOI:10.1160/TH15-12-0993.; Fukumitsu M, Kawada T, Shimizu S, et al. Effects of proximal pulmonary artery occlusion on pulsatile right ventricular afterload in rats. Circulation J. 2016;80(9):2010– 2018. DOI:10.1253/circj.CJ-16-0349.; Paul W, Gresele P, Momi S, et al. The effect of defibrotideonthromboembolisminthepulmonaryvasculature of mice and rabbits and in the cerebral vasculature of rabbits. Br J Pharmacol. 1993;110(4):1565–1571.; Hayashi H, Kyushiki H, Nagano K, et al. Anopheline anti-platelet protein from a malaria vector mosquito has anti-thrombotic effects in vivo without compromising hemostasis. Thromb Res. 2012;129(2):169– 175. DOI:10.1016/j.thromres.2011.09.015.; Momi S, Impagnatiello F, Guzzetta M, et al. NCX 6560, a nitric oxide-releasing derivative of atorvastatin, inhibits cholesterol biosynthesis and shows anti-inflammatory and anti-thrombotic properties. Eur J Pharmacol. 2007;570(1–3):115–124. DOI:10.1016/j.ejphar.2007.05.014.; Rossiello MR, Momi S, Caracchini R, et al. A novel nitric oxide-releasing statin derivative exerts an antiplatelet/antithrombotic activity and inhibits tissue factor expression. J thromb haemost. 2005;3(11):2554–2562. DOI:10.1111/j.1538-7836.2005.01605.x.; Maurice P, Pires V, Amant C, et al. Antithrombotic effect of the type III collagen-related octapeptide (KOGEOGPK) in the mouse. Vascul Pharmacol. 2006;44(1):42–49. DOI:10.1016/j.vph.2005.09.006.; Mekhfi H, Belmekki F, Ziyyat A, et al. Antithrombotic activity of argan oil: an in vivo experimental study. Nutrition. 2012;28(9):937–941. DOI:10.1016/j.nut.2011.11.032.; Ryu KH, Han HY, Lee SY, et al. Ginkgo biloba extract enhances antiplatelet and antithrombotic effects of cilostazol without prolongation of bleeding time. Thromb Res. 2009;124(3):328–334. DOI:10.1016/j.thromres.2009.02.010.; Katsumata S, Nagashima M, Kato K, et al. Changes in coagulation-fibrinolysis marker and neutrophil elastase following the use of tourniquet during total knee arthroplasty andtheinfluenceofneutrophilelastaseonthromboembolism. Acta Anaesthesiol Scand. 2005;49(4):510–516. DOI:10.1111/j.1399-6576.2005.00621.x.; Sathler PC, Lourenco AL, Rodrigues CR, et al. In vitro and in vivo analysis of the antithrombotic and toxicological profile of new antiplatelets N-acylhydrazone derivatives and development of nanosystems: determination of novel NAH derivatives antiplatelet and nanotechnological approach. Thrombosis Res. 2014;134(2):376–383. DOI:10.1016/j.thromres.2014.05.009.; Wang L, Li L, Sun Y, et al. In vitro and in vivo evaluation of chitosan graft glyceryl monooleate as peroral delivery carrier of enoxaparin. Int J Pharm. 2014;471(1– 2):391–399. DOI:10.1016/j.ijpharm.2014.05.050.; Banno F, Kita T, Fernandez JA, et al. Exacerbated venous thromboembolism in mice carrying a protein S K196E mutation. Blood. 2015;126(19):2247–2253. DOI:10.1182/blood-2015-06-653162.; Hsu MF, Young JH, Wang JP, et al. Effect of hsienho-t’sao (Agrimonia pilosa) on experimental thrombosis in mice. Am J Chin Med. 1987;15(1–2):43–51. DOI:10.1142/S0192415X87000060.; Zhong C, Zhang L, Chen L, et al. Coagulation factor XI vaccination: an alternative strategy to prevent thrombosis. J Thromb Haemost. 2017;15(1):122–130. DOI:10.1111/jth.13561.; Sullivan DM, Watts JA, Kline JA. Biventricular cardiac dysfunction after acute massive pulmonary embolism in the rat. J Appl Physiol. 2001;90(5):1648–1656. DOI:10.1152/jappl.2001.90.5.1648.; Li S-q, Qi H-w, Wu C-g, et al. Comparative proteomic study of acute pulmonary embolism in a rat model. Proteomics. 2007;7(13):2287–2299. DOI:10.1002/pmic.200500665.; Ding B-S, Zhou Y-J, Chen X-Y, et al. Lung endothelium targeting for pulmonary embolism thrombolysis. Circulation. 2003;108(23):2892–2898. DOI:10.1161/01.CIR.0000103685.61137.3D.; Wan H, Liu Z, Xia X, et al. A recombinant antibody-targeted plasminogen activator with high affinity for activated platelets increases thrombolytic potency in vitro and in vivo. Thromb res. 2000;97(3):133–141. DOI:10.1016/s0049-3848(99)00142-5.; Guarneri L, Molinari A, Casacci F, et al. A new model of pulmonary microembolism in the mouse. J Pharmacol Methods. 1988;20(2):161–167. DOI:10.1016/0160-5402(88)90076-9.; Carmeliet P, Stassen JM, Van Vlaenderen I, et al. Adenovirus-mediated transfer of tissue-type plasminogen activator augments thrombolysis in tissue-type plasminogen activator-deficient and plasminogen activator inhibitor-1-overexpressing mice. Blood. 1997;90(4):1527–1534.; Lu HR, Lijnen HR, Stassen JM, et al. Comparative thrombolytic properties of bolus injections and continuous infusions of a chimeric (t-PA/u-PA) plasminogen activator in a hamster pulmonary embolism model. Blood. 1991;78(1):125–131.; Singh S, Houng A, Reed GL. Releasing the brakes on the fibrinolytic system in pulmonary emboli: unique effects of plasminogen activation and α2-antiplasmin inactivation. Circulation. 2017;135(11):1011–1020. DOI:10.1161/CIRCULATIONAHA.116.024421.; Murciano J-C, Medinilla S, Eslin D, et al. Prophylactic fibrinolysis through selective dissolution of nascent clots by tPA-carrying erythrocytes. Nat Biotechnol. 2003;21(8):891–896. DOI:10.1038/nbt846.; Hu W, Narasaki R, Nishimura N, et al. SMTP (Stachybotrys microspora triprenyl phenol) enhances clot clearance in a pulmonary embolism model in rats. Thromb J. 2012;10(1):2. DOI:10.1186/1477-9560-10-2.; Dewerchin M, Lijnen HR, Stassen JM, et al. Effect of chemical conjugation of recombinant singlechain urokinase-type plasminogen activator with monoclonal antiplatelet antibodies on platelet aggregation and on plasma clot lysis in vitro and in vivo. Blood. 1991;78(4):1005–1018.; Lin X, Liang X-x, Tang J-j, et al. The effect of the fibrinolytic enzyme FIIa from Agkistrodon acutus venom on acute pulmonary thromboembolism. Acta Pharmacol Sin. 2011;32(2):239–244. DOI:10.1038/aps.2010.193.; Zhang Z, Meng Z, Wang Y. Correlations of inhaled NO with the cTnI levels and the plasma clotting factor in rabbits with acute massive pulmonary embolism. Acta Cir Bras. 2018;33(8):664–672. DOI:10.1590/s0102-865020180080000002.; Evlakhov VI, Poyassov IZ, Ovsyannikov VI. Pulmonary microcirculation in experimental model of pulmonary thromboembolism under conditions of α-adrenoceptor blockade. Bull Exp Biol Med. 2019;166(3):313–316. DOI:10.1007/s10517-019-04340-3.; Tang Z, Wang X, Huang J, et al. Gene expression profiling of pulmonary artery in a rabbit model of pulmonary thromboembolism. PloS One. 2016;11(10):e0164530. DOI:10.1371/journal.pone.0164530.; Li S-q, Yun J, Xue F-b, et al. Comparative proteome analysis of serum from acute pulmonary embolism rat model for biomarker discovery. J Proteome Res. 2007;6(1):150– 159. DOI:10.1021/pr0603102.; Witt W, Baldus B, Bringmann P, et al. Thrombolytic properties of Desmodus rotundus (vampire bat) salivary plasminogen activator in experimental pulmonary embolism in rats. Blood. 1992;79(5):1213–1217.; Runyon MS, Gellar MA, Sanapareddy N, et al. Development and comparison of a minimally-invasive model of autologous clot pulmonary embolism in SpragueDawley and Copenhagen rats. Thromb J. 2010;8:3. DOI:10.1186/1477-9560-8-3.; Chun C, Yang W, Xueding C, et al. Resveratrol downregulates acute pulmonary thromboembolism-induced pulmonary artery hypertension via p38 mitogen-activated protein kinase and monocyte chemoattractant protein-1 signaling in rats. Life Sci. 2012;90(19–20):721–727. DOI:10.1016/j.lfs.2012.03.008.; Deng C, Wu D, Yang M, et al. Expression of tissue factor and forkhead box transcription factor O-1 in a rat model for chronic thromboembolic pulmonary hypertension. J Thromb Thrombolysis. 2016;42(4):520– 528. DOI:10.1007/s11239-016-1413-9.; Li XK, Lijnen HR, Nelles L, et al. Biochemical and biologic properties of rt-PA del (K296-G302), a recombinant human tissue-type plasminogen activator deletion mutant resistant to plasminogen activator inhibitor-1. Blood. 1992;79(2):417–429.; Zhang J-X, ChenY-L, ZhouY-L, et al. Expression of tissue factor in rabbit pulmonary artery in an acute pulmonary embolism model. World J Emerg Med. 2014;5(2):144–147. DOI:10.5847/wjem.j.1920-8642.2014.02.012.; Evlakhov VI, Poyassov IZ, Shaidakov EV. Peculiarities of blood flow changes in venae cavae during experimental pulmonary embolism. Bull Exp Biol Med. 2016;161(6):759–762. DOI:10.1007/s10517-016-3503-2.; Bouchacourt JP, Riva J, Grignola JC. Pulmonary hypertension attenuates the dynamic preload indicators increase during experimental hypovolemia. BMC Anesthesiol. 2017;17(1):35. DOI:10.1186/s12871-017-0329-z.; Yu D, Wang Y, Yu Y, et al. Acute beneficial effects of sodium nitroprusside in a rabbit model of massive pulmonary embolism associated with circulatory shock. Am J Pathol. 2018;188(8):1768–1778. DOI:10.1016/j.ajpath.2018.04.014.; Burke SJ, Annapragada A, Hoffman EA, et al. Imaging of pulmonary embolism and t-PA therapy effects using MDCT and liposomal iohexol blood pool agent: preliminary results in a rabbit model. Acad radiol. 2007;14(3):355–362. DOI:10.1016/j.acra.2006.12.014.; Liu W, Zhang Y, Lu L, et al. Expression and correlation of hypoxia-inducible factor-1α (HIF-1α) with pulmonary artery remodeling and right ventricular hypertrophy in experimental pulmonary embolism. Med Sci Monit. 2017;23:2083–2088. DOI:10.12659/msm.900354.; Arias-Loza P-A, Jung P, Abeßer M, et al. Development and characterization of an inducible rat model of chronic thromboembolic pulmonary hypertension. Hypertension. 2016;67(5):1000–1005. DOI:10.1161/HYPERTENSIONAHA.116.07247.; Zagorski J, Debelak J, Gellar M, et al. Chemokines accumulate in the lungs of rats with severe pulmonary embolism induced by polystyrene microspheres. J Immunol. 2003;171(10):5529–5536. DOI:10.4049/jimmunol.171.10.5529; Zagorski J, Gellar MA, Obraztsova M, et al. Inhibition of CINC-1 decreases right ventricular damage caused by experimental pulmonary embolism in rats. J Immunol. 2007;179(11):7820–7826. DOI:10.4049/jimmunol.179.11.7820.; Watts JA, Marchick MR, Gellar MA, et al. Upregulation of arginase II contributes to pulmonary vascular endothelial cell dysfunction during experimental pulmonary embolism. Pulm Pharmacol Ther. 2011;24(4):407–413. DOI:10.1016/j.pupt.2011.01.009.; Zagorski J, Marchick MR, Kline JA. Rapid clearance of circulating haptoglobin from plasma during acute pulmonary embolism in rats results in HMOX1 up-regulation in peripheral blood leukocytes. J Thromb Haemost. 2010;8(2):389–396. DOI:10.1111/j.1538-7836.2009.03704.x.; Riegger GA, Hoferer P. A new experimental model for measurement of pulmonary arterial haemodynamic variables in conscious rats before and after pulmonary embolism and during general anaesthesia. Cardiovasc Res. 1990;24(4):340–344. DOI:10.1093/cvr/24.4.340.; Courtney DM, Watts JA, Kline JA. End tidal CO(2) is reduced during hypotension and cardiac arrest in a rat model of massive pulmonary embolism. Resuscitation. 2002;53(1):83–91. DOI:10.1016/s0300-9572(01)00504-4.; Cuenoud HF, Joris I, Majno G. Ultrastructure of the myocardium after pulmonary embolism. A study in the rat. Am J Pathol. 1978;92(2):421–458.; Palei ACT, Zaneti RAG, Fortuna GM, et al. Hemodynamic benefits of matrix metalloproteinase-9 inhibition by doxycycline during experimental acute pulmonary embolism. Angiology. 2005;56(5):611–617. DOI:10.1177/000331970505600513.; Souza-Costa DC, Figueiredo-Lopes L, Alves-Filho JC, et al. Protective effects of atorvastatin in rat models of acute pulmonary embolism: involvement of matrix metalloproteinase-9. Crit Care Med. 2007;35(1):239–245. DOI:10.1097/01.CCM.0000251638.67104.C3.; Neto-Neves EM, Brown MB, Zaretskaia MV, et al. Chronic embolic pulmonary hypertension caused by pulmonary embolism and vascular endothelial growth factor inhibition. Am J Pathol. 2017;187(4):700–712. DOI:10.1016/j.ajpath.2016.12.004.; KarpovAA,Anikin NA, Cherepanov DE, et al. Model of chronic thromboembolic pulmonary hypertension in rats, caused by repeated intravenous administration of biodegradable microspheres from sodium alginate. Regional blood circulation and microcirculation. 2019;18(1): 86–95. DOI:10.24884/1682-6655-2019-18-1-86-95. In Russian [Карпов А.А., Аникин Н.А., Черепанов Д.Е. и др. Модель хронической тромбоэмболической легочной гипертензии у крыс, вызванная повторным внутривенным введением биодеградируемых микросфер из альгината натрия. Регионарное кровообращение и микроциркуляция. 2019;18(1):86–95. DOI:10.24884/1682-6655-2019-18-1-86-95].; Mata JF, Bozlar U, Mugler 3rd JP, et al. Timeresolved and high-resolution MRA in a rabbit model of pulmonary embolism at 7 T: preliminary results. Magn Reson Imaging. 2010;28(1):139–145. DOI:10.1016/j.mri.2009.06.005.; Keilholz SD, Bozlar U, Fujiwara N, et al. MR diagnosis of a pulmonary embolism: comparison of P792 and Gd-DOTA for first-pass perfusion MRI and contrastenhanced 3D MRA in a rabbit model. Korean J Radiol. 2009;10(5):447–454. DOI:10.3348/kjr.2009.10.5.447.; Chai X, Zhang L-J, Yeh BM, et al. Acute and subacute dual energy CT findings of pulmonary embolism in rabbits: correlation with histopathology. Br J Radiol. 2012;85(1013):613–622. DOI:10.1259/bjr/67661352.; Zhang LJ, Wang ZJ, Lu L, et al. Feasibility of gadolinium-enhanced dual energy CT pulmonary angiography: a pilot study in rabbits. Int J Cardiovasc Imaging. 2011;27(7):1069–1080. DOI:10.1007/s10554-010-9755-4.; Zhang LJ, Chai X, Wu SY, Zhao YE, Hu XB, Hu YX, et al. Detection of pulmonary embolism by dual energy CT: correlation with perfusion scintigraphy and histopathological findings in rabbits. European radiology. 2009;19(12):2844–2854. DOI:10.1007/s00330-009-1518-z.; Zhou B, Sun G, Mei F, et al. The effects of lowmolecular-weight heparin on lung and pulmonary artery injuries in acute pulmonary embolism rat model via plateletderived growth factor-β. Saudi Pharm J. 2017;25(4):564– 569. DOI:10.1016/j.jsps.2017.04.024.; Deng C, Zhong Z, Wu D, et al. Role of FoxO1 and apoptosis in pulmonary vascular remolding in a rat model of chronic thromboembolic pulmonary hypertension. Sci Rep. 2017;7(1):2270. DOI:10.1038/s41598-017-02007-5.; Deng C, Wu D, Yang M, et al. The role of tissue factor and autophagy in pulmonary vascular remodeling in a rat model for chronic thromboembolic pulmonary hypertension. Respir Res. 2016;17(1):65. DOI:10.1186/s12931-016-0383-y.; Li C-y, Deng W, Liao X-q, et al. The effects and mechanism of ginsenoside Rg1 on myocardial remodeling in an animal model of chronic thromboembolic pulmonary hypertension. Eur J Med Res. 2013;18(1):16. DOI:10.1186/2047-783X-18-16.; Frey MK, Alias S, Winter MP, et al. Splenectomy is modifying the vascular remodeling of thrombosis. J Am Heart Assoc. 2014;3(1):e000772. DOI:10.1161/JAHA.113.000772.; Alagpulinsa DA, Cao JJL, Driscoll RK, et al. Alginate-microencapsulation of human stem cellderived β cells with CXCL12 prolongs their survival and function in immunocompetent mice without systemic immunosuppression. Am J Transplant. 2019;19(7):1930– 1940. DOI:10.1111/ajt.15308.; Karpov AA, Puzanov MV, Ivkin DYu, et al. Noninferiority of microencapsulated mesenchymal stem cells to free cells in cardiac repair after myocardial infarction: A rationale for using paracrine factor(s) instead of cells. Int J Exp Pathol. 2019;100(2):102–113. DOI:10.1111/iep.12312.; Levit RD, Landazuri N, Phelps EA, et al. Cellular encapsulation enhances cardiac repair. J Am Heart Assoc. 2013;2(5):e000367. DOI:10.1161/JAHA.113.000367.; Karpov AA, Lomakina AM, Cherepanov DE, et al. A method for modeling chronic thromboembolic pulmonary hypertension. Patent on the application #2018119575, 28.05.2018. In Russian [Карпов А.А., Ломакина А.М., Черепанов Д.Е. и др. Способ моделирования хронической тромбоэмболической легочной гипертензии. Патент по заявке № 2018119575 от 28.05.2018 г.].; Yun X, Chen Y, Yang K, et al. Upregulation of canonical transient receptor potential channel in the pulmonary arterial smooth muscle of a chronic thromboembolic pulmonary hypertension rat model. Hypertens Res. 2015;38(12):821–828. DOI:10.1038/hr.2015.80.; https://transmed.almazovcentre.ru/jour/article/view/607

  11. 11
    Academic Journal

    Contributors: The publication of the article is supported by Bayer, JSC, Публикация статьи поддержана компанией АО «БАЙЕР»

    Source: Rational Pharmacotherapy in Cardiology; Vol 17, No 2 (2021); 278-285 ; Рациональная Фармакотерапия в Кардиологии; Vol 17, No 2 (2021); 278-285 ; 2225-3653 ; 1819-6446

    File Description: application/pdf

    Relation: https://www.rpcardio.com/jour/article/view/2438/2150; Lang IM, Dorfmuller P, Vonk Noordegraaf A. The pathobiology of chronic thromboembolic pulmonary hypertension. Ann Am Thorac Soc. 2016;13 Suppl 3:S215-21. DOI:10.1513/AnnalsATS.201509-620AS.; Kim NH. Group 4 Pulmonary Hypertension: Chronic thromboembolic pulmonary hypertension: epidemiology, pathophysiology, and treatment. Cardiol Clin. 2016;34(3):435-41. DOI:10.1016/j.ccl.2016.04.011.; Feinstein JA, Goldhaber SZ, Lock JE, et al. Balloon pulmonary angioplasty for treatment of chronic thromboembolic pulmonary hypertension. Circulation. a2001;103:10-3. DOI:10.1161/01.cir.103.1.10; Ogawa A, Matsubara H. Balloon Pulmonary Angioplasty: A Treatment Option for Inoperable Patients with Chronic Thromboembolic Pulmonary Hypertension. Front Cardiovasc Med. 2015;2:4. DOI:10.3389/fcvm.2015.00004.; Чернявский А.М., Новикова Н.В., Едемский А.Г., и др. Хроническая тромбоэмболическая легочная гипертензия: сложные аспекты диагностики и лечения. Медицинский Алфавит. 2015;2(10):5-9.; Марукян Н.В., Симакова М.А., Зверев Д.А., и др. Реперфузионный отек легкого как осложнение баллонной ангиопластики легочной артерии у пациентов с хронической тромбоэмболической легочной гипертензией. Флебология. 2017;11(4):243-8. DOI:10.17116/flebo2017114243-248.; Nazzareno G, Humbert M, Vachieryc JL, et al. ESC/ERS Guideline for the diagnosis and treatment of pulmonary hypertension 2015. Eur Heart J. 2016;37(1):67-119. DOI:10.1093/eurheartj/ehv317.; Легочная гипертензия. Клинические рекомендации. Министерство Здравоохранения Российской Федерации (2020). Доступно из: https://scardio.ru/content/Guidelines/2020/Clinic_rekom_LG.pdf]; Moradi F, Morris TA, Hoh CK. Perfusion Scintigraphy in Diagnosis and Management of Thromboembolic Pulmonary Hypertension. Radiographics. 2019;39(1):169-185. DOI:10.1148/rg.2019180074.; Castaner E, Alguersuari A, Andreu M, et al. Imaging findings in pulmonary vasculitis. Semin Ultrasound CT MR. 2012;33:567-79. DOI:10.1053/j.sult.2012.05.001.; Nawaz A, Litt HI, Stavropoulos SW, et al. Digital subtraction pulmonary arteriography versus multidetector CT in the detection of pulmonary arteriovenous malformations. J Vasc Interv Radiol. 2008;19:1582-8. DOI:10.1016/j.jvir.2008.07.011.; Madani MM. Surgical treatment of chronic thromboembolic pulmonary hypertension: pulmonary thromboendarterectomy. Methodist Debakey Cardiovasc J. 2016;12(4):213-8. DOI:10.14797/mdcj-12-4-213.; Mizoguchi H, Ogawa A, Munemasa M, et al. Refined Balloon Pulmonary Angioplasty for Inoperable Patients with Chronic Thromboembolic Pulmonary Hypertension. Circ Cardiovasc Interv. 2012;5:748- 55. DOI:10.1161/CIRCINTERVENTIONS.112.971077.; Fukui S, Ogo T, Goto Y, et al. Exercise intolerance and ventilatory inefficiency improve early after balloon pulmonary angioplasty in patients with inoperable chronic thromboembolic pulmonary hypertension. Int J Cardiol. 2015;180:66-8. DOI:10.1016/j.ijcard.2014.11.187.; Ogawa A, Matsubara H. After the Dawn - Balloon Pulmonary Angioplasty for Patients With Chronic Thromboembolic Pulmonary Hypertension. Circ J. 2018;82:1222-30. DOI:10.1253/circj.CJ-18-0258.; Olsson KM, Wiedenroth CB, Kamp JC, et al. Balloon pulmonary angioplasty for inoperable patients with chronic thromboembolic pulmonary hypertension: the initial German experience. Eur Respir J. 2017;49:1602409. DOI:10.1183/13993003.02409-2016.; Brenot P, Jais X, Taniguchi Y, et al. French experience of balloon pulmonary angioplasty for chronic thromboembolic pulmonary hypertension. Eur Respir J. 2019;53:1802095. DOI:10.1183/13993003.02095-2018.; D'Armini AM, Morsolini M, Mattiucci G, et al. Pulmonary endarterectomy for distal chronic thromboembolic pulmonary hypertension. J Thorac Cardiovasc Surg. 2014;148:1005-11. DOI:10.1016/j.jtcvs.2014.06.052.; Kawakami T, Ogawa A, Miyaji K, et al. Novel Angiographic Classification of Each Vascular Lesion in Chronic Thromboembolic Pulmonary Hypertension Based on Selective Angiogram and Results of Balloon Pulmonary Angioplasty. Circ Cardiovasc Interv. 2016;9:e003318. DOI:10.1161/CIRCINTER-VENTIONS.115.003318.; Shimura N, Kataoka M, Inami T, Yanagisawa R, et al. Additional percutaneous transluminal pulmonary angioplasty for residual or recurrent pulmonary hypertension after pulmonary endarterectomy. Int J Cardiol. 2015;183:138-42. DOI:10.1016/j.ijcard.2015.01.034.; Kim NH, Delcroix M, Jais X, et al. Chronic thromboembolic pulmonary hypertension. Eur Respir J. 2019;53:1801915. DOI:10.1183/13993003.01915-2018.; Ikeda N, Amemiya K, Sato S. Evolution of patients with chronic thromboembolic pulmonary hypertension treated by balloon pulmonary angioplasty, according to their anticoagulant regimens Heart Vessels. 2021 Feb 13. DOI:10.1007/s00380-021-01799-x; Solomon R, Werner C, Mann D, et al. Effects of saline, mannitol, and furosemide to prevent acute decreases in renal function induced by radiocontrast agents. N Engl J Med. 1994;331:1416-20. DOI:10.1056/NEJM199411243312104.; Darocha S, Banaszkiewicz M, Pietrasik A. Changes in Estimated Glomerular Filtration after Balloon Pulmonary Angioplasty for Chronic Thromboembolic Pulmonary Hypertension. Cardiorena Med. 2020;10(1):22-31. DOI:10.1159/000502254.; Ghofrani HA, D'Armini AM, Grimminger F, et al. Riociguat for the treatment of chronic thromboembolic pulmonary hypertension. N Engl J Med. 2013;369:319-29. DOI:10.1056/NEJMoa1209657.; Simonneau G, D'Armini AM, Ghofrani HA, et al. Riociguat for the treatment of chronic thromboembolic pulmonary hypertension: a long-term extension study (CHEST-2). Eur Respir J. 2015;45(5):1293-302. DOI:10.1183/09031936.00087114.; Delcroix M, Torbicki A, Gopalan D, et al. ERS Statement on Chronic Thromboembolic Pulmonary Hypertension. Eur Respir J. 2020 Dec 17;2002828. DOI:10.1183/13993003.02828-2020.; Wiedenroth CB, Ghofrani HA, Miriam SD, et al. Sequential treatment with riociguat and balloon pulmonary angioplasty for patients with inoperable chronic thromboembolic pulmonary hypertension. Pulmonary Circulation. 2018;8(3):1-7. DOI:10.1177/2045894018783996.; J. Ueda et al. P2597. Riociguat as a bridge therapy for balloon pulmonary angioplasty in patients with severe chronic thromboembolic pulmonary hypertension. Eur Heart J. 2017;38(suppl_1): ehx502.P2597. DOI:10.1093/eurheartj/ehx502.P2597.; Kawakami T, Matsubara H, Abe K, et al. Multicentre randomised controlled trial of balloon pulmonary angioplasty and riociguat in patients with chronic thromboembolic pulmonary hypertension: protocol for the MR BPA study. BMJ Open. 2020;10(2):e028831. DOI:10.1136/bmjopen-2018-028831.; Данилов Н.М., Матчин Ю.Г., Мартынюк Т.В. и др. Транслюминальная баллонная ангиопластика легочных артерий у больных с неоперабельной хронической тромбоэмболической легочной гипертензией (первый опыт в России). Consilium Medicum. 2015;10:61-6. DOI:10.24022/0236-2791-2020-62-4-334-344.; Inami T, Kataoka M, Shimura N, et al. Pulmonary Edema Predictive Scoring Index (PEPSI), a new index to predict risk of reperfusion pulmonary edema and improvement of hemodynamics in percutaneous transluminal pulmonary angioplasty. JACC Cardiovasc Interv. 2013;6(7):725-36. DOI:10.1016/j.jcin.2013.03.009.; Inami T, Kataoka M, Shimura N, et al. Pressure-wire-guided percutaneous transluminal pulmonary angioplasty a breakthrough in Catheter-Interventional therapy for chronic thromboembolic pulmonary hypertension. JACC Cardiovasc Interv. 2014;7(11):1297-306. DOI:10.1016/j.jcin.2014.06.010.; Ogo T. Balloon pulmonary angioplasty for inoperable chronic thromboembolic pulmonary hypertension. Current Opinion in Pulmonary Medicine. 2015;21(5):425-31. DOI:10.1097/MCP.0000000000000188.; Shimokawahara H, Nagayoshi S, Ogawa A, Matsubara H Continual Improvement in Pressure Gradient at the Lesion after Balloon Pulmonary Angioplasty for Chronic Thromboembolic Pulmonary Hypertension. Can J Cardiol 2021;S0828-282X(21)00158-6. DOI:10.1016/j.cjca.2021.03.009.; Lang IM, Madani MM. Update on chronic thromboembolic pulmonary hypertension. Circ Cardiovasc Interv. 2014;130(6):508-18. DOI:10.1161/CIRCULATIONAHA.114.009309.; Dimopoulos K, Kempny A, Alonso-Gonzalez R, et al. Percutaneous transluminal pulmonary angioplasty for the treatment of chronic thromboembolic pulmonary hypertension: challenges and future direction. Int J Cardiol. 2015;187:401-3. DOI:10.1016/j.ijcard.2015.03.361.; Sugimura K, Fukumoto Y, Satoh K, et al. Percutaneous transluminal pulmonary angioplasty markedly improves pulmonary hemodynamics and long-term prognosis in patients with chronic thromboembolic pulmonary hypertension. Circ J. 2012;(76):485-8. DOI:10.1253/circj.cj-11-1217.; Minatsuki S, Kiyosue A, Kodera S, et al. Effectiveness of balloon pulmonary angioplasty in patients with inoperable chronic thromboembolic pulmonary hypertension despite having lesion types suitable for surgical treatment. Journal of Cardiology. 2020;75(2):182-8. DOI:10.1016/j.jjcc.2019.07.006.; Mayer E, Jenkins D, Lindner J, et al. Surgical management and outcome of patients with chronic thromboembolic pulmonary hypertension: results from an international prospective registry. J Thorac Car- diovasc Surg. 2011;(141):702-10. DOI:10.1016/j.jtcvs.2010.11.024.; Марукян Н.В., Симакова М.А., Моисеева О.М., и др. Способ баллонной ангиопластики ветвей легочной артерии у пациентов с хронической тромбоэмболической легочной гипертензией. Патент № 2716455, выдан 11.03.2020, заявка № 2019125445 от 27.05.2019.; https://www.rpcardio.com/jour/article/view/2438

  12. 12
    Academic Journal

    Source: Rational Pharmacotherapy in Cardiology; Vol 16, No 6 (2020); 1002-1008 ; Рациональная Фармакотерапия в Кардиологии; Vol 16, No 6 (2020); 1002-1008 ; 2225-3653 ; 1819-6446

    File Description: application/pdf

    Relation: https://www.rpcardio.com/jour/article/view/2360/2099; Barco S., Mahmoudpour S.H., Valerio L. et al. Trends in mortality related to pulmonary embolism in the European Region, 2000-15: analysis of vital registration data from the WHO Mortality Database. Lancet Respir Med. 2020;8(3):277-287. DOI:10.1016/S2213-2600(19)30354-6.; Konstantinides S.V., Barco S., Rosenkranz S., et al. Late outcomes after acute pulmonary embolism: rationale and design of FOCUS, a prospective observational multicenter cohort study. J Thromb Thrombolysis. 2016;42(4):600-9. DOI:10.1007/s11239-016-1415-7.; Pengo V., Lensing A.W., Prins M.H., et al. Incidence of chronic thromboembolic pulmonary hypertension after pulmonary embolism. N Engl J Med. 2004;350(22):2257-64. DOI:10.1056/NEJ-Moa032274.; Klok F.A., Zondag W., van Kralingen K.W. et al. Patient outcomes after acute pulmonary embolism. A pooled survival analysis of different adverse events. Am J Respir Crit Care Med. 2010;181(5):501-6. DOI:10.1164/rccm.200907-1141OC.; Fanikos J., Piazza G., Zayaruzny M., Goldhaber S.Z. Long-term complications of medical patients with hospital-acquired venous thromboembolism. Thromb Haemost. 2009 ;1 02(4):688-93. DOI:10.1160/TH09-04-0266.; Noble S., Lewis R., Whithers J., et al. Long-term psychological consequences of symptomatic pulmonary embolism: a qualitative study. BMJ Open. 2014;4(4):e004561. DOI:10.1136/bmjopen-2013-004561.; Ramfrez P., Otero R., Barbera J.A. Chronic Pulmonary Thromboembolic Disease. Arch Bronconeumol. 2020;56(5):314-321. DOI:10.1016/j.arbres.2019.10.027.; Raj L., Robin P., Mao R.L., et al. Predictors for Residual Pulmonary Vascular Obstruction after Unprovoked Pulmonary Embolism: Implications for Clinical Practice-The PADIS-PE Trial. Thromb Haemost. 2019;119(9):1489-97. DOI:10.1055/s-0039-1692424.; Hvid-Jacobsen K., Fogh J., Nielsen S.L., et al. Scintigraphic control of pulmonary embolism. Eur J Nucl Med. 1988;14:71-2. DOI:10.1007/bf00253444.; Ende-Verhaar Y.M., Cannegieter S.C., Noordegraaf A.V., et al. Incidence of chronic thromboembolic pulmonary hypertension after acute pulmonary embolism: A contemporary view of the published literature. Eur Respir J. 2017;49(2):pii 1601792. DOI:10.1183/13993003.01792-2016.; Wang J., Xu M., Sun N., et al. Factors associating with the presence of residual thrombosis after 3month treatment of acute pulmonary embolism. J Thromb Thrombolysis. 2018;45(1):27-35. DOI:10.1007/s11239-017-1561-6.; Becattini C., Giustozzi M., Cerda P., et al. Risk of recurrent venous thromboembolism after acute pulmonary embolism: Role of residual pulmonary obstruction and persistent right ventricular dysfunction. Ameta-analysis. J Thromb Haemost. 2019;17(8):1217-28. DOI:10.1111/jth.14477.; Konstantinides S.V., Meyer G., Becattini C., et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur Heart J. 2020;41(4):543-603. DOI:10.1093/eurheartj/ehz405.; Bonnefoy P.B., Margelidon-Cozzolino V., Catella-Chatron J., et al. What's next after the clot? Residual pulmonary vascular obstruction after pulmonary embolism: From imaging finding to clinical consequences. Thromb Res. 2019;184:67-76. DOI:10.1016/j.thromres.2019.09.038.; Dzikowska-Diduch O., Kostrubiec M., Brodka K., et al. Post-PE impairment is mostly related to newly diagnosed heart failure with preserved ejection fraction. Eur Heart J. 2019;40(1):ehz748.1085. DOI:10.1093/eurheartj/ehz748.1085.; Klok F.A., van der Hulle T., den Exter P.L., et al. The post-PE syndrome: a new concept for chronic complications of pulmonary embolism. Blood Rev. 2014;28(6):221-6. DOI:10.1016/j.blre.2014.07.003.; Klok F.A., van Kralingen K.W., van Dijk A.P.J., et al. Prevalence and potential determinants of exertional dyspnea after acute pulmonary embolism. Respir Med. 2010;104:1744-9. DOI:10.1016/j.rmed.2010.06.006.; Sanchez O., Helley D., Couchon S., et al. Perfusion defects after pulmonary embolism: Risk factors and clinical significance. J Thromb Haemost. 2010;8:1248-55. DOI:10.1111/j.1538-7836.2010.03844.x; Keller K., Tesche C., Gerhold-Ay A., et al. Quality of life and functional limitations after pulmonary embolism and its prognostic relevance. J Thromb Haemost. 2019;17(11):1923-34. DOI:10.1111/jth.14589.; Kim N.H., Delcroix M., Jais X., et al. Chronic thromboembolic pulmonary hypertension. Eur Respir J. 2019;53(1): pii 1801915. DOI:10.1183/13993003.01915-2018.; Hogg K., Kimpton M., Carrier M., et al. Estimating quality of life in acute venous thrombosis. JAMA Intern Med. 2013;173(12):1067-72. DOI:10.1001/jamainternmed.2013.563.; Ma K.A., Kahn S.R., Akaberi A., et al. Serial imaging after pulmonary embolism and correlation with functional limitation at 12 months: Results of the ELOPE Study. Res Pract Thromb Haemost. 2018;2(4):670-7. DOI:10.1002/rth2.12123.; Held M., Kolb P., Grun M., et al. Functional Characterization of Patients with Chronic Thromboembolic Disease. Respiration. 2016;91(6):503-9. DOI:10.1159/000447247.; Kahn S.R., Hirsch A.M., Akaberi A., et al. Functional and exercise limitations after a first episode of pulmonary embolism: results of the ELOPE prospective cohort study. Chest. 2017;151(5):1058-68. DOI:10.1016/j.chest.2016.11.030.; Riedel M., Stanek V., Widimsky J., Prerovsky I. Longterm follow-up of patients with pulmonary thromboembolism. Late prognosis and evolution of hemodynamic and respiratory data. Chest. 1982;81:151-8. DOI:10.1378/chest.81.2.151.; Dzikowska-Diduch O., Kostrubiec M., Kurnicka K., et al. The post-pulmonary syndrome - results of echocardiographic driven follow up after acute pulmonary embolism. Thromb Res. 2020;186:30-5. DOI:10.1016/j.thromres.2019.12.008.; Клименко А.А., Шостак Н.А., Демидова Н.А., и др. Ремоделирование правых отделов сердца и уровень мозгового натрийуретического пептида при хронической тромбоэмболической лёгочной гипертензии: сравнительное одномоментное наблюдательное исследование. Рациональная Фармакотерапия в Кардиологии 2013;9(3):258-64. DOI:10.20996/1819-6446-2013-9-3-258-264.; Rivera-Lebron B., McDaniel M., Ahrar K., et al. Diagnosis, Treatment and Follow Up of Acute Pulmonary Embolism: Consensus Practice from the PERT Consortium. Clin Appl Thromb Hemost. 2019;25:1076029619853037. DOI:10.1177/1076029619853037.; Taboada D., Pepke-Zaba J., Jenkins D.P., et al. Outcome of pulmonary endarterectomy in symptomatic chronic thromboembolic disease. Eur Respir J. 2014;44(6):1635-45. DOI:10.1183/09031936.00050114.; Wiedenroth C.B., Olsson K.M., Guth S., et al. Balloon pulmonary angioplasty for inoperable patients with chronic thromboembolic disease. Pulm Circ. 2018;8(1):2045893217753122. DOI:10.1177/2045893217753122.; Simonneau G., Torbicki A., Dorfmuller P., et al. The pathophysiology of chronic thromboembolic pulmonary hypertension. Eur Respir Rev. 2017;26:16011. DOI:10.1183/16000617.0112-2016.; Simonneau G., Montani D., Celermajer D.S., et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J. 2019;53(1): pii 1801913. DOI:10.1183/13993003.01913-2018.; Klok F.A., Barco S. Follow-up after acute Pulmonary Embolism. Hamostaseologie. 2018;38(1):22-32. DOI:10.5482/HAMO-17-06-0020.; Park J.S., Ahn J., Choi J.H., et al. The predictive value of echocardiography for chronic thromboembolic pulmonary hypertension after acute pulmonary embolism in Korea. Korean J Intern Med. 2017;32(1):85-94. DOI:10.3904/kjim.2014.175.; Quarck R., Wynants M., Verbeken E., et al. Contribution of inflammation and impaired angiogenesis to the pathobiology of chronic thromboembolic pulmonary hypertension. Eur Respir J. 2015;46(2):431-43. DOI:10.1183/09031936.00009914.; Zabini D., Heinemann A., Foris V., et al. Comprehensive analysis of inflammatory markers in chronic thromboembolic pulmonary hypertension patients. Eur Respir J. 2014;44(4):951-62. DOI:10.1183/09031936.00145013.; Klok F.A., Dzikowska-Diduch O., Kostrubiec M., et al. Derivation of a clinical prediction score for chronic thromboembolic pulmonary hypertension after acute pulmonary embolism. J Thromb Haemost. 2016;14(1):121-8. DOI:10.1111/jth.13175.; Otero R., EliasT, Jara L.et al. Factors associated with elevated pulmonary arterial pressure levels on the echocardiographic assessment in patients with prior pulmonary embolism. Thromb Res. 2013;131(5):e191-5. DOI:10.1016/j.thromres.2013.01.034.; Galie N., Hoeper M.M., Humbert M., et al. Guidelines for the diagnosis and treatment of pulmonary hypertension. Thromb Res. 2013;131(5):e191-5. DOI:10.1016/j.thromres.2013.01.034.; Delcroix M., Lang .I, Pepke-Zaba J., et al. Long-Term Outcome of Patients With Chronic Thromboembolic Pulmonary Hypertension: Results From an International Prospective Registry. Circulation. 2016;133(9):859-71. DOI:10.1161/CIRCULATIONAHA.115.016522.; Konstantinides S.V., Torbicki A., Agnelli G., et al. 2014 ESC guidelines on the diagnosis and management of acute pulmonary embolism. Eur Heart J. 2014;35(43):3033-69, 3069a-3069k. DOI:10.1093/eurheartj/ehu283.; Galie N., Humbert M., Vachiery J.L., et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2016;37(1):67-119. DOI:10.1093/eurheartj/ehv317.; Wiedenroth C.B., Ghofrani H.A., Adameit M.S.D., et al. Sequential treatment with riociguat and balloon pulmonary angioplasty for patients with inoperable chronic thromboembolic pulmonary hypertension. Pulm Circ. 2018;8(3):2045894018783996. DOI:10.1177/2045894018783996.; Чазова И.Е., Мартынюк Т.В. Клинические рекомендации по диагностике и лечению хронической тромбоэмболической легочной гипертензии (II часть). Терапевтический Архив. 2016;88(10):63-74. DOI:10.17116/terarkh201688663-73.; https://www.rpcardio.com/jour/article/view/2360

  13. 13
    Academic Journal

    Source: Rational Pharmacotherapy in Cardiology; Vol 16, No 2 (2020); 317-323 ; Рациональная Фармакотерапия в Кардиологии; Vol 16, No 2 (2020); 317-323 ; 2225-3653 ; 1819-6446

    File Description: application/pdf

    Relation: https://www.rpcardio.com/jour/article/view/2180/1973; Клинические рекомендации по диагностике и лечению легочной гипертензии Евразийская ассоциация кардиологов [цитировано 10.04.2020]. Доступно на: http://cardio-eur.asia/media/files/clinical_recommendations/Klinicheskiye_rekomendatsii_Yevraziyskoy_assotsiatsii_kardiologov_po_diagnostike_i_lecheniyu_legochnoy_gipertenzii_2019.pdf .; Simonneau G., Montani D., Celermajer D.S., et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J. 2019;53:pii1801913 DOI:10.1183/13993003.01913-2018.; Hoeper M.M., Humbert M. The new haemodynamic definition of pulmonary hypertension: evidence prevails, finally! Eur Respir J. 2019;53:1900038. DOI:10.1183/13993003.00038-2019.; Gibbs J.S.R., Torbicki A. Proposed new pulmonary hypertension definition: is 4 mm(Hg) worth re-writing medical textbooks? Eur Respir J. 2019;53:1900197. DOI:10.1183/13993003.00197-2019.; Hatano S., Strasser T., eds. Primary Pulmonary Hypertension. Report on a WHO meeting Geneva, 15- 17 October 1973 [cited by April 10, 2020]. Available from: https://apps.who.int/iris/handle/10665/39094.; Galiè N., Channick R.N., Frantz R.P., et al. Risk stratification and medical therapy of pulmonary arterial hypertension. Eur Respir J. 2019;53:1801889. DOI:10.1183/13993003.01889-2018.; Galiè N., Humbert M., Vachiery J.L., et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS). Eur Heart J. 2016;37:67-11. DOI:10.1183/13993003.01032-2015.; Klinger J.R., Elliott C.G., Levine D.J., et al. Therapy for Pulmonary Arterial Hypertension in Adults: Update of the CHEST Guideline and Expert Panel Report. Chest. 2019;155(3):565-86. DOI:10.1016/j.chest.2018.11.030.; Olschewski H., Simonneau G., Galiè N., et al. Inhaled Iloprost for Severe Pulmonary Hypertension. N Engl J Med. 2002;347:322-9. DOI:10.1056/NEJMoa020204.; Ghofrani H.A., D'Armini A.M., Grimminger F., et al. Riociguat for the Treatment of Chronic Thromboembolic Pulmonary Hypertension. N Engl J Med. 2013;369:319-29. DOI:10.1056/NEJMoa1209657.; Jaïs X., D'Armini A.M., Jansa P., et al. Bosentan for Treatment of Inoperable Chronic Thromboembolic Pulmonary Hypertension. J Am Coll Cardiol. 2008;52:2127-34. DOI:10.1016/j.jacc.2008.08.059.; Suntharalingam J., Treacy C.M., Doughty N.J., et al. Long-term Use of Sildenafil in Inoperable Chronic Thromboembolic Pulmonary Hypertension. Chest. 2008;134:229-36. DOI:10.1378/chest.07-2681.; Escribano-Subias P., Bendjenana H., Curtis P.S., et al. Ambrisentan for treatment of inoperable chronic thromboembolic pulmonary hypertension (CTEPH). Pulm Circ. 2019;9(2):2045894019846433. DOI:10.1177/2045894019846433.; Ghofrani H.A., Simonneau G., D'Armini A.M., et al. Macitentan for the treatment of inoperable chronic thromboembolic pulmonary hypertension (MERIT-1): results from the multicentre, phase 2, randomised, double-blind, placebo-controlled study. Lancet Respir Med. 2017;5:785-94. DOI:10.1016/S2213-2600(17)30305-3.; Delcroix M., Ghofrani H.A., Kim N.H., et al. Rationale and Design of the Selexipag in Inoperable or Persistent/Recurrent Chronic Thromboembolic Pulmonary Hypertension (SELECT) Trial. Am J Respir Crit Care Med. 2019;199:A2001. DOI:10.1164/ajrccm-conference.2019.199.1_MeetingAbstracts.A2001.; A Study to Find Out if Selexipag is Effective and Safe in Patients With Chronic Thromboembolic Pulmonary Hypertension When the Disease is Inoperable or Persistent/Recurrent After Surgery (SELECT). ClinicalTrials.gov Identifier: NCT03689244 [cited by April 10, 2020]. Available from: https://clinicaltrials.gov/ct2/show/results/NCT03689244.; State register of medicines. Available from: https://grls.rosminzdrav.ru/ (In Russ.); Instructions for medical use of the drug Alempas. Registration number: LP-002639 dated 10/10/2019 (In Russ.); Stasch J.P., Pacher P., Evgenov O.V. Soluble Guanylate Cyclase as an Emerging Therapeutic Target in Cardiopulmonary Disease. Circulation. 2011;123:2263-73. DOI:10.1161/CIRCULATIONAHA.110.981738.; Schlossmann J., Schinner E. cGMP becomes a drug target. Naunyn Schmiedebergs Arch Pharmacol. 2012;385:243-52. DOI:10.1007/s00210-012-0730-6.; Evgenov O.V., Pacher P., Schmidt P.M., et al. NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential. Nature Rev Drug Disc. 2006;5:755-68. DOI:10.1038/nrd2038.; Shmalts A.A., Gorbachevsky S.V. Biochemical pathway of nitric oxide in theapia of pulmonary arterial hypertension and RESPITE study results. Systemic Hypertension. 2018;15(2):72-6 (In Russ.) DOI:10.26442/2075-082X_2018.2.72-76; Kim N.H., D'Armini A.M., Grimminger F., et al. Haemodynamic effects of riociguat in inoperable/ recurrent chronic thromboembolic pulmonary hypertension. Heart. 2017;103:599-606. DOI:10.1136/heartjnl-2016-309621.; van Thor M.C.J., Ten Klooster L., Snijder R.J., et al. Long-term clinical value and outcome of riociguat in chronic thromboembolic puimonary hypertension. Int J Cardiol Heart Vasc. 2019;22:163-8. DOI:10.1016/j.ijcha.2019.02.004.; Tsai C.H., Wu C.K., Kuo P.H., et al. Riociguat Improves Pulmonary Hemodynamics in Patients with Inoperable Chronic Thromboembolic Pulmonary Hypertension. Acta Cardiol Sin. 2020;36:64-71. DOI:10.6515/ACS.202001_36(1).20190612A.; Marra A., Halank M., Benjamin N., et al. Right ventricular size and function under riociguat in pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension (the RIVER study). Respir Res. 2018;19(1):258. DOI:10.1186/s12931-018-0957-y.; Ahmadi A., Thornhill R.E., Pena E., et al. Effects of Riociguat on Right Ventricular Remodelling in Chronic Thromboembolic Pulmonary Hypertension Patients: A Prospective Study. Can J Cardiol. 2018;34(9):1137-44. DOI:10.1016/j.cjca.2018.06.007.; Ghofrani H.A., Gall H., Grünig E., et al. Safety of Riociguat for the Treatment of Chronic Thromboembolic Pulmonary Hypertension: Final Data Cut from the EXPERT Registry, Am J Respir Crit Care Med. 2019;199:A6067. DOI:10.1164/ajrccm-conference.2019.199.1_MeetingAbstracts.A6067; https://www.rpcardio.com/jour/article/view/2180

  14. 14
    Academic Journal

    Source: PULMONOLOGIYA; Том 30, № 4 (2020); 427-436 ; Пульмонология; Том 30, № 4 (2020); 427-436 ; 2541-9617 ; 0869-0189 ; 10.18093/0869-0189-2020-30-4

    File Description: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/2149/1739; D'Alonzo G.E., Barst R.J., Ayres S.M. et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann. Intern. Med. 1991; 115 (5): 343–349. DOI:10.7326/0003-4819-115-5-343.; Benza R.L., Miller D.P., Barst R.J. et al. An evaluation of long-term survival from time of diagnosis in pulmonary arterial hypertension from the REVEAL Registry. Chest. 2012; 142 (2): 448–456. DOI:10.1378/chest.11-1460.; Lang I.M. Managing chronic thromboembolic pulmonary hypertension: pharmacological treatment options. Eur. Respir. Rev. 2009; 18 (111): 24–28. DOI:10.1183/09059180.00011110.; Mayer E., Jenkins D., Lindner J. et al. Surgical management and outcome of patients with chronic thromboembolic pulmonary hypertension: results from an international prospective registry. J. Thorac. Cardiovasc. Surg. 2011; 141 (3): 702–710. DOI:10.1016/j.jtcvs.2010.11.024.; Moser K.M., Bloor C.M. Pulmonary vascular lesions occurring in patients with chronic major vessel thromboembolic pulmonary hypertension. Chest. 1993; 103 (3): 685–692. DOI:10.1378/chest.103.3.685.; Чазова И.Е., Мартынюк Т.В. Легочная гипертензия. М.: Практика; 2015.; Wilkens H., Lang I., Behr J. et al. Chronic thromboembolic pulmonary hypertension (CTEPH): Updated Recommen - dations of the Cologne Consensus Conference 2011. Int. J. Cardiol. 2011; 154 (Suppl. 1): S54–60. DOI:10.1016/S0167-5273(11)70493-4.; van Thor M.C.J., ten Klooster L., Snijder R.J. et al. Longterm clinical value and outcome of riociguat in chronic thromboembolic pulmonary hypertension. IJC Heart Vasculature. 2019; 22: 163–168. DOI:10.1016/j.ijcha.2019.02.004.; Humbert M., Sitbon O., Chaouat A. et al. Pulmonary arterial hypertension in France: results from a national registry. Am. J. Respir. Crit. Care Med. 2006; 173 (9): 1023–1030. DOI:10.1164/rccm.200510-1668OC.; Чазова И.Е., Архипова О.А., Мартынюк Т.В. Легочная артериальная гипертензия в России: анализ шестилетнего наблюдения по данным Национального регистра. Терапевтический архив. 2019; 91 (1): 24–31. DOI:10.26442/00403660.2019.01.000024.; Pepke-Zaba J., Delcroix M., Lang I. et al. Chronic thromboembolic pulmonary hypertension (CTEPH): results from an international prospective registry. Circulation. 2011; 124 (18): 1973–1981. DOI:10.1161/CIRCULATIONAHA.110.015008.; Чазова И.Е., Мартынюк Т.В. Клинические рекомендации по диагностике и лечению хронической тромбоэмболической легочной гипертензии (I часть). Терапевтический архив. 2016; 88 (9): 90–101.; Чазова И.Е., Мартынюк Т.В., Валиева З.С. и др. Оцен - ка бремени хронической тромбоэмболической легочной гипертензии в Российской Федерации. Терапевтический архив. 2018; 90 (9): 101–109. DOI:10.26442/terarkh2018909101-109.; Dweik R.A., Rounds S., Erzurum S.C. et al. An official American Thoracic Society Statement: pulmonary hypertension phenotypes. Am. J. Respir. Crit. Care Med. 2014; 189 (3): 345–355. DOI:10.1164/rccm.201311-1954ST.; McGoon M.D., Benza R.L., Escribano-Subias P. et al. Pulmonary arterial hypertension: epidemiology and registries. J. Am. Coll. Cardiol. 2013; 62 (25, Suppl.): D51–59. DOI:10.1016/j.jacc.2013.10.023.; Radegran G., Kjellstrom B., Ekmehag B. et al. Cha - racteristics and survival of adult Swedish PAH and CTEPH patients 2000–2014. Scand. Cardiovasc. J. 2016; 50 (4): 243–250. DOI:10.1080/14017431.2016.1185532.; Kramm T., Wilkens H., Fuge J. et al. Incidence and characteristics of chronic thromboembolic pulmonary hypertension in Germany. Clin. Res. Cardiol. 2018; 107: 548–553. DOI:10.1007/s00392-018-1215-5.; Galie N., Humbert M., Vachiery J.L. et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), Inter - national Society for Heart and Lung Transplantation (ISHLT). Eur. Heart J. 2016; 37 (1): 67–119. DOI:10.1093/eurheartj/ehv317.; Zamanian R.T., Hansmann G., Snook S. et al. Insulin resistance in pulmonary arterial hypertension. Eur. Respir. J. 2009; 33 (2): 318–324. DOI:10.1183/09031936.00000508.; Heresi G.A., Aytekin M., Newman J. et al. Plasma levels of high-density lipoprotein cholesterol and outcomes in pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 2010; 182 (5): 661–668. DOI:10.1164/rccm.201001-0007OC.; Weatherald J., Huertas A., Boucly A. et al. Association between BMI and obesity with survival in pulmonary arterial hypertension. Chest. 2018; 154 (4): 872–881. DOI:10.1016/j.chest.2018.05.006.; Larsen C.M., McCully R.B., Murphy J.G. et al. Usefulness of high-density lipoprotein cholesterol to predict survival in pulmonary arterial hypertension. Am. J. Cardiol. 2016; 118 (2): 292–297. DOI:10.1016/j.amjcard.2016.04.028.; Whitaker M.E., Nair V., Sinari S. et al. Diabetes mellitus associates with increased right ventricular afterload and remodeling in pulmonary arterial hypertension. Am. J. Med. 2018; 131 (6): 702.e7–702.e13. DOI:10.1016/j.amjmed.2017.12.046.; de Simone G., Izzo R., De Luca N., Gerdts E. Left ventricular geometry in obesity: Is it what we expect? Nutr. Metab. Cardiovasc. Dis. 2013; 23 (10): 905–912. DOI:10.1016/j.numecd.2013.06.012.; Wenger D.S., Kawut S.M., Ding J. et al. Pericardial fat and right ventricular morphology: The Multi-Ethnic Study of Atherosclerosis – Right Ventricle Study (MESA-RV). PLoS One. 2016; 11 (6): e0157654. DOI:10.1371/journal.pone.0157654.; Hoeper M.M., Huscher D., Ghofrani H.A. et al. Elderly patients diagnosed with idiopathic pulmonary arterial hypertension: results from the COMPERA registry. Int. J. Cardiol. 2013; 168 (2): 871–880. DOI:10.1016/j.ijcard.2012.10.026.; Mazimba S., Holland E., Nagarajan V. et al. Obesity paradox in group 1 pulmonary hypertension: analysis of the NIH-Pulmonary Hypertension registry. Int. J. Obes. (Lond). 2017; 41 (8): 1164–1168. DOI:10.1038/ijo.2017.45.; Benson L., Brittain E.L., Pugh M.E. et al. Impact of diabetes on survival and right ventricular compensation in pulmonary arterial hypertension. Pulm. Circ. 2014; 4 (2): 311–318. DOI:10.1086/675994.; Hoeper M.M., Kramer T., Pan Z. et al. Mortality in pulmonary arterial hypertension: prediction by the 2015 European pulmonary hypertension guidelines risk stratification model. Eur. Respir. J. 2017; 50 (2): pii: 1700740. DOI:10.1183/13993003.00740-2017.; https://journal.pulmonology.ru/pulm/article/view/2149

  15. 15
  16. 16
  17. 17
    Academic Journal

    Source: The Russian Archives of Internal Medicine; Том 8, № 2 (2018); 146-149 ; Архивъ внутренней медицины; Том 8, № 2 (2018); 146-149 ; 2411-6564 ; 2226-6704 ; 10.20514/2226-6704-2018-8-2

    File Description: application/pdf

    Relation: https://www.medarhive.ru/jour/article/view/772/643; https://www.medarhive.ru/jour/article/view/772/689; Рекомендации ESC по диагностике и ведению пациентов с острой эмболией системы лёгочной артерии 2014. Российский кардиологический журнал. 2015; 8(124): 67-110. ESC/ERS recommendations on the diagnostics and treatment patients with an acute embolism of system of a pulmonary artery 2014. Russian Cardiology Journal. 2015; 8(124): 67-110 [in Russian].; Российские клинические рекомендации по диагностике, лечению и профилактике венозных тромбоэмболических осложнений. Флебология. 2010; 2(4): 1-37. The Russian clinical references on diagnostics, treatment and prevention of venous tromboembolic episodes. The Phlebology. 2010; 2(4): 1-37 [in Russian].; Чазова И.Е., Мартынюк Т.В. и др. Клинические рекомендации по диагностике и лечению хронической тромбоэмболической легочной гипертензии. Евразийский кардиологический журнал. 2015; 3: 8-27. Chazova I.E., Martynyuk T.V. Clinical references on diagnostics and treatment of a chronic thromboembolic pulmonary hypertensia(s). Eurasian Cardiology Journal. 2015; 3: 8-27 [in Russian].; Чазова И.Е., Мартынюк Т.В. и др. Клинические рекомендации по диагностике и лечению хронической тромбоэмболической легочной гипертензии. Кардиологический вестник. 2016; 4: 3-23. Chazova I.E., Martynyuk T.V. Clinical references on diagnostics and treatment of a chronic thromboembolic pulmonary hypertensia(s). Cardiologic Herald. 2016; 4: 3-23 [in Russian].; Wijesuriya S. Chronic Pulmonary Emboli and Radiologic Mimics on CT Pulmonary Angiogrphy: A Diagnostic Challenge. Chest. 2016; 143(5): 1460-71.; Клименко А.А., Шостак Н.А., Демидова Н.А. и др. Хроническая постэмболическая легочная гипертензия: новые аспекты формирования и прогрессирования заболевания. Клиницист. 2011; 5(1): 14–17. Klimenko A.A., Shostak N.A., Demidova N.A. Chronic postembolic pulmonary hypertensia: new aspects of formation and advance of a disease. Clinician. 2011; 5(1): 14–17 [in Russian].; Kyrle P.A. Venous thrombosis: who should be screened for thrombophilia in 2014? Pol Arch Med Wewn. 2014; 124(1–2): 65–9.; Robbins I.M., Pugh M.E., Hemnes A.R. Update on chronic thromboembolic pulmonary hypertension. Trends Cardiovasc. Med. 2016; 1050–1738(16): 30054–8.; Allain J.S. Gueret P., Le Gallou T. et al. Hereditary thrombophilia testing and its therapeutic impact on venous thromboembolism disease: Results from a retrospective single centre study of 162 patients. Rev. Med. Interne. 2016; 3(10): 661–6.; https://www.medarhive.ru/jour/article/view/772

  18. 18
  19. 19
  20. 20