-
1Academic Journal
Authors: E. N. Tolmacheva, A. A. Kashevarova, N. N. Sukhanova, A. А. Agafonova, L. I. Minaycheva, E. A. Fonova, O. Yu. Vasilyeva, D. A. Fedotov, I. N. Lebedev, Е. Н. Толмачева, А. А. Кашеварова, Н. Н. Суханова, А. А. Агафонова, Л. И. Минайчева, Е. А. Фонова, О. Ю. Васильева, Д. А. Федотов, И. Н. Лебедев
Contributors: Работа выполнена при финансовой поддержке гранта РНФ № 21-65-00017.
Source: Medical Genetics; Том 23, № 11 (2024); 63-66 ; Медицинская генетика; Том 23, № 11 (2024); 63-66 ; 2073-7998
Subject Terms: хромосомный микроматричный анализ, X-chromosome inactivation, genes escape from inactivation, chromosomal microarray analysis, инактивация Х-хромосомы, гены, избегающие инактивации
File Description: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2575/1832; Migeon B. R. X-linked diseases: susceptible females. Genet Med. 2020; 22:1156-1174. DOI:10.1186/s13072-021-00386-8; Bradley P.B., Fornes O., Wasserman W. W., et al. Cross-species examination of X-chromosome inactivation highlights domains of escape from silencing. Epigenetics Chromatin. 2021 17;14;12. DOI:10.1186/s13072-021-00386-8; Mutter G. L., Boynton K. A. PCR bias in amplification of androgen receptor alleles, a trinucleotide repeat marker used in clonality studies. Nucl. Acids Res. 1995. 23 : 1411–1418.; Zito A., Roberts A. L., Visconti A., et al., Escape from X-inactivation in twins exhibits intra and inter-individual variability across tissues and is heritable. PLoS Genet. 2023: 19:e1010556. DOI:10.1371/journal.pgen.1010556; https://www.ncbi.nlm.nih.gov/datasets/gene/2.11.24; Michaud J. L., Lachance M., Hamdan F. F., et al. The genetic landscape of infantile spasms. Hum. Molec. Genet. 2014. 23; 4846-4858. DOI:10.1093/hmg/ddu199
-
2Academic Journal
Authors: S. N. Fedenev, E. V. Kudryavtseva, V. V. Kovalev, N. V. Mostova, K. V. Styukova, С. Н. Феденев, Е. В. Кудрявцева, В. В. Ковалев, Н. В. Мостова, К. В. Стрюкова
Source: Medical Genetics; Том 23, № 2 (2024); 14-26 ; Медицинская генетика; Том 23, № 2 (2024); 14-26 ; 2073-7998
Subject Terms: секвенирование экзома, isomerism, CHD, karyotype, CMA, chromosomal microarray analysis, sequencing, изомерия, врожденный порок сердца, кариотип, ХМА, хромосомный микроматричный анализ
File Description: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2418/1770; Seidl-Mlczoch E., Kasprian G., Ba-Ssalamah A., et al. Characterization of phenotypic spectrum of fetal heterotaxy syndrome by combining ultrasound and magnetic resonance imaging. Ultrasound Obstet Gynecol. 2021;58(6):837-845. doi:10.1002/uog.23705; Yi T., Sun H., Fu Y., et al. Genetic and Clinical Features of Heterotaxy in a Prenatal Cohort. Front Genet. 2022;13. doi:10.3389/fgene.2022.818241; Pierpont M.E., Brueckner M., Chung W.K., et al. Genetic Basis for Congenital Heart Disease: Revisited. Circulation. 2018;138(21):e653-e711. doi:10.1161/CIR.0000000000000606; Saba T.G., Geddes G.C., Ware S.M., et al. A multi-disciplinary, comprehensive approach to management of children with heterotaxy. Orphanet J Rare Dis. 2022;17. doi:10.1186/s13023-022-02515-2; Bartram U., Wirbelauer J., Speer C.P. Heterotaxy syndrome -- asplenia and polysplenia as indicators of visceral malposition and complex congenital heart disease. Biol Neonate. 2005;88(4):278-290. doi:10.1159/000087625; Лазаревич А.А. Синдром гетеротаксии у плодов в первом триместре беременности. FORCIPE. 2022;5(S2):294-295.; Грамматикова О.А., Лютая Е.Д., Гончаров Г.В. Пренатальная диагностика гетеротаксических синдромов. Пренатальная Диагностика. 2014;13(2):136-141.; Sun H., Yi T., Hao X., et al. Contribution of single-gene defects to congenital cardiac left-sided lesions in the prenatal setting. Ultrasound Obstet Gynecol. 2020;56(2):225-232. doi:10.1002/uog.21883; Qin X.J., Xu M.M., Ye J.J., et al. De novo disruptive heterozygous MMP21 variants are potential predisposing genetic risk factors in Chinese Han heterotaxy children. Hum Genomics. 2022;16. doi:10.1186/s40246-022-00409-9; Слепухина А.А., Лебедев И.Н., Лифшиц Г.И. Вариации числа копий ДНК в этиологии врожденных пороков сердца. Российский Кардиологический Журнал. 2018;(10):119-126.; Koenig Z.A., Verhoeven A., Rosen D., Petrone A.B. Lateral Heterotaxy Syndrome in a Newborn Caucasian Male. Cureus. 12(10):e11205. doi:10.7759/cureus.11205; Lee M.Y., Won H.S., Shim J.Y., et al. Prenatal diagnosis of atrial isomerism in the Korean population. Obstet Gynecol Sci. 2014;57(3):193-200. doi:10.5468/ogs.2014.57.3.193; Ganapathi M., Buchovecky C.M., Cristo F., et al. A novel biallelic loss-of-function variant in DAND5 causes heterotaxy syndrome. Cold Spring Harb Mol Case Stud. 2022;8(7):a006248. doi:10.1101/mcs.a006248; Jia Y., Gao J. Bilateral inferior venae cava combined with the persistent left superior vena cava and hemiazygos continuation of left inferior vena cava with drainage into right atrium: A case report. Echocardiogr Mt Kisco N. 2023;40(7):739-742. doi:10.1111/echo.15582; Mastromoro G., Guadagnolo D., Novelli A., et al. Prenatal CFAP53-related laterality defect: case report and review of the literature. J Matern Fetal Neonatal Med. 2023;36(1):2201653. doi:10.1080/14767058.2023.2201653; Le Fevre A., Baptista J., Ellard S., et al. Compound heterozygous Pkd1l1 variants in a family with two fetuses affected by heterotaxy and complex Chd. Eur J Med Genet. 2020;63(2):103657. doi:10.1016/j.ejmg.2019.04.014; Buca D.I.P., Khalil A., Rizzo G., et al. Outcome of prenatally diagnosed fetal heterotaxy: systematic review and meta-analysis. Ultra-sound Obstet Gynecol. 2018;51(3):323-330. doi:10.1002/uog.17546; Кудрявцева Е.В., Ковалев В.В., Канивец И.В., Киевская Ю.К., Коростелев С.А. Использование хромосомного микроматричного анализа в пренатальной диагностике в России. Уральский Медицинский Журнал. 2017;(11 (155)):12-15.; Киевская Ю.К., Шилова Н.В., Канивец И.В., и др. Применение хромосомного микроматричного анализа для диагностики хромосомной патологии у плодов с врожденными пороками сердца. Уральский Медицинский Журнал. 2019;(15 (183)):18-22. doi:10.25694/URMJ.2019.15.06; Liang S., Shi X., Yu C., et al. Identification of novel candidate genes in heterotaxy syndrome patients with congenital heart diseases by whole exome sequencing. Biochim Biophys Acta BBA - Mol Basis Dis. 2020;1866(12):165906. doi:10.1016/j.bbadis.2020.165906; Liu S., Wei W., Wang P., et al. LOF variants identifying candidate genes of laterality defects patients with congenital heart disease. PLOS Genet. 2022;18(12):e1010530. doi:10.1371/journal.pgen.1010530; Ma A.C.H., Mak C.C.Y., Yeung K.S., et al. Monoallelic Mutations in CC2D1A Suggest a Novel Role in Human Heterotaxy and Ciliary Dysfunction. Circ Genomic Precis Med. 2020;13(6):e003000. doi:10.1161/CIRCGEN.120.003000; Deniz E., Pasha M., Guerra M.E., et al. CFAP45, a heterotaxy and congenital heart disease gene, affects cilia stability. Dev Biol. 2023;499:75-88. doi:10.1016/j.ydbio.2023.04.006; Li A.H., Hanchard N.A., Azamian M., et al. Genetic architecture of laterality defects revealed by whole exome sequencing. Eur J Hum Genet. 2019;27(4):563-573. doi:10.1038/s41431-018-0307-z; Tate G. Whole-exome sequencing reveals a combination of extremely rare single-nucleotide polymorphism of DNAH9 and RSPH1 genes in a Japanese fetus with situs viscerum inversus. Med Mol Morphol. 2021;54(3):275-280. doi:10.1007/s00795-021-00287-5; Li Y., Yagi H., Onuoha E.O., et al. DNAH6 and Its Interactions with PCD Genes in Heterotaxy and Primary Ciliary Dyskinesia. PLoS Genet. 2016;12(2):e1005821. doi:10.1371/journal.pgen.1005821; Xia H., Huang X., Deng S., et al. DNAH11 compound heterozygous variants cause heterotaxy and congenital heart disease. PLoS ONE. 2021;16(6):e0252786. doi:10.1371/journal.pone.0252786; Chen W., Wang F., Zeng W., et al. Biallelic mutations of TTC12 and TTC21B were identified in Chinese patients with multisystem ciliopathy syndromes. Hum Genomics. 2022;16:48. doi:10.1186/s40246-022-00421-z; Chen W., Zhang Y., Shen L., et al. Biallelic DNAH9 mutations are identified in Chinese patients with defective left–right patterning and ciliarelated complex congenital heart disease. Hum Genet. 2022;141(8):1339-1353. doi:10.1007/s00439-021-02426-5; Yue Y., Huang Q., Zhu P., et al. Identification of Pathogenic Mutations and Investigation of the NOTCH Pathway Activation in Kartagener Syndrome. Front Genet. 2019;10:749. doi:10.3389/fgene.2019.00749; Yuan Z.Z., Fan L.L., Jiang Z.C., Yang Y.F., Tan Z.P. A Novel Nonsense MMP21 Variant Causes Dextrocardia and Congenital Heart Disease in a Han Chinese Patient. Front Cardiovasc Med. 2020;7:582350. doi:10.3389/fcvm.2020.582350; Hartill V.L., van de Hoek G., Patel M.P., et al. DNAAF1 links heart laterality with the AAA+ ATPase RUVBL1 and ciliary intraflagellar transport. Hum Mol Genet. 2018;27(3):529-545. doi:10.1093/hmg/ddx422; Zhang Y., Chen W., Zeng W., Lu Z., Zhou X. Biallelic loss of function NEK3 mutations deacetylate α-tubulin and downregulate NUP205 that predispose individuals to ciliarelated abnormal cardiac left–right patterning. Cell Death Dis. 2020;11(11):1005. doi:10.1038/s41419-020-03214-1; Casey J.P., Goggin P., McDaid J., et al. A case report of primary ciliary dyskinesia, laterality defects and developmental delay caused by the co-existence of a single gene and chromosome disorder. BMC Med Genet. 2015;16:45. doi:10.1186/s12881-015-0192-z; Bolkier Y., Barel O., Marek-Yagel D., et al. Whole-exome sequencing reveals a monogenic cause in 56% of individuals with laterality disorders and associated congenital heart defects. J Med Genet. 2022;59(7):691-696. doi:10.1136/jmedgenet-2021-107775; Burkhalter M.D., Sridhar A., Sampaio P., et al. Imbalanced mitochondrial function provokes heterotaxy via aberrant ciliogenesis. J Clin Invest. 129(7):2841-2855. doi:10.1172/JCI98890; Breuer K., Riedhammer K.M., Müller N., et al. Exome sequencing in individuals with cardiovascular laterality defects identifies potential candidate genes. Eur J Hum Genet. 2022;30(8):946-954. doi:10.1038/s41431-022-01100-2; Izumi K., Noon S., Wilkens A., Krantz I.D. NKX2.5 mutation identification on exome sequencing in a patient with heterotaxy. Eur J Med Genet. 2014;57(10):558-561. doi:10.1016/j.ejmg.2014.08.003; Li L., Shi G., Zhang X., et al. Novel dominant-negative FOXJ1 mutation in a family with heterotaxy plus mouse model. Transl Pediatr. 2023;12(8):1476-1489. doi:10.21037/tp-23-27; Alsafwani R.S., Nasser K.K., Shinawi T., et al. Novel MYO1D Missense Variant Identified Through Whole Exome Sequencing and Computational Biology Analysis Expands the Spectrum of Causal Genes of Laterality Defects. Front Med. 2021;8. doi:10.3389/fmed.2021.724826; Guimier A., Gabriel G.C., Bajolle F., et al. MMP21 is mutated in human heterotaxy and is required for normal left-right asymmetry in vertebrates. Nat Genet. 2015;47(11):1260-1263. doi:10.1038/ng.3376; Suo M.J., Chen W.C., Xu Z.Q., et al. X-linked BCOR variants identified in Chinese Han patients with congenital heart disease. J Gene Med. 2023;25(1):e3461. doi:10.1002/jgm.3461; Perles Z., Moon S., Ta-Shma A., et al. A human laterality disorder caused by a homozygous deleterious mutation in MMP21. J Med Genet. 2015;52(12):840-847. doi:10.1136/jmedgenet-2015-103336; Vetrini F., D’Alessandro L.C., Akdemir Z.C., et al. Biallelic Mutations in PKD1L1 Are Associated with Laterality Defects in Humans. Am J Hum Genet. 2016;99(4):886-893. doi:10.1016/j.ajhg.2016.07.011; Shih J.C., Ma G.C., Cheng W.C., Chen C.Y., Wu W.J., Chen M. SMAD2 as risk locus for human left atrial isomerism detected by mother–fetus-pair exome sequencing and imaging studies. Ultrasound Obstet Gynecol. 2019;53(5):702-705. doi:10.1002/uog.19097; Zahid M., Bais A., Tian X., et al. Airway ciliary dysfunction and respiratory symptoms in patients with transposition of the great arteries. PLoS ONE. 2018;13(2):e0191605. doi:10.1371/journal.pone.0191605; Wang Y., Dai X., Liu H., Peng J., Chen J. A novel ZIC3 mutation in a Chinese family with heterotaxy and multiple types of congenital heart defect. Prenat Diagn. 2023;43(3):275-279. doi:10.1002/pd.6294; Marek-Yagel D., Bolkier Y., Barel O., et al. A founder truncating variant in GDF1 causes autosomal-recessive right isomerism and associated congenital heart defects in multiplex Arab kindreds. Am J Med Genet A. 2020;182(5):987-993. doi:10.1002/ajmg.a.61509; Karaca E., Yuregir O.O., Bozdogan S.T., et al. Rare variants in the notch signaling pathway describe a novel type of autosomal recessive Klippel-Feil syndrome. Am J Med Genet A. 2015;167A(11):2795-2799. doi:10.1002/ajmg.a.37263; Panchal N.K., Evan Prince S. The NEK family of serine/threonine kinases as a biomarker for cancer. Clin Exp Med. 2023;23(1):17-30. doi:10.1007/s10238-021-00782-0; Cao Y., Song J., Chen J., Xiao J., Ni J., Wu C. Overexpression of NEK3 is associated with poor prognosis in patients with gastric cancer. Medicine (Baltimore). 2018;97(3):e9630. doi:10.1097/MD.0000000000009630; Miller S.L., Antico G., Raghunath P.N., Tomaszewski J.E., Clevenger C.V. Nek3 kinase regulates prolactin-mediated cytoskeletal reorganization and motility of breast cancer cells. Oncogene. 2007;26(32):4668-4678. doi:10.1038/sj.onc.1210264; Suzuki K., Okuno T., Yamamoto M., et al. Semaphorin 7A initiates T-cell-mediated inflammatory responses through alpha1beta1 integrin. Nature. 2007;446(7136):680-684. doi:10.1038/nature05652; Gharibi A., La Kim S., Molnar J., et al. ITGA1 is a premalignant biomarker that promotes therapy resistance and metastatic potential in pancreatic cancer. Sci Rep. 2017;7(1):10060. doi:10.1038/s41598-017-09946-z; Yim D.H., Zhang Y.W., Eom S.Y., et al. ITGA1 polymorphisms and haplotypes are associated with gastric cancer risk in a Korean population. World J Gastroenterol. 2013;19(35):5870-5876. doi:10.3748/wjg.v19.i35.5870; Liu H., Zheng J., Zhu L., et al. Wdr47, Camsaps, and Katanin cooperate to generate ciliary central microtubules. Nat Commun. 2021;12(1):5796. doi:10.1038/s41467-021-26058-5; Chen Y., Zheng J., Li X., et al. Wdr47 Controls Neuronal Polarization through the Camsap Family Microtubule Minus-End-Binding Proteins. Cell Rep. 2020;31(3):107526. doi:10.1016/j.celrep.2020.107526; Ren J., Li D., Liu J., et al. Intertwined Wdr47-NTD dimer recognizes a basic-helical motif in Camsap proteins for proper central-pair microtubule formation. Cell Rep. 2022;41(6):111589. doi:10.1016/j.celrep.2022.111589; Gong X., Zou L., Wang M., et al. Gramicidin inhibits cholangiocarcinoma cell growth by suppressing EGR4. Artif Cells Nanomed Biotechnol. 2020;48(1):53-59. doi:10.1080/21691401.2019.1699808; Hogarth C.A., Mitchell D., Small C., Griswold M. EGR4 displays both a cell- and intracellular-specific localization pattern in the developing murine testis. Dev Dyn. 2010;239(11):3106-3114. doi:10.1002/dvdy.22442.; Mookerjee-Basu J., Hooper R., Gross S., et al. Suppression of Ca2+ signals by EGR4 controls Th1 differentiation and anticancer immunity in vivo. EMBO Rep. 2020;21(5):e48904. doi:10.15252/embr.201948904; Fujikawa-Adachi K., Nishimori I., Taguchi T., Onishi S. Human mitochondrial carbonic anhydrase VB. cDNA cloning, mRNA expression, subcellular localization, and mapping to chromosome x. J Biol Chem. 1999;274(30):21228-21233. doi:10.1074/jbc.274.30.21228; Shah G.N., Hewett-Emmett D., Grubb J.H., et al. Mitochondrial carbonic anhydrase CA VB: differences in tissue distribution and pattern of evolution from those of CA VA suggest distinct physiological roles. Proc Natl Acad Sci U S A. 2000;97(4):1677-1682. doi:10.1073/pnas.97.4.1677; Brenner V., Nyakatura G., Rosenthal A., Platzer M. Genomic organization of two novel genes on human Xq28: compact head to head arrangement of IDH gamma and TRAP delta is conserved in rat and mouse. Genomics. 1997;44(1):8-14. doi:10.1006/geno.1997.4822; Fink J.M., Dobyns W.B., Guerrini R., Hirsch B.A. Identification of a duplication of Xq28 associated with bilateral periventricular nodular heterotopia. Am J Hum Genet. 1997;61(2):379-387. doi:10.1086/514863; Zhu S., Wang W., Zhang J., Ji S., Jing Z., Chen Y.Q. Slc25a5 regulates adipogenesis by modulating ERK signaling in OP9 cells. Cell Mol Biol Lett. 2022;27(1):11. doi:10.1186/s11658-022-00314-y; Chen Y.J., Hong W.F., Liu M.L., et al. An integrated bioinformatic investigation of mitochondrial solute carrier family 25 (SLC25) in colon cancer followed by preliminary validation of member 5 (SLC25A5) in tumorigenesis. Cell Death Dis. 2022;13(3):237. doi:10.1038/s41419-022-04692-1; Palmieri F. The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol Aspects Med. 2013;34(2-3):465-484. doi:10.1016/j.mam.2012.05.005; Bauer M.F., Gempel K., Reichert A.S., et al. Genetic and structural characterization of the human mitochondrial inner membrane translocase. J Mol Biol. 1999;289(1):69-82. doi:10.1006/jmbi.1999.2751; Mingting Duan, Yun Ren, Jiwen Zhang, Tingting Zhang, Yanhong Wang, Hongyan Jia. High Expression of TIMM17B Is a Potential Diagnostic and Prognostic Marker of Breast Cancer. Cell Mol Biol (Noisyle-grand). 2023;69(3):169-176. doi:10.14715/cmb/2023.69.3.25; Serra K.M., Vyzas C., Shehreen S., et al. Vertebral pattern and morphology is determined during embryonic segmentation [published online ahead of print, 2023 Sep 9]. Dev Dyn. 2023;10.1002/dvdy.649. doi:10.1002/dvdy.649; Yabe T., Uriu K., Takada S. Ripply suppresses Tbx6 to induce dynamic-to-static conversion in somite segmentation. Nat Commun. 2023;14(1):2115. doi:10.1038/s41467-023-37745-w; Kinoshita H., Ohgane N., Fujino Y., et al. Functional roles of the Ripply-mediated suppression of segmentation gene expression at the anterior presomitic mesoderm in zebrafish. Mech Dev. 2018; 152: 21-31. doi:10.1016/j.mod.2018.06.001; Walpole S.M., Hiriyana K.T., Nicolaou A., et al. Identification and characterization of the human homologue (RAI2) of a mouse retinoic acid-induced gene in Xp22. Genomics. 1999;55(3):275-283. doi:10.1006/geno.1998.5667; Nishikawa S., Uemoto Y., Kim T.S., et al. Low RAI2 expression is a marker of poor prognosis in breast cancer. Breast Cancer Res Treat. 2021;187(1):81-93. doi:10.1007/s10549-021-06176-w; Zhang W., Kong L., Zhu H., et al. Retinoic Acid-Induced 2 (RAI2) Is a Novel Antagonist of Wnt/β-Catenin Signaling Pathway and Potential Biomarker of Chemosensitivity in Colorectal Cancer. Front Oncol. 2022;12:805290. doi:10.3389/fonc.2022.805290; Galang G., Mandla R., Ruan H., et al. ATAC-Seq Reveals an Isl1 Enhancer That Regulates Sinoatrial Node Development and Function. Circ Res. 2020;127(12):1502-1518. doi:10.1161/CIRCRESAHA.120.317145; Bu L., Jiang X., Martin-Puig S., et al. Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature. 2009;460(7251):113-117. doi:10.1038/nature08191; Ren J., Miao D., Li Y., Gao R. Spotlight on Isl1: A Key Player in Cardiovascular Development and Diseases. Front Cell Dev Biol. 2021;9:793605. doi:10.3389/fcell.2021.793605; Wang K., Zhao S., Liu B., et al. Perturbations of BMP/TGF-β and VEGF/VEGFR signalling pathways in non-syndromic sporadic brain arteriovenous malformations (BAVM). J Med Genet. 2018;55(10):675-684. doi:10.1136/jmedgenet-2017-105224; Zhao X., Li D., Qiu Q., et al. Zfyve16 regulates the proliferation of B-lymphoid cells. Front Med. 2018;12(5):559-565. doi:10.1007/s11684-017-0562-3; Cheong A., Lingutla R., Mager J. Expression analysis of mammalian mitochondrial ribosomal protein genes. Gene Expr Patterns. 2020;38:119147. doi:10.1016/j.gep.2020.119147; Sultana N., Rahman M., Myti S., Islam J., Mustafa M.G., Nag K. A novel knowledge-derived data potentizing method revealed unique liver cancer-associated genetic variants. Hum Genomics. 2019;13(1):30. doi:10.1186/s40246-019-0213-7; Fakhro K.A., Choi M., Ware S.M., et al. Rare copy number variations in congenital heart disease patients identify unique genes in left-right patterning. Proc Natl Acad Sci U S A. 2011;108(7):2915-2920. doi:10.1073/pnas.1019645108; Spéder P., Adám G., Noselli S. Type ID unconventional myosin controls left-right asymmetry in Drosophila. Nature. 2006;440(7085):803-807. doi:10.1038/nature04623; Hozumi S., Maeda R., Taniguchi K., et al. An unconventional myosin in Drosophila reverses the default handedness in visceral organs. Nature. 2006;440(7085):798-802. doi:10.1038/nature04625
-
3Academic Journal
Authors: Kudryavtseva E.V., Kovtun O.P., Kovalev V.V.
Contributors: 1
Source: Annals of the Russian academy of medical sciences; Vol 79, No 2 (2024); 123-130 ; Вестник Российской академии медицинских наук; Vol 79, No 2 (2024); 123-130 ; 2414-3545 ; 0869-6047 ; 10.15690/vramn.792
Subject Terms: miscarriage, clinical sequencing of exome, chromosomal micromatrix analysis, preimplantation genetic testing, embryo genome sequencing, невынашивание беременности, клиническое секвенирование экзома, хромосомный микроматричный анализ, преимплантационное генетическое тестирование, секвенирование генома эмбриона
File Description: application/pdf
Relation: https://vestnikramn.spr-journal.ru/jour/article/view/8378/1965; https://vestnikramn.spr-journal.ru/jour/article/view/8378/1972
-
4Academic Journal
Authors: A. A. Dokshukina, Je. Shubina, D. N. Maslennikov, I. O. Sadelov, E. R. Tolmacheva, S. V. Ionushene, T. A. Bairova, L. V. Rychkova, D. Yu. Trofimov, D. N. Degtyarev, А. А. Докшукина, Е. Шубина, Д. Н. Масленников, И. О. Саделов, Е. Р. Толмачева, С. В. Ионушене, Т. А. Баирова, Л. В. Рычкова, Д. Ю. Трофимов, Д. Н. Дегтярев
Contributors: Работа выполнена в рамках Соглашения с Минздравом России № 056-02-2024-214 от 15.02.2024.
Source: Acta Biomedica Scientifica; Том 9, № 4 (2024); 61-68 ; 2587-9596 ; 2541-9420
Subject Terms: генетические заболевания, selective screening, whole exome sequencing, chromosomal microarray analysis, phenotype assessment, genetic diseases, селективный скрининг, полноэкзомное секвенирование, хромосомный микроматричный анализ, оценка фенотипа
File Description: application/pdf
Relation: https://www.actabiomedica.ru/jour/article/view/4946/2858; Lupski JR. Structural variation mutagenesis of the human genome: Impact on disease and evolution. Environ Mol Mutagen. 2015; 56(5): 419-436. doi:10.1002/em.21943; Yuan H, Shangguan S, Li Z, Luo J, Su J, Yao R, et al. CNV profiles of Chinese pediatric patients with developmental disorders. Genet Med. 2021; 23(4): 669-678. doi:10.1038/s41436-020-01048-y; Harel T, Lupski JR. Genomic disorders 20 years on – Mechanisms for clinical manifestations. Clin Genet. 2018; 93(3): 439-449. doi:10.1111/cge.13146; 100,000 Genomes Project Pilot Investigators; Smedley D, Smith KR, Martin A, Thomas EA, McDonagh EM, et al. 100,000 genomes pilot on rare-disease diagnosis in health care – Preliminary report. N Engl J Med. 2021; 385(20): 1868-1880. doi:10.1056/NEJMoa2035790; Li YR, Glessner JT, Coe BP, Li J, Mohebnasab M, Chang X, et al. Rare copy number variants in over 100,000 European ancestry subjects reveal multiple disease associations. Nat Commun. 2020; 11(1): 255. doi:10.1038/s41467-019-13624-1; Gabrielaite M, Torp MH, Rasmussen MS, Andreu-Sánchez S, Vieira FG, Pedersen CB, et al. A comparison of tools for copy-number variation detection in germline whole exome and whole genome sequencing data. Cancers. 2021; 13(24): 6283. doi:10.3390/ cancers13246283; Louw N, Carstens N, Lombard Z; for DDD-Africa as members of the H3Africa Consortium. Incorporating CNV analysis improves the yield of exome sequencing for rare monogenic disorders – An important consideration for resource-constrained settings. Front Genet. 2023; 14: 1277784. doi:10.3389/fgene.2023.1277784; Померанцева Е.А., Докшукина А.А., Дегтярева А.В., Масленников Д.Н., Трофимов Д.Ю., Дегтярев Д.Н. Критерии оценки фенотипа новорожденного для формирования группы повышенного риска генетических заболеваний. Неонатология: новости, мнения, обучение. 2022; 10(4): 47-53. doi:10.33029/2308-2402-2022-10-4-47-53; Petit F, Andrieux J, Holder-Espinasse M, Bouquillon S, Pennaforte T, Storme L, et al. Xq12q13.1 microduplication encompassing the EFNB1 gene in a boy with congenital diaphragmatic hernia. Eur J Med Genet. 2011; 54(5): e525-e527. doi:10.1016/j.ejmg.2011.06.011; Krepischi ACV, Villela D, da Costa SS, Mazzonetto PC, Schauren J, Migliavacca MP, et al. Chromosomal microarray analyses from 5778 patients with neurodevelopmental disorders and congenital anomalies in Brazil. Sci Rep. 2022; 12(1): 15184. doi:10.1038/s41598-022-19274-6; Лебедев И.Н., Шилова Н.В., Юров И.Ю., Малышева О.В., Твеленева А.А., Миньженкова М.Е., и др. Рекомендации Российского общества медицинских генетиков по хромосомному микроматричному анализу. Медицинская генетика. 2023; 22(10): 3-47. doi:10.25557/20737998.2023.10.3-47; Levy B, Wapner R. Prenatal diagnosis by chromosomal microarray analysis. Fertil Steril. 2018; 109(2): 201-212. doi:10.1016/j.fertnstert.2018.01.005; Teles TM, Paula CM, Ramos MG, Costa HB, Andrade CR, Coxir SA, et al. Frequency of chromosomal abnormalities in products of conception. Rev Bras Ginecol Obstet. 2017; 39(03): 110-114. doi:10.1055/s-0037-1600521; Genovese A, Butler MG. Clinical assessment, genetics, and treatment approaches in autism spectrum disorder (ASD). Int J Mol Sci. 2020; 21(13): 4726. doi:10.3390/ijms21134726; Bedeschi MF, Novelli A, Bernardini L, Parazzini C, Bianchi V, Torres B, et al. Association of syndromic mental retardation with an Xq12q13.1 duplication encompassing the oligophrenin 1 gene. Am J Med Genet A. 2008; 146A: 1718-1724. doi:10.1002/ajmg.a.32365; https://www.actabiomedica.ru/jour/article/view/4946
-
5Academic Journal
Source: Ukrainian Journal of Perinatology and Pediatrics; No. 3(95) (2023): Ukrainian Journal of Perinatology and Pediatrics; 71-78
Украинский журнал Перинатология и Педиатрия; № 3(95) (2023): Ukrainian Journal of Perinatology and Pediatrics; 71-78
Український журнал Перинатологія і Педіатрія; № 3(95) (2023): Український журнал Перинатологія і Педіатрія; 71-78Subject Terms: синдром мікроделеції 2q13, autism spectrum disorders, дети, затримка розвитку, интеллектуальная недостаточность, genetic testing, задержка развития, 2q13 microdeletion syndrome, children, генетичне тестування, расстройства аутистического спектра, хромосомный микроматричный анализ, генетическое тестирование, каріотипування, синдром дефіциту уваги з гіперактивністю, діти, karyotyping, 3. Good health, developmental delay, attention deficit hyperactivity disorder, розлади аутистичного спектра, intellectual disability, кариотипирование, chromosomal microarray analysis, хромосомний мікроматричний аналіз, синдром дефицита внимания с гиперактивностью, синдром микроделеции 2q13, інтелектуальна недостатність
File Description: application/pdf
-
6Academic Journal
Authors: null T. M. Tutchenko, null O. A. Burka, null V. S. Samilyk, null O. V. Trokhymovych, null O. I. Krotik, null O. L. Gromova
Source: Репродуктивная эндокринология, Vol 0, Iss 55, Pp 21-28 (2020)
Reproductive Endocrinology; № 55 (2020); 21-28
Репродуктивная эндокринология; № 55 (2020); 21-28
Репродуктивна ендокринологія; № 55 (2020); 21-28Subject Terms: fish, recurrent pregnancy loss, balanced structural chromosome abnormalities, привычное невынашивание беременности, анеуплоидии, сбалансированные структурные аномалии хромосом, кариотипирование, метод FISH, хромосомный микроматричный анализ, антифосфолипидный синдром, хронический эндометрит, Gynecology and obstetrics, karyotyping, 3. Good health, aneuploidy, FISH, chromosomal microarray analysis, antiphospholipid syndrome, chronic endometritis, 03 medical and health sciences, 0302 clinical medicine, RG1-991, звичне невиношування вагітності, анеуплоїдії, збалансовані структурні аномалії хромосом, каріотипування, хромосомний мікроматричний аналіз, антифосфоліпідний синдром, хронічний ендометрит
File Description: application/pdf
-
7
-
8Academic Journal
Authors: M. T. Kaplanova, A. M. Galaktionova, A. A. Potapov, E. S. Kuznetsova, E. E. Baranova, O. V. Sagaydak, M. S. Belenikin, G. Yu. Bobrovnik, V. L. Izhevskaya, S. V. Martirosyan, A. S. Shkoda, М. Т. Капланова, А. Н. Галактионова, А. А. Потапов, Е. С. Кузнецова, Е. Е. Баранова, О. В. Сагайдак, М. С. Беленикин, Г. Ю. Бобровник, В. Л. Ижевская, С. В. Мартиросян, А. С. Шкода
Contributors: The work was funded by the Moscow budget subsidy No. 01-04-593 dated November 10, 2021., Работа выполнена за счет субсидии из бюджета г. Москвы № 01-04-593 от 10.11.2021 в рамках приказа Департамента здравоохранения города Москвы № 1181 от 30.11.2021 «Об организации проведения современных молекулярно-генетических исследований в городе Москве беременным женщинам и супружеским парам с отягощенным анамнезом». Авторы благодарят сотрудников лаборатории ООО «Эвоген» за проведение лабораторной работы: Леонову В.С., Золотопуп А.А., Голованову М.А., Панферову А.А., Айдарову В.И., Криницыну А.А, а также сотрудников Цитогенетической лаборатории ГБУЗ ЦПСиР ДЗМ и заведующую лабораторией Дубровину Е.В.
Source: Medical Genetics; Том 22, № 3 (2023); 24-34 ; Медицинская генетика; Том 22, № 3 (2023); 24-34 ; 2073-7998
Subject Terms: хромосомные перестройки, prenatal diagnosis, noninvasive prenatal testing, chromosomal microarray analysis, chromosomal rearrangements, пренатальная диагностика, неинвазивное пренатальное тестирование, хромосомный микроматричный анализ
File Description: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2276/1701; Капланова М.Т., Галактионова А.М., Баранова Е.Е. и др. Оценка медико-экономической эффективности внедрения неинвазивного пренатального теста: международный опыт. Вестник РАМН 2022; 77(4). doi:10.15690/vramn2006; Оленев А.С., Баранова Е.Е., Сагайдак О.В. и др. Международный опыт организации проведения неинвазивного пренатального теста. Вопросы гинекологии, акушерства и перинатологии 2021; 20(1): 129-137. doi:10.20953/1726-1678-2021-1-129-137; Оленев А.С., Баранова Е.Е., Сагайдак О.В. и др. Случайные находки при использовании полногеномного неинвазивного пренатального теста: клинические и этические аспекты. Проблемы репродукции 2021; 27(1): 78-87. doi:10.17116/repro20212701178; Bedei I., Wolter A., Weber A., et al. Chances and Challenges of New Genetic Screening Technologies (NIPT) in Prenatal Medicine from a Clinical Perspective: A Narrative Review. Genes (Basel) 2021; 12(4): 501. doi:10.3390/genes12040501; Zaninović L., Bašković M., Ježek D. et al. Validity and Utility of Non-Invasive Prenatal Testing for Copy Number Variations and Microdeletions: A Systematic Review. Journal of Clinical Medicine 2022; 11(12): 3350. doi:10.3390/jcm11123350; Van den Veyver I.B. Recent advances in prenatal genetic screening and testing. F1000Res. 2016; 5: 2591. doi:10.12688/f1000research.9215.1.; Liu X., Liu S., Wang H., Hu T. Potentials and challenges of chromosomal microarray analysis in prenatal diagnosis. Front Genet. 2022 Jul 26; 13: 938183. doi:10.3389/fgene.2022.938183; Shaffer L.G., Rosenfeld J.A., Dabell M.P., et al. Detection rates of clinically significant genomic alterations by microarray analysis for specific anomalies detected by ultrasound. Prenatal Diagnosis 2012; 32(10): 986-95. doi:10.1002/pd.3943; Srebniak M.I., Diderich K.E., Joosten M., et al. Prenatal SNP array testing in 1000 fetuses with ultrasound anomalies: causative, unexpected and susceptibility CNVs. European Journal of Human Genetics 2015; 24(5): 645-51. doi:10.1038/ejhg.2015.193; Wapner R.J., Martin C.L., Levy B., et al. Chromosomal Microarray versus Karyotyping for Prenatal Diagnosis. New England Journal of Medicine 2012; 367(23): 2175-84. doi:10.1056/nejmoa1203382; Grande M., Jansen F.A.R., Blumenfeld Y.J., et al. Genomic microarray in fetuses with increased nuchal translucency and normal karyotype: a systematic review and meta-analysis. Ultrasound in Obstetrics & Gynecology 2015; 46(6): 650-8. doi:10.1002/uog.14880; Levy B., Wapner, R. Prenatal diagnosis by chromosomal microarray analysis. Fertility and sterility 2018; 109(2): 201-212. doi:10.1016/j.fertnstert.2018.01.005; Dugoff L., Norton M.E., Kuller J.A. The use of chromosomal microarray for prenatal diagnosis. American Journal of Obstetrics and Gynecology 2016; 215(4): B2-9. doi:10.1016/j.ajog.2016.07.016; American College of Obstetricians and Gynecologists Committee on Genetics. Committee Opinion No. 581: the use of chromosomal microarray analysis in prenatal diagnosis. Obstet Gynecol. 2013; 122(6): 1374-7. doi:10.1097/01.AOG.0000438962.16108.d1.; Riggs E.R., Andersen E.F., Cherry A.M., et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020; 22(2): 245-257. doi:10.1038/s41436-019-0686-8.; Антоненко В.Г., Светличная Д.В., Журкова Н.В. и др. Случай синдрома Эмануэль у новорожденной девочки с врожденным пороком сердца. Медицинская генетика 2019; 18(9): 34-39. doi:10.25557/2073-7998.2019.09.34-39; Баранов В.С., Кузнецова Т.В. Цитогенетика эмбрионального развития человека: Научно-практические аспекты. СПб: Издательство Н-Л, 2006. 640 с.; Шилова Н.В. Аутосомные реципрокные транслокации: пренатальная селекция, сегрегация и оценка эмпирического риска рождения жизнеспособного ребенка с хромосомным дисбалансом при семейном носительстве. Медицинская генетика 2018; 17(1): 41-49. doi:10.25557/2073-7998.2018.01.41-49
-
9Academic Journal
Authors: Zh. G. Markova, M. E. Minzhenkova, I. V. Sharkova, M. S. Petukhova, N. V. Shilova, Ж. Г. Маркова, М. Е. Миньженкова, И. В. Шаркова, М. С. Петухова, Н. В. Шилова
Source: Medical Genetics; Том 21, № 12 (2022); 56-59 ; Медицинская генетика; Том 21, № 12 (2022); 56-59 ; 2073-7998
Subject Terms: хромосомный микроматричный анализ, intragenic duplication, сhromosomal microarray analysis, внутригенная дупликация, DMD
File Description: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2218/1683; Waggoner D., Wain K.E., Dubuc A.M., Conlin L., Hickey S.E., Lamb A.N., Martin C.L., Morton C.C., Rasmussen K., Schuette J.L., Schwartz S., Miller D.T.; ACMG Professional Practice and Guidelines Committee. Yield of additional genetic testing after chromosomal microarray for diagnosis of neurodevelopmental disability and congenital anomalies: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2018;20(10):1105-1113. doi:10.1038/s41436-018-0040-6; Aartsma-Rus A., den Dunnen J.T. Phenotype predictions for exon deletions/duplications: A user guide for professionals and clinicians using Becker and Duchenne muscular dystrophy as examples. Hum Mutat. 2019;40(10):1630-1633. doi:10.1002/humu.23850. Muntoni F., Torelli S., Ferlini A. Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol 2003; 2: 731-40. doi:10.1016/S1474-4422(03)00585-4; Baskin B., Stavropoulos D.J., Rebeiro P.A., Orr J., Li M., Steele L., Marshall C.R., Lemire E.G., Boycott K.M., Gibson W., Ray P.N.Complex genomic rearrangements in the dystrophin gene due to replication-based mechanisms. Mol Genet Genomic Med. 2014;2(6):539-47. doi:10.1002/mgg3.108; del Gaudio D., Yang Y., Boggs B.A., Schmitt E.S., Lee J.A., Sahoo T., Pham H.T., Wiszniewska J., Chinault A.C., Beaudet A.L., Eng C.M. Molecular diagnosis of Duchenne/Becker muscular dystrophy: enhanced detection of dystrophin gene rearrangements by oligonucleotide array-comparative genomic hybridization. Hum Mutat. 2008;29(9):1100-7. doi:10.1002/humu.20841; Bai Y., Liu J., Xu J., Sun Y., Li J., Gao Y., Liu L., Jia C., Kong X., Wang L. Long-Read Sequencing Revealed Extragenic and Intragenic Duplications of Exons 56-61 in DMD in an Asymptomatic Male and a DMD Patient. Front Genet. 2022;13:878806. doi:10.3389/fgene.2022.878806; Bladen C.L., Salgado D., Monges S., et al. The TREAT-NMD DMD Global Database: analysis of more than 7,000 Duchenne muscular dystrophy mutations. Hum Mutat. 2015;36(4):395-402. doi:10.1002/humu.22758; Sheikh O., Yokota T. Advances in Genetic Characterization and Genotype-Phenotype Correlation of Duchenne and Becker Muscular Dystrophy in the Personalized Medicine Era. J Pers Med. 2020;10(3):111. doi:10.3390/jpm10030111; Bovolenta M., Neri M., Fini S., et al. A novel custom high density-comparative genomic hybridization array detects common rearrangements as well as deep intronic mutations in dystrophinopathies. BMC Genomics. 2008;9:572. doi:10.1186/1471-2164-9-572; Zaum A.K., Nanda I., Kress W., Rost S. Detection of pericentric inversion with breakpoint in DMD by whole genome sequencing. Mol Genet Genomic Med. 2022;10(10):e2028. doi:10.1002/mgg3.2028; Whitehead M.T., Helman G., Gropman A.L. MR Imaging Findings in Xp21.2 Duplication Syndrome. J Radiol Case Rep. 2016;10(5):9-14. doi:10.3941/jrcr.v10i5.2563
-
10Academic Journal
Authors: M. E. Minzhenkova, V. G. Antonenko, N. V. Shilova, М. Е. Миньженкова, В. Г. Антоненко, Н. В. Шилова
Contributors: The work was supported by the state task № 122032300370-1 “Study of structure-functional features and mechanisms of formation of the chromosomal abnormalities and genomic imbalance”., Исследование проведено в рамках темы государственного задания № 122032300370-1 «Изучение структурно-функциональных особенностей и механизмов формирования хромосомных аномалий и геномного дисбаланса».
Source: Medical Genetics; Том 22, № 4 (2023); 11-16 ; Медицинская генетика; Том 22, № 4 (2023); 11-16 ; 2073-7998
Subject Terms: хромосомные перестройки, ISCN 2016, An International System for Human Cytogenomic Nomenclature, FISH, chromosomal microarray, chromosomal abnormalities, Международная система цитогеномной номенклатуры, хромосомный микроматричный анализ
File Description: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2281/1706; Denver Conference (1960): A proposed standard system of nomenclature of human mitotic chromosomes. Lancet 1960;I:1063–1065.; ISCN 1978 – An International System for Human Cytogenetic Nomenclature. Birth Defects: Original Article Series. 1978;14:8.; ISCN 2016 – An International System for Human Cytogenomic Nomenclature. McGowan-Jordan J, Simons A., Schmid M. (eds). Karger, 2016.; Liehr T. International System for Human Cytogenetic or Cytogenomic Nomenclature (ISCN): Some Thoughts. Cytogenet Genome Res 2021;161:223–224.; ISCN 2020 – An International System for Human Cytogenomic Nomenclature (2020) Ed. McGovan-Jordan J., Hastings R.J., Moore S. Karger. 2020.; Miller K., Madan K. ISCN 2020 compared to ISCN 2016. ECANewsletter. 2021;47:2–11.; Erratum. Cytogenet Genome Res 2021;161:476–477. DOI:10.1159/000520838
-
11Academic Journal
Source: Nauchno-prakticheskii zhurnal «Medicinskaia genetika». :3-15
Subject Terms: AZF, chromosome abnormalities, мужское бесплодие, хромосомные аномалии, патозооспермия, секвенирование экзома, флуоресцентная гибридизация in situ, gene variants, генные варианты, male infertility, spermatogenesis, 3. Good health, 03 medical and health sciences, 0302 clinical medicine, 5. Gender equality, array comparative genomic hybridization, хромосомный микроматричный анализ, CFTR, fluorescence in situ hybridization, exome sequencing
-
12Academic Journal
Source: Nauchno-prakticheskii zhurnal «Medicinskaia genetika». :40-47
-
13Academic Journal
Authors: I. V. Anisimova, И. В. Анисимова
Source: Medical Genetics; Том 20, № 7 (2021); 45-58 ; Медицинская генетика; Том 20, № 7 (2021); 45-58 ; 2073-7998
Subject Terms: секвенирование нового поколения, intellectual disability, chromosomal diseases, monogenic diseases, genomic imprinting disorders, diagnostic efficiency, segregation analysis, chromosomal microarray analysis, next generation sequencing, умственная отсталость, хромосомные заболевания, моногенные болезни, болезни геномного импринтинга, диагностическая эффективность, сегрегационный анализ, хромосомный микроматричный анализ
File Description: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/1948/1503; Hu H., Kahrizi K., Musante L. et al. Genetics of intellectual disability in consanguineous families. Mol Psychiatry. 2019; 24 (7): 1027-1039. DOI:10.1038/s41380-017-0012-2.; Hudgins L., Toriello H. V., Enns G.M. et al. Signs and symptoms of genetic conditions: a handbook. Oxford University Press. 2014. - 540 p.; Harripaul R., Vasli N., Mikhailov A. et al. Mapping autosomal recessive intellectual disability: combined microarray and exome sequencing identifies 26 novel candidate genes in 192 consanguineous families. Mol Psychiatry. 2018; 23(4): 973-984. DOI:10.1038/mp.2017.60.; Boycott K.M., Rath A., Chong J.X. et al. International cooperation to enable the diagnosis of all rare genetic diseases. Am J Hum Genet. 2017;100(5):695-705. DOI:10.1016/j.ajhg.2017.04.003.; Chiurazzi P., Kiani A.K., Miertus J. et al. Genetic analysis of intellectual disability and autism. Acta Biomed. 2020; 91(13-S): e2020003. DOI:10.23750/abm.v91i13-S.10684.; Puri R.D., Tuteja M., Verma I.C. Genetic approach to diagnosis of intellectual disability [published correction appears in Indian J Pediatr. 2017; 84(3): 256]. Indian J Pediatr. 2016; 83(10): 1141-1149.- DOI:10.1007/s12098-016-2205-0.; Heuvelman H., Abel K., Wicks S. et al. Gestational age at birth and risk of intellectual disability without a common genetic cause. Eur J Epidemiol. 2018; 33(7): 667-678. DOI:10.1007/s10654-017-0340-1.; Бочков Н.П., Гинтер Е.К., Пузырев В.П. Наследственные болезни: национальное руководство. Изд-во: ГЭОТАР-Медиа, 2012. - 936 с.; Vissers L.E.L.M., Gilissen C., Veltman J.A. Genetic studies in intellectual disability and related disorders. Nat Rev Genet. 2016; 17(1): 9-18. DOI:10.1038/nrg3999.; Bass N., Skuse D. Genetic testing in children and adolescents with intellectual disability. Curr Opin Psychiatry. 2018; 31(6): 490-495. DOI:10.1097/YCO.0000000000000456.; Hu T., Zhang Z., Wang J. et al. Chromosomal aberrations in pediatric patients with developmental delay/intellectual disability: a single-center clinical investigation. Biomed Res Int. 2019: 9352581. DOI:10.1155/2019/9352581.; Ilyas M., Mir A., Efthymiou S. et al. The genetics of intellectual disability: advancing technology and gene editing. F1000Res. 2020; (9): 22. DOI:10.12688/f1000research.16315.1.; Yokoi T., Enomoto Y., Tsurusaki Y. et al. An efficient genetic test flow for multiple congenital anomalies and intellectual disability. Pediatr Int. 2020;62(5): 556-561. DOI:10.1111/ped.14159.; Anazi S., Maddirevula S., Salpietro V. et al. Expanding the genetic heterogeneity of intellectual disability. Hum Genet. 2017; 136(11-12): 1419-1429. DOI:10.1007/s00439-017-1843-2.; Gilissen C., Hehir-Kwa J.Y., Thung D.T. et al. Genome sequencing identifies major causes of severe intellectual disability. Nature. 2014. - 511(7509): 344-347. - DOI:10.1038/nature13394.; Harripaul R., Noor A., Ayub M. et al. The use of next-generation sequencing for research and diagnostics for intellectual disability. Cold Spring Harb Perspect Med. 2017; 7(3): a026864. DOI:10.1101/cshperspect.a026864.; Jamra R. Genetics of autosomal recessive intellectual disability. Med Genet. 2018; 30(3): 323-327. DOI:10.1007/s11825-018-0209-z.; Vallance H., Sinclair G., Rakic B. et al. Diagnostic yield from routine metabolic screening tests in evaluation of global developmental delay and intellectual disability. J. Paediatr. Child Health. 2020; pxaa112. DOI: org/10.1093/pch/pxaa112.; Rauch A., Hoyer J., Guth S. et al. Diagnostic yield of various genetic approaches in patients with unexplained developmental delay or mental retardation. Am J Med Genet Part A 2006; 140: 2063-2074. DOI:10.1002/ajmg.a.31416.; Musante L., Ropers H.H. Genetics of recessive cognitive disorders. Trends Genet 2014; 30: 32-39. DOI:10.1016/j.tig.2013.09.008.; Harripaul R., Vasli N., Mikhailov A. et al. Mapping autosomal recessive intellectual disability: combined microarray and exome sequencing identifies 26 novel candidate genes in 192 consanguineous families. Mol Psychiatry. 2018; 23(4): 973-984.; Anazi S., Maddirevula S., Faqeih E. et al. Clinical genomics expands the morbid genome of intellectual disability and offers a high diagnostic yield. Mol Psychiatry. 2017; 22(4): 615-624. DOI:10.1038/mp.2016.113.; Monies D., Abouelhoda M., AlSayed M. et al. The landscape of genetic diseases in Saudi Arabia based on the first 1000 diagnostic panels and exomes. Hum Genet. 2017; 136(8): 921-939. DOI:10.1007/s00439-017-1821-8.; Hamdan F.F., Srour M., Capo-Chichi J.M. et al. De novo mutations in moderate or severe intellectual disability. PLoS Genet. 2014; 10(10): e1004772. DOI:10.1371/journal.pgen.1004772.; Fitzgerald T.W., Gerety S.S., Jones W.D. et al. Large-scale discovery of novel genetic causes of developmental disorders. Nature. 2015; (519): 223-228. DOI:10.1038/nature14135.; Воинова В. Ю., Ворсанова С. Г., Юров Ю. Б. и соавт. Алгоритм диагностики X-сцепленных форм умственной отсталости у детей. Рос вестн перинатол и педиатр 2016; 61(5): 34-41. DOI:10.21508/1027-4065-2016-61-5-34-41.; Peng J.P., Liu F., Xie H. et al. The pathogenicity of genomic/genetic variant of X-chromosomal genes in males with intellectual disability. Yi Chuan. 2017; 39(6): 455-468. DOI:10.16288/j.yczz.16-407.; De Luca C., Race V., Keldermans L. et al. Challenges in molecular diagnosis of X-linked intellectual disability. Br Med Bull. 2020; 133(1): 36-48. DOI:10.1093/bmb/ldz039.; Iourov I.Y., Vorsanova S.G., Korostelev S.A. et al. Long contiguous stretches of homozygosity spanning shortly the imprinted loci are associated with intellectual disability, autism and/or epilepsy. Mol Cytogenet. 2015; (8): 77. DOI:10.1186/s13039-015-0182-z.; Cavalli-Sforza L.L., Bodmer W.L. The genetics of human populations. Freeman W.H. San Francisco. 1971 - 860 p.; Фогель Ф., Мотульски А. Генетика человека: в 3-х т. Том 3. Москва: Мир. 1990 - 366 с.; Анисимова И.В. Анализ структуры задержки психического развития и умственной отсталости среди пациентов Медико-генетического научного центра. Медицинская генетика. 2021; 20(5): 15-25. DOI:10.25557/2073-7998.2021.05.15-25.; Tzschach A., Ropers H.H. Genetics of mental retardation. Dtsch Arztebl 2007; 104(20): A1400-1405.; Michelson D.J., Shevell M.I., Sherr E.H. et al. Evidence report: genetic and metabolic testing on children with global developmental delay: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology. 2011; (77): 1629-1635. DOI:10.1212/WNL.0b013e3182345896.; Karaman B., Kayserili H., Ghanbari A. et al. Pallister-Killian syndrome: clinical, cytogenetic and molecular findings in 15 cases. Mol Cytogenet. 2018; (11): 45. DOI:10.1186/s13039-018-0395-z.; Анисимова И.В. Генетика умственной отсталости. Медицинская генетика 2021; 20(2): 3-20. DOI:10.25557/2073-7998.2021. 02.3-20.; Шилова Н.В., Миньженкова М.Е. Интерпретация клинически значимых вариаций числа копий ДНК. Медицинская генетика 2018; 17(10): 15-19. DOI:10.25557/2073-7998.2018. 10.15-19.; Lay-Son G., Espinoza K., Vial C. et al. Chromosomal microarrays testing in children with developmental disabilities and congenital anomalies. J. Pediatr (Rio J). 2015; (91): 189-195. DOI:10.1016/j.jped.2014.07.003.; Ho K.S., Wassman E.R., Baxter A.L. et al. Chromosomal microarray analysis of consecutive individuals with autism spectrum disorders using an ultra-high resolution chromosomal microarray optimized for neurodevelopmental disorders. Int J Mol Sci. 2016; 17(12): 2070. DOI:10.3390/ijms17122070.; Fan Y., Wu Y., Wang L. et al. Chromosomal microarray analysis in developmental delay and intellectual disability with comorbid conditions. BMC Medical Genomics. 2018; (11): 49. DOI:10.1186/s12920-018-0368-4.; de Souza L.C., Dos Santos A.P., Sgardioli I.C. et al. Phenotype comparison among individuals with developmental delay/intellectual disability with or without genomic imbalances. J Intellect Disabil Res. 2019; 63(11): 1379-1389. DOI:10.1111/jir.12615.; Sbruzzi I.C., Pereira A.C., Vasconcelos B. et al. Williams-Beuren syndrome: diagnosis by polymorphic markers. Genet Test Mol Biomarkers. 2010; 14(2): 209-214. DOI:10.1089/gtmb.2009.0120.; Dutra R.L., Pieri Pde C., Teixeira A.C. et al. Detection of deletions at 7q11.23 in Williams-Beuren syndrome by polymorphic markers. Clinics (Sao Paulo). 2011; 66(6): 959-64. DOI:10.1590/s1807-59322011000600007.; Seo G.H., Kim J.H., Cho J.H. et al. Identification of 1p36 deletion syndrome in patients with facial dysmorphism and developmental delay. Korean J Pediatr. 2016; 59(1): 16-23. DOI:10.3345/kjp.2016.59.1.16.; Schuurs-Hoeijmakers J.H., Vulto-van Silfhout A.T., Vissers L.E. et al. Identification of pathogenic gene variants in small families with intellectually disabled siblings by exome sequencing. J Med Genet. 2013; 50(12): 802-811. DOI:10.1136/jmedgenet-2013- 101644.; Kvarnung M., Nordgren A. Intellectual disability & rare disorders: a diagnostic challenge. Adv Exp Med Biol. 2017; (1031): 39-54. DOI:10.1007/978-3-319-67144-4_3.; Wieczorek D. Autosomal dominant intellectual disability. Med Genet. 2018; 30(3): 318-322. DOI:10.1007/s11825-018-0206-2.; Mir Y.R., Kuchay R.A.H. Advances in identification of genes involved in autosomal recessive intellectual disability: a brief review. J Med Genet. 2019; 56(9): 567-573. DOI:10.1136/jmedgenet-2018-105821.; Monk D., Mackay D. J. G., Eggermann T. et al. Genomic imprinting disorders: lessons on how genome, epigenome and environment interact. Nat Rev Genet. 2019; 20(4): 235-248. DOI:10.1038/s41576-018-0092-0.; Õunap K. Silver-Russell syndrome and Beckwith-Wiedemann syndrome: opposite phenotypes with heterogeneous molecular etiology. Mol Syndromol. 2016; 7(3): 110-121. DOI:10.1159/000447413.; Семенова Н.А., Анисимова И.В., Володин И. В. и соавт. Делеция импринтированного региона 14q32.2 у пациента с синдром Кагами-Огата. Медицинская генетика, 2018; 17(11): 43-47. DOI:10.25557/2073-7998.2018.11.43-47.; Wang T.S., Tsai W.H., Tsai L.P. et al. Clinical characteristics and epilepsy in genomic imprinting disorders: Angelman syndrome and Prader-Willi syndrome. Ci Ji Yi Xue Za Zhi. 2019; 32(2): 137-144. DOI:10.4103/tcmj.tcmj_103_19.; Spiteri B.S., Stafrace Y., Calleja-Agius J. Silver-Russell syndrome: a review. Neonatal Netw. 2017; 36(4): 206-212. DOI:10.1891/0730-0832.36.4.206.
-
14Academic Journal
Authors: I. V. Anisimova, И. В. Анисимова
Source: Medical Genetics; Том 20, № 2 (2021); 3-20 ; Медицинская генетика; Том 20, № 2 (2021); 3-20 ; 2073-7998
Subject Terms: диагностическая эффективность, intellectual disability, prevalence, chromosomal microarray analysis, next generation sequencing, diagnostic efficiency, нарушения интеллекта, распространенность, хромосомный микроматричный анализ, секвенирование нового поколения
File Description: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/1874/1471; American Psychiatric Association. Diagnostic and statistical manual of mental disorders, (5th ed.), Washington, 2013.; Leonard H., Wen X. The epidemiology of mental retardation: challenges and opportunities in the new millennium. Ment Retard Dev Disabil Res Rev. 2002;8(3):117-34.; Maulik P.K., Mascarenhas M.N., Mathers C.D. et al. Prevalence of intellectual disability: a meta-analysis of population-based studies. Res. Dev. Disabil. 2011;32:419-436.; Murthy R.S., Bertolote J.M., Epping-Jordan J.A. et al. The world health report. Mental health: new understanding, new hope. WHO. 2001;104.; Wen X. The definition and prevalence of intellectual disability in Australia. Canberra: Australian Institute of Health and Welfare, 1997.; Vissers L.E.L.M., Gilissen C., Veltman J.A. Genetic studies in intellectual disability and related disorders. Nat Rev Genet. 2016;17(1):9-18.; De Luca C., Race V., Keldermans L. et al. Challenges in molecular diagnosis of X-linked Intellectual disability. Br Med Bull. 2020;00:1-13.; Drews C.D., Yeargin-Allsopp M., Decoufle P., et al. Variation in the influence of selected sociodemographic risk factors for mental retardation. Am J Public Health. 1995;85:329-334.; Harris, J. C. Intellectual disability: Understanding its development, causes, classification, evaluation, and treatment. New York: Oxford University Press. 2006;42-98.; King B.H., Toth K.E., Hodapp R. M. et al. Intellectual disability. Comprehensive textbook of psychiatry. Philadelphia: Lippincott Williams & Wilkins. 2009 (9th ed.);3444-3474.; Stromme P., Magnus P. Correlations between socioeconomic status, IQ and aetiology in mental retardation: a population-based study of Norwegian children. Soc Psychiatry Psychiatr Epidemiol. 2000;35:12-18.; Croen L.A., Grether J.K., Selvin S. 2001. The epidemiology of mental retardation of unknown cause. Pediatrics. 2001;107:E86.; Stromme P. Aetiology in severe and mild mental retardation: a population-based study of Norwegian children. Dev Med Child Neurol. 2000;42:76-86.; Tasman A., Kay J., Lieberman J.A. et al. Psychiatry (3rd ed.). John Wiley & Sons. 2008. 689-746.; Moeschler J.B., Shevell M. Committee on Genetics. Comprehensive evaluation of the child with intellectual disability or global and developmental delays. Pediatrics. 2014;134(3):e903-e918.; Puri R.D., Tuteja M., Verma I.C. Genetic Approach to Diagnosis of Intellectual Disability [published correction appears in Indian J Pediatr. 2017 Mar;84(3):256]. Indian J Pediatr. 2016;83(10):1141-1149.; Vickers R.R., Gibson J.S. A review of the genomic analysis of children presenting with developmental delay/intellectual disability and associated dysmorphic features. Cureus. 2019;11(1):e3873.; Miclea D., Peca L., Cuzmici Z. et al. Genetic testing in patients with global developmental delay/intellectual disabilities. A review. Clujul Med. 2015;88(3):288-292.; Ilyas M., Mir A., Efthymiou S. et al. The genetics of intellectual disability: advancing technology and gene editing. F1000Res. 2020;9:22.; Stevenson R.E., Procopio-Allen A.M., Schroer R.J. et al. Genetic syndromes among individuals with mental retardation. Am J Med Genet A. 2003;123A(1):29-32.; Huertas R. Between doctrine and clinical practice: nosography and semiology in the work of Jean-Etienne-Dominique Esquirol (1772-1840). Hist Psychiatry. 2008;19(74 Pt 2):123-140.; Гуровец Г.В. Психопатология детского возраста. Изд-во: Владос, 2008.- 359c.; Горюнов А.В., Лазарева И.И., Шевченко Ю.С. Г.Е. Сухарева: жизненный путь и научно-педагогическое наследие (к 125-летию со дня рождения). Журнал неврологии и психиатрии им. С.С. Корсакова. 2017;4;59-63.; Приказ Министерства здравоохранения Российской федерации №170 от 27 мая 1997 года «О переходе органов и учреждений здравоохранения Российской Федерации на Международную статистическую классификацию болезней и проблем, связанных со здоровьем X пересмотра». https://normativ.kontur.ru/document?moduleId=1&documentId=73815; D’Arrigo S., Gavazzi F., Alfei E. et al. The Diagnostic Yield of Array Comparative Genomic Hybridization Is High Regardless of Severity of Intellectual Disability/Developmental Delay in Children. J Child Neurol. 2016;31(6):691-699.; The Deciphering Developmental Disorders Study. Large-scale discovery of novel genetic causes of developmental disorders. Nature 519, 223-228 (2015).; de la Paz M.P. Rare diseases epidemiology: update and overview, advances in experimental medicine and biology. 2017.; Wellesley D.G., Hockey K.A., Montgomery P.D. et al. 1992. Prevalence of intellectual handicap in Western Australia: a community study. Med J Aust. 1992;156:94-102.; Chelly J., Khelfaoui M., Francis F. et al. Genetics and pathophysiology of mental retardation. Eur J Hum Genet. 2006;14(6):701-713.; Гинтер Е.К. Медицинская генетика. Изд-во: Медицина Москва 2003.; Linden M.G., Bender B.G., Robinson A. Sex chromosome tetrasomy and pentasomy. Pediatrics. 1995, 96:672-682.; Devriendt K., Holvoet M., Fryns J. An etiological diagnostic survey in children attending a school for special education. Genet Couns. 2003;14:125.; Rauch A., Hoyer J., Guth S. et al. Diagnostic yield of various genetic approaches in patients with unexplained developmental delay or mental retardation. Am J Med Genet Part A. 2006;140A:2063-74.; Michelson D.J., Shevell M.I., Sherr E.H. et al. Evidence report: genetic and metabolic testing on children with global developmental delay: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology. 2011;77:1629-35.; Gilissen C., Hehir-Kwa J.Y., Thung D.T. et al. Genome sequencing identifies major causes of severe intellectual disability. Nature. 2014;511(7509):344-347.; Desai S.S. Down syndrome: a review of the literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1997;84(3):279-285.; van Karnebeek C.D., Jansweijer M.C., Leenders A.G. et al. Diagnostic investigations in individuals with mental retardation: a systematic literature review of their usefulness. Eur J Hum Genet. 2005;13:6-25.; Shevell M., Ashwal S., Donley D. et al. Practice parameter: evaluation of the child with global developmental delay: report of the Quality Standards Subcommittee of the American Academy of Neurology and The Practice Committee of the Child Neurology Society. Neurology. 2003;60:367-380.; Beaudet A.L. The utility of chromosomal microarray analysis in developmental and behavioral pediatrics. Child Dev. 2013;84(1): 121-132.; Miller D.T., Adam M.P., Aradhya S. et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86:749-764.; Stankiewicz P., Beaudet A.L. Use of array CGH in the evaluation of dysmorphology, malformations, developmental delay, and idiopathic mental retardation. Curr Opin Genet Dev. 2007;17(3):182-192.; Blyth M., Maloney V., Beal S. et al. Pallister-Killian syndrome: a study of 22 British patients. J Med Genet. 2015;52(7):454-464.; Shaw-Smith C., Redon R., Rickman L. et al. Microarray based comparative genomic hybridisation (array-CGH) detects submicroscopic chromosomal deletions and duplications in patients with learning disability/mental retardation and dysmorphic features. J Med Genet. 2004;41:241-248.; Наследственные болезни: национальное руководство / Под ред. Н. П. Бочкова, Е. К. Гинтера, В. П. Пузырева - Москва: ГЭОТАР-Медиа, 2012. - 936 с.; Berisha S.Z., Shetty S., Prior T.W. et al. Cytogenetic and molecular diagnostic testing associated with prenatal and postnatal birth defects. Birth Defects Res. 2020;112(4):293-306.; Shin S., Yu N., Choi J.R. et al. Routine chromosomal microarray analysis is necessary in Korean patients with unexplained developmental delay/mental retardation/autism spectrum disorder. Ann Lab Med. 2015;35(5):510-518.; Han J.Y., Lee I.G. Genetic tests by next generation sequencing in children with developmental delay and/or intellectual disability. Clin Exp Pediatr. 2020;10.; Патофизиология, т.1 / под ред. В.В. Новицкого, Е.Д. Гольдберга, О.И. Уразовой. Изд-во: ГЭОТАР-Медиа 2013.; Morton N., Rao D.C., Lang-Brown H. et al. Colchester revisited: a genetic study of mental defect. J. Med. Genet. 1977;14:1-9.; Binaafar S., Razmara E., Mahdieh N. et al. A novel missense variant in GPT2 causes non-syndromic autosomal recessive intellectual disability in a consanguineous Iranian family. Eur J Med Genet. 2020;63(5):103853.; Williams et al. Genetic disorders sourcebook. Omnigraphics (7th edition). 2019.; Hoffmann G.F., Zschocke J., Nyhan W.L. Inherited metabolic diseases. Springer. 2010.; Волгина С.Я., Асанов А.Ю., Соколов А.А. Современные аспекты диагностики, лечения и наблюдения детей с галактоземией I типа. Российский вестник перинатологии и педиатрии. 2015;5:179-187.; Bagni C., Greenough W.T. From mRNP trafficking to spine dysmorphogenesis: the roots of fragile X syndrome. Nat Rev Neurosci. 2005;6:376-387.; Marin-Padilla M. Structural abnormalities of the cerebral cortex in human chromosomal aberrations: a Golgi study. Brain Res. 1972;44:625-629.; Purpura D.P. Dendritic spine ‘dysgenesis’ and mental retardation. Science. 1976;186:1126-1128.; Hinton V.J., Brown W.T., Wisniewski K. et al. Analysis of neocortex in three males with the fragile X syndrome. Am J Med Genet. 1991;41:289-294.; Irwin S.A., Patel B., Idupulapati M. et al. Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination. Am J Med Genet. 2001;98:161-167.; Comery T.A., Harris J.B., Willems P.J. et al. Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc Natl Acad Sci USA. 1997;94:5401-5404.; Huttenlocher P.R., Dabholkar A.S. Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol. 1997;387:167-178.; Boda B., Alberi S., Nikonenko I. et al. The mental retardation protein PAK3 contributes to synapse formation and plasticity in hippocampus. J Neurosci. 2004;24:10816-10825.; Govek E.E., Newey S.E., Akerman C.J. et al. The X-linked mental retardation protein oligophrenin-1 is required for dendritic spine morphogenesis. Nat Neurosci. 2004;7:364-372.; Meng J., Meng Y., Hanna A. et al. Abnormal long-lasting synaptic plasticity and cognition in mice lacking the mental retardation gene Pak3. J Neurosci. 2005;25:6641-6650.; Nodé-Langlois R., Muller D., Boda B. Sequential implication of the mental retardation proteins ARHGEF6 and PAK3 in spine morphogenesis. J Cell Sci. 2006;119(Pt 23):4986-4993.; Fischer M., Kaech S., Wagner U. et al. Glutamate receptors regulate actin-based plasticity in dendritic spines. Nat Neurosci. 2000;3:887-894.; Genot E., Daubon T., Sorrentino V. et al. FGD1 as a central regulator of extracellular matrix remodeling lessons from faciogenital dysplasia. J Cell Sci. 2012;125(Pt 14):3265-3270.; Qadir M.I., Parveen A., Ali M. Cdc42: Role in cancer management. Chem Biol Drug Des. 2015;86(4): 432-439.; des Portes V., Soufir N., Carrié A. et al. Gene for nonspecific X-linked mental retardation (MRX 47) is located in Xq22.3-q24. Am J Med Genet. 1997;72(3):324-328.; Schwartz C.E. X-linked mental retardation: in pursuit of a gene map. Am J Hum Genet. 1993;52(6):1025-1031.; van Karnebeek C.D., Stockler S. Treatable inborn errors of metabolism causing intellectual disability: a systematic literature review. Mol Genet Metab. 2012;105(3):368-381.; Harripaul R., Noor A., Ayub M. et al. The use of next-generation sequencing for research and diagnostics for intellectual disability. Cold Spring Harb Perspect Med. 2017;7(3):a026864.; Hamdan F.F., Gauthier J., Araki Y. et al. Excess of de novo deleterious mutations in genes associated with glutamatergic systems in nonsyndromic intellectual disability [published correction appears in Am J Hum Genet. 2011 Apr 8;88(4):516]. Am J Hum Genet. 2011;88(3):306-316.; Tarpey P.S., Smith R., Pleasance E. et al. A systematic, large-scale resequencing screen of X-chromosome coding exons in mental retardation. Nat Genet. 2009;41:535-543.; Jensen L.R., Lenzner S., Moser B. et al. X-linked mental retardation: A comprehensive molecular screen of 47 candidate genes from a 7.4 Mb interval in Xp11. Eur J Hum Genet. 2007;15: 68-75.; Boycott K.M., Vanstone M.R., Bulman, D. E. et al. Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat. Rev. Genet. 2013;14:681-691.; Najmabadi H., Hu H., Garshasbi M. et al. Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature. 2011;478:57-63.; Tzschach A., Grasshoff U., Beck-Woedl S. et al. Next-generation sequencing in X-linked intellectual disability. Eur J Hum Genet. 2015;23:1513-1518.; Choi M., Scholl U.I., Ji W. et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci USA. 2009;106(45):19096-19101.; Clark M.M., Stark Z., Farnaes L. et al. Meta-analysis of the diagnostic and clinical utility of genome and exome sequencing and chromosomal microarray in children with suspected genetic diseases. Npj Genom Med. 2018;3:16.; Harripaul R., Vasli N., Mikhailov A. et al. Mapping autosomal recessive intellectual disability: combined microarray and exome sequencing identifies 26 novel candidate genes in 192 consanguineous families. Mol Psychiatry. 2018;23(4):973-984.; de Ligt J, Willemsen M.H., van Bon B.W.M. Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med. 2012;367:1921-1929.; Wright C.F., Fitzgerald T.W., Jones W.D. et al. Genetic diagnosis of developmental disorders in the DDD study: a scalable analysis of genome-wide research data. Lancet. 2015;385:1305-1314.; Lee H., Deignan J.L., Dorrani N. et al. Clinical exome sequencing for genetic identification of rare Mendelian disorders. JAMA. 2014;312:1880-1887.; Lindstrand A., Eisfeldt J., Pettersson M. et al. From cytogenetics to cytogenomics: whole-genome sequencing as a first-line test comprehensively captures the diverse spectrum of disease-causing genetic variation underlying intellectual disability. Genome Med. 2019;11(1):68.
-
15Academic Journal
Authors: M. E. Minzhenkova, Z. G. Markova, I. V. Anisimova, I. V. Kanivetc, N. V. Shilova, М. Е. Миньженкова, Ж. Г. Маркова, И. В. Анисимова, И. В. Канивец, Н. В. Шилова
Source: Medical Genetics; Том 20, № 4 (2021); 49-56 ; Медицинская генетика; Том 20, № 4 (2021); 49-56 ; 2073-7998
Subject Terms: CNV, abnormal phenotype, deletion 8q22 2q22 3, chromosomal microarray, аномальный фенотип, делеция 8q22 2q22 3, хромосомный микроматричный анализ
File Description: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/1906/1486; De Gregori M, Ciccone R, Magini P, et al. Cryptic deletions are a common finding in “balanced” reciprocal and complex chromosome rearrangements: a study of 59 patients. J Med Genet. 2007;44:750-762.; Higgins A.W. et al. Characterization of apparently balanced chromosomal rearrangements from the Developmental Genome Anatomy Project. Am J Hum Genet. 2008;82:712-722.; Schluth-Bolard С, Delobel B, Damien S et al. Cryptic genomic imbalances in de novo and inherited apparently balanced chromosomal rearrangements: Array CGH study of 47 unrelated. Eur J Med Genet. 2009;52:291-296.; Миньженкова М.Е., Маркова Ж.Г., Гусева Д.М. и др. Характеристика геномного дисбаланса у пациентов со сбалансированными хромосомными перестройками и аномалиями развития. Медицинская генетика. 2020; 19(9):18-24.; Kuechler A., et al. Five patients with novel overlapping interstitial deletion in 8q22.2-q22.3. Am. J. Med. Genet. 2011; Part A 155:1857-1864.; Kuroda Y., et al. Refinement of the deletion in 8q22.2-q22.3: the minimum deletion size at 8q22.3 related to intellectual disability and epilepsy. Am. J. Med. Genet. 2014;Part A: 9999, 1-5.; Sinajon P., Gofine T., Ingram J., So J. Microdeletion 8q22.2-q22.3 in a 40-year-old male. Eu J Med Genet. 2015;58(11):569-572.; Rincon A., Paez-Rojas P. and Suárez-Obando F. 8q22.2q22.3 Microdeletion Syndrome Associated with Hearing Loss and Intractable Epilepsy. Case Reports in Genetics. 2019;1-6.; Marcinkute R., Brazdziunaite D.,Burokiene N. et al. A de novo 8q22.2q22.3 interstitial microdeletion in a girl with developmental delay and congenital defects. Eu J Med Genet. 2015;58(11): E-P11.08:977.; Busche A., Tuttelmann F., et al. Clinical and molecular characterization of a novel patient with a 8q22.2q22.3 microdeletion. German society of human genetics 2017 meeting.2017; P-CytoG-127:125.; Venegas-Vega C., Guardado M., Juarez E. et al. Clinical and molecular delineation of the emerging 8q22.3 microdeletion syndrome. Eu J Med Genet. 2014;22(1): P08.07-S:149.; Paez P., Perdomo S., Rojas X. A first reported case of a microdeletion in 8q22.22q23 in Colombia. Phenotypic and genotyping correlation. Clinical genetics and dysmorphology. 2012;3115W.; Swisshelm K., Toomey S., LeRoux J. et al. Co-existence of a complex, three-way translocation with a 4.6 Mb deletion in 8q22.3-8q23.1. American Society of Human Genetics 2016 Annual Meeting. 2016;867F:338.; Vlaskamp D.R.M., Callenbach P.M.C., Rump P. et al. Copy number variation in a hospital-based cohort of children with epilepsy. Epilepsia Open. 2017;2(2):244-254.; Chen C.-P., Chang T.-Y., Hung F.-Y. et al. Prenatal diagnosis of an 8q22.2-q23.3 deletion associated with bilateral cleft lip and palate and intrauterine growth restriction on fetal ultrasound. Taiwanese Journal of Obstetrics & Gynecology. 2017;56:843-846.; Douzgou S., Petersen M. B. Clinical variability of genetic isolates of Cohen syndrome. Clinical Genetics. 2011;79(6):501-506.; Wang W,Zhou Z, Zhao W, Huang Y,TangR, YingK,XieY,MaoY. Molecular cloning, mapping and characterization of the human neurocalcin delta gene (NCALD). Biochim Biophys Acta. 2001;1518: 162-167.; Tyynismaa H., Ylikallio E., Patel M. et al. A heterozygous truncating mutation in RRM2B causes autosomal-dominant progressive external ophthalmoplegia with multiple mtDNA deletions. Am. J. Hum. Genet. 2009;85(2):290-295.; Kellis M. et al. Defining functional DNA elements in the human genome. Proceedings of the National Academy of Sciences: journal. 2014;111(17):6131-6138.
-
16Academic Journal
Authors: E. E. Zaiaeva, E. N. Andreeva, N. S. Demikova, Е. Е. Заяева, Е. Н. Андреева, Н. С. Демикова
Source: Medical Genetics; Том 20, № 7 (2021); 59-66 ; Медицинская генетика; Том 20, № 7 (2021); 59-66 ; 2073-7998
Subject Terms: хромосомный микроматричный анализ, prevalence, newborn, fetus, monitoring, array comparative genomic hybridization, популяционная частота, новорожденные, плоды, мониторинг
File Description: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/1949/1504; Stevenson R.E., Hall J.G., Everman DB, Solomon BD, eds. Human Malformations and Related Anomalies. 3rd ed. Oxford, New York: Oxford University Press; 2016.; Loane M. Morris J.K., Addor M.C., et al. Twenty-year trends in the prevalence of Down syndrome and other trisomies in Europe: impact of maternal age and prenatal screening. Eur J Hum Genet. 2013;21(1):27-33. doi:10.1038/ejhg.2012.94; Николаидес К. Ультразвуковое исследование в 11-13(+6) недель беременности. Перевод с английского Михайлова А, Некрасова Е. СПб.: Петрополис, 2007; 144 с.; Miller D.T., Adam M.P., Aradhya S., et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86(5):749-764. doi:10.1016/j.ajhg.2010.04.006; Jansen F.A., Blumenfeld Y.J., Fisher A., et al. Array comparative genomic hybridization and fetal congenital heart defects: a systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2015;45(1):27-35. doi:10.1002/uog.14695; Grande M., Jansen F.A., Blumenfeld Y.J., et al. Genomic microarray in fetuses with increased nuchal translucency and normal karyotype: a systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2015;46(6):650-658. doi:10.1002/uog.14880; Committee on Genetics and the Society for Maternal-Fetal Medicine. Committee Opinion No.682: Microarrays and Next-Generation Sequencing Technology: The Use of Advanced Genetic Diagnostic Tools in Obstetrics and Gynecology. Obstet Gynecol. 2016;128(6):e262-e268.; Wellesley D., Dolk H., Boyd P.A., et al. Rare chromosome abnormalities, prevalence and prenatal diagnosis rates from population-based congenital anomaly registers in Europe. Eur J Hum Genet. 2012;20(5):521-526. doi:10.1038/ejhg.2011.246; Baena N., De Vigan C., Cariati E., et al. Prenatal detection of rare chromosomal autosomal abnormalities in Europe. Am J Med Genet A. 2003;118A(4):319-327. doi:10.1002/ajmg.a.10104
-
17Academic Journal
Authors: Kievskaya, J. K., Kanivets, I. V., Kudryavtseva, E. V., Pyankov, D. V., Korostelev, S. A., Киевская, Ю. К., Канивец, И. В., Кудрявцева, Е. В., Пьянков, Д. В., Коростелев, С. А.
Subject Terms: CHROMOSOMAL MICROARRAY ANALYSIS, PRENATAL DIAGNOSIS, CONGENITAL MALFORMATIONS OF THE CENTRAL NERVOUS SYSTEM, ХРОМОСОМНЫЙ МИКРОМАТРИЧНЫЙ АНАЛИЗ, ПРЕНАТАЛЬНАЯ ДИАГНОСТИКА, ВРОЖДЕННЫЕ ПОРОКИ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ
File Description: application/pdf
Relation: Scopus; Киевская Ю.К., Канивец И.В., Кудрявцева Е.В., Пьянков Д.В., Коростелев С.А. Применение хромосомного микроматричного анализа для диагностики хромосомной патологии у плодов с врожденными пороками центральной нервной системы. Акушерство, Гинекология и Репродукция. 2020;14(4):449–456.; http://elib.usma.ru/handle/usma/7190
Availability: http://elib.usma.ru/handle/usma/7190
-
18Academic Journal
Source: Almanac of Clinical Medicine; Vol 48, No 4 (2020); 271-279 ; Альманах клинической медицины; Vol 48, No 4 (2020); 271-279 ; 2587-9294 ; 2072-0505
Subject Terms: inverted duplication with terminal deletion, congenital malformations, cytogenetic analysis, array-CGH, инвертированная дупликация с терминальной делецией, врожденные аномалии развития, цитогенетическое исследование, хромосомный микроматричный анализ
File Description: application/pdf
Relation: https://almclinmed.ru/jour/article/view/1306/1247; https://almclinmed.ru/jour/article/downloadSuppFile/1306/2003; https://almclinmed.ru/jour/article/downloadSuppFile/1306/2004; https://almclinmed.ru/jour/article/downloadSuppFile/1306/2005; https://almclinmed.ru/jour/article/downloadSuppFile/1306/2006; https://almclinmed.ru/jour/article/downloadSuppFile/1306/2007; https://almclinmed.ru/jour/article/downloadSuppFile/1306/2008; https://almclinmed.ru/jour/article/downloadSuppFile/1306/2009; https://almclinmed.ru/jour/article/view/1306
-
19Academic Journal
Authors: O. E. Talantova, E. A. Serebryakova, O. V. Malysheva, A. V. Tikhonov, E. S. Shabanova, O. A. Efimova, O. G. Chiryaeva, V. S. Prokhorova, A. S. Glotov, О. Е. Талантова, Е. А. Серебрякова, О. В. Малышева, А. В. Тихонов, Е. С. Шабанова, О. А. Ефимова, О. Г. Чиряева, В. С. Прохорова, А. С. Глотов
Source: Medical Genetics; Том 19, № 3 (2020); 53-54 ; Медицинская генетика; Том 19, № 3 (2020); 53-54 ; 2073-7998
Subject Terms: ventriculomegaly, пренатальная диагностика, хромосомный микроматричный анализ (arrayCGH), синдром задержки развития плода (СЗРП), маловодие, долихоцефалия, вентрикуломегалия, trisomy 2, prenatal diagnosis, chromosomal microarray analysis (arrayCGH), fetal growth retardation syndrome (FGR), oligohydramnios, dolichocephaly
File Description: application/pdf
-
20Academic Journal
Authors: D. A. Yurchenko, M. E. Minzhenkova, E. L. Dadali, N. V. Shilova, Д. А. Юрченко, М. Е. Миньженкова, Е. Л. Дадали, Н. В. Шилова
Source: Medical Genetics; Том 19, № 3 (2020); 41-42 ; Медицинская генетика; Том 19, № 3 (2020); 41-42 ; 2073-7998
Subject Terms: chromosomal microarray analysis, FISH, хромосомный микроматричный анализ, inv dup del(8p)
File Description: application/pdf