Showing 1 - 20 results of 20 for search '"хромосомная нестабильность"', query time: 0.59s Refine Results
  1. 1
    Academic Journal

    Contributors: The study was supported by Russian Science Foundation (grant No. 23-15-00262)., Исследование выполнено при поддержке гранта РНФ № 23-15-00262.

    Source: Siberian journal of oncology; Том 24, № 1 (2025); 59-69 ; Сибирский онкологический журнал; Том 24, № 1 (2025); 59-69 ; 2312-3168 ; 1814-4861

    File Description: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/3463/1322; Носов А.К., Рева С.А., Беркут М.В. Современные представления о терапии метастатического рака простаты. Практическая онкология 2019; 20(2): 123–36. doi:10.31917/2002123. EDN: WWKXTY.; Fenor de la Maza M.D., Pérez Gracia J.L., Miñana B., Castro E. PARP inhibitors alone or in combination for prostate cancer. Ther Adv Urol. 2024; 16. doi:10.1177/17562872241272929.; Davies H., Glodzik D., Morganella S., Yates L.R., Staaf J., Zou X., Ramakrishna M., Martin S., Boyault S., Sieuwerts A.M., Simpson P.T., King T.A., Raine K., Eyfjord J.E., Kong G., Borg Å., Birney E., Stunnenberg H.G., van de Vijver M.J., Børresen-Dale A.L., Martens J.W., Span P.N., Lakhani S.R., Vincent-Salomon A., Sotiriou C., Tutt A., Thompson A.M., Van Laere S., Richardson A.L., Viari A., Campbell P.J., Stratton M.R., Nik-Zainal S. HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat Med. 2017; 23(4): 517–25. doi:10.1038/nm.4292.; Polak P., Kim J., Braunstein L.Z., Karlic R., Haradhavala N.J., Tiao G., Rosebrock D., Livitz D., Kübler K., Mouw K.W., Kamburov A., Maruvka Y.E., Leshchiner I., Lander E.S., Golub T.R., Zick A., Orthwein A., Lawrence M.S., Batra R.N., Caldas C., Haber D.A., Laird P.W., Shen H., Ellisen L.W., D’Andrea A.D., Chanock S.J., Foulkes W.D., Getz G. A mutational signature reveals alterations underlying deficient homologous recombination repair in breast cancer. Nat Genet. 2017; 49(10): 1476–86. https://doi.org/10.1038/ng.3934.; Quigley D.A., Dang H.X., Zhao S.G., Lloyd P., Aggarwal R., Alumkal J.J., Foye A., Kothari V., Perry M.D., Bailey A.M., Playdle D., Barnard T.J., Zhang L., Zhang J., Youngren J.F., Cieslik M.P., Parolia A., Beer T.M., Thomas G., Chi K.N., Gleave M., Lack N.A., Zoubeidi A., Reiter R.E., Rettig M.B., Witte O., Ryan C.J., Fong L., Kim W., Friedlander T., Chou J., Li H., Das R., Li H., Moussavi-Baygi R., Goodarzi H., Gilbert L.A., Lara P.N. Jr, Evans C.P., Goldstein T.C., Stuart J.M., Tomlins S.A., Spratt D.E., Cheetham R.K., Cheng D.T., Farh K., Gehring J.S., Hakenberg J., Liao A., Febbo P.G., Shon J., Sickler B., Batzoglou S., Knudsen K.E., He H.H., Huang J., Wyatt A.W., Dehm S.M., Ashworth A., Chinnaiyan A.M., Maher C.A., Small E.J., Feng F.Y. Genomic Hallmarks and Structural Variation in Metastatic Prostate Cancer. Cell. 2018; 174(3): 758–69. doi:10.1016/j.cell.2018.06.039. Erratum in: Cell. 2018; 175(3): 889. doi:10.1016/j.cell.2018.10.019.; Telli M.L., Timms K.M., Reid J., Hennessy B., Mills G.B., Jensen K.C., Szallasi Z., Barry W.T., Winer E.P., Tung N.M., Isakoff S.J., Ryan P.D., Greene-Colozzi A., Gutin A., Sangale Z., Iliev D., Neff C., Abkevich V., Jones J.T., Lanchbury J.S., Hartman A.R., Garber J.E., Ford J.M., Silver D.P., Richardson A.L. Homologous Recombination Deficiency (HRD) Score Predicts Response to Platinum-Containing Neoadjuvant Chemotherapy in Patients with Triple-Negative Breast Cancer. Clin Cancer Res. 2016; 22(15): 3764–73. doi:10.1158/1078-0432.CCR-15-2477.; Isakoff S.J., Mayer E.L., He L., Traina T.A., Carey L.A., Krag K.J., Rugo H.S., Liu M.C., Stearns V., Come S.E., Timms K.M., Hartman A.R., Borger D.R., Finkelstein D.M., Garber J.E., Ryan P.D., Winer E.P., Goss P.E., Ellisen L.W. TBCRC009: A Multicenter Phase II Clinical Trial of Platinum Monotherapy With Biomarker Assessment in Metastatic Triple-Negative Breast Cancer. J Clin Oncol. 2015; 33(17): 1902–9. doi:10.1200/JCO.2014.57.6660.; Mirza M.R., Monk B.J., Herrstedt J., Oza A.M., Mahner S., Redondo A., Fabbro M., Ledermann J.A., Lorusso D., Vergote I., Ben-Baruch N.E., Marth C., Mądry R., Christensen R.D., Berek J.S., Dørum A., Tinker A.V., du Bois A., González-Martín A., Follana P., Benigno B., Rosenberg P., Gilbert L., Rimel B.J., Buscema J., Balser J.P., Agarwal S., Matulonis U.A.; ENGOT-OV16/NOVA Investigators. Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer. N Engl J Med. 2016; 375(22): 2154–64. doi:10.1056/NEJMoa1611310.; Swisher E.M., Lin K.K., Oza A.M., Scott C.L., Giordano H., Sun J., Konecny G.E., Coleman R.L., Tinker A.V., O’Malley D.M., Kristeleit R.S., Ma L., Bell-McGuinn K.M., Brenton J.D., Cragun J.M., Oaknin A., Ray-Coquard I., Harrell M.I., Mann E., Kaufmann S.H., Floquet A., Leary A., Harding T.C., Goble S., Maloney L., Isaacson J., Allen A.R., Rolfe L., Yelensky R., Raponi M., McNeish I.A. Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial. Lancet Oncol. 2017; 18(1): 75–87. doi:10.1016/S1470-2045(16)30559-9.; Coleman R.L., Oza A.M., Lorusso D., Aghajanian C., Oaknin A., Dean A., Colombo N., Weberpals J.I., Clamp A., Scambia G., Leary A., Holloway R.W., Gancedo M.A., Fong P.C., Goh J.C., O’Malley D.M., Armstrong D.K., Garcia-Donas J., Swisher E.M., Floquet A., Konecny G.E., McNeish I.A., Scott C.L., Cameron T., Maloney L., Isaacson J., Goble S., Grace C., Harding T.C., Raponi M., Sun J., Lin K.K., Giordano H., Ledermann J.A.; ARIEL3 investigators. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017; 390(10106): 1949–61. doi:10.1016/S0140-6736(17)32440-6. Erratum in: Lancet. 2017; 390(10106): 1948. doi:10.1016/S0140-6736(17)32702-2.; SokolenkoA.P., Gorodnova T.V., Bizin I.V., Kuligina E.S., Kotiv K.B., Romanko A.A., Ermachenkova T.I., Ivantsov A.O., Preobrazhenskaya E.V., Sokolova T.N., Broyde R.V., Imyanitov E.N. Molecular predictors of the outcome of paclitaxel plus carboplatin neoadjuvant therapy in high-grade serous ovarian cancer patients. Cancer Chemother Pharmacol. 2021; 88(3): 439–50. doi:10.1007/s00280-021-04301-6.; Lotan T.L., Kaur H.B., Salles D.C., Murali S., Schaeffer E.M., Lanchbury J.S., Isaacs W.B., Brown R., Richardson A.L., Cussenot O., Cancel-Tassin G., Timms K.M., Antonarakis E.S. Homologous recombination deficiency (HRD) score in germline BRCA2-versus ATM-altered prostate cancer. Mod Pathol. 2021; 34(6): 1185–93. doi:10.1038/s41379-020-00731-4.; Sokol E.S., Pavlick D., Khiabanian H., Frampton G.M., Ross J.S., Gregg J.P., Lara P.N., Oesterreich S., Agarwal N., Necchi A., Miller V.A., Alexander B., Ali S.M., Ganesan S., Chung J.H. Pan-Cancer Analysis of BRCA1 and BRCA2 Genomic Alterations and Their Association With Genomic Instability as Measured by Genome-Wide Loss of Heterozygosity. JCO Precis Oncol. 2020; 4: 442–65. doi:10.1200/po.19.00345.; van der Auwera G.A., Carneiro M.O., Hartl C., Poplin R., DelAngelG.,Levy-MoonshineA.,JordanT.,ShakirK.,RoazenD.,ThibaultJ., Banks E., Garimella K.V., Altshuler D., Gabriel S., DePristo M.A. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013; 43(1110). doi:10.1002/0471250953.bi1110s43.; Stopsack K.H. Efficacy of PARP Inhibition in Metastatic Castration-resistant Prostate Cancer is Very Different with Non-BRCA DNA Repair Alterations: Reconstructing Prespecified Endpoints for Cohort B from the Phase 3 PROfound Trial of Olaparib. Eur Urol. 2021; 79(4): 442–45. doi:10.1016/j.eururo.2020.09.024.; Póti Á., Gyergyák H., Németh E., Rusz O., Tóth S., Kovácsházi C., Chen D., Szikriszt B., Spisák S., Takeda S., Szakács G., Szallasi Z., Richardson A.L., Szüts D. Correlation of homologous recombination deficiency induced mutational signatures with sensitivity to PARP inhibitors and cytotoxic agents. Genome Biol. 2019; 20(1). doi:10.1186/s13059-019-1867-0.; Fallah J., Xu J., Weinstock C., Gao ., Heiss B.L., Maguire W.F., Chang E., Agrawal S., Tang S., Amiri-Kordestani L., Pazdur R., Kluetz P.G., Suzman D.L. Efficacy of Poly(ADP-ribose) Polymerase Inhibitors by Individual Genes in Homologous Recombination Repair Gene-Mutated Metastatic Castration-Resistant Prostate Cancer:AUS Food and Drug Administration Pooled Analysis. J Clin Oncol. 2024; 42(14): 1687–98. doi:10.1200/JCO.23.02105.; Mateo J., Porta N., Bianchini D., McGovern U., Elliott T., Jones R., Syndikus I., Ralph C., Jain S., Varughese M., Parikh O., Crabb S., Robinson A., McLaren D., Birtle A., Tanguay J., Miranda S., Figueiredo I., Seed G., Bertan C., Flohr P., Ebbs B., Rescigno P., Fowler G., Ferreira A., Riisnaes R., Pereira R., Curcean A., Chandler R., Clarke M., Gurel B., Crespo M., Nava Rodrigues D., Sandhu S., Espinasse A., Chatfield P., Tunariu N., Yuan W., Hall E., Carreira S., de Bono J.S. Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 2020; 21(1): 162–74. doi:10.1016/S1470-2045-(19)30684-9.; Zhao D., Wang A., Li Y., Cai X., Zhao J., Zhang T., Zhao Y., Dong Y., Zhou F., Li Y., Wang J. Establishing the homologous recombination score threshold in metastatic prostate cancer patients to predict the efficacy of PARP inhibitors. J Natl Cancer Cent. 2024; 4(3): 280–87. doi:10.1016/j.jncc.2024.05.005.; Decker B., Karyadi D.M., Davis B.W., Karlins E., Tillmans L.S., Stanford J.L., Thibodeau S.N., Ostrander E.A. Biallelic BRCA2 Mutations Shape the Somatic Mutational Landscape of Aggressive Prostate Tumors. Am J Hum Genet. 2016; 98(5): 818–29. doi:10.1016/j.ajhg.2016.03.003.; Nguyen L., Martens J.W.M., Van Hoeck A., Cuppen E. Pan-cancer landscape of homologous recombination deficiency. Nat Commun. 2020; 11(1). doi:10.1038/s41467-020-19406-4.; Barnett E.S., Schultz N., Stopsack K.H., Lam E.T., Arfe A., Lee J., Zhao J.L., Schonhoft J.D., Carbone E.A., Keegan N.M., Wibmer A., Wang Y., Solit D.B., Abida W., Wenstrup R., Scher H.I. Analysis of BRCA2 Copy Number Loss and Genomic Instability in Circulating Tumor Cells from Patients with Metastatic Castration-resistant Prostate Cancer. Eur Urol. 2023; 83(2): 112–20. doi:10.1016/j.eururo.2022.08.010.; Takamatsu S., Brown J.B., Yamaguchi K., Hamanishi J., Yamanoi K., Takaya H., Kaneyasu T., Mori S., Mandai M., Matsumura N. Utility of Homologous Recombination Deficiency BiomarkersAcross Cancer Types. JCO Precis Oncol. 2022; 6. doi:10.1200/PO.22.00085.; Zhu S., Zhao J., Nie L., Yin W., Zhang Y., Zhao F., Ni Y., Zhang X., Wang Z., Dai J., Liu Z., Chen J., Zeng Y., Wang Z., Sun G., Liang J., Zhao X., Zhu X., Tao R., Yang J., He B., Chen N., Shen P., Zeng H. Homologous recombination deficiency (HRD) score in aggressive prostatic adenocarcinoma with or without intraductal carcinoma of the prostate (IDC-P). BMC Med. 2022; 20(1). doi:10.1186/s12916-022-02430-0.; https://www.siboncoj.ru/jour/article/view/3463

  2. 2
    Academic Journal

    Contributors: The work was partially supported by the Government Assignment of the Russian Ministry of Health, (124020900027-3) and the Ministry of Science and Higher Education (124020700037-4)., Исследование частично поддержано государственными заданиями МЗ РФ (124020900027-3) и МНиВО РФ (124020700037-4).

    Source: Medical Genetics; Том 24, № 9 (2025); 150-152 ; Медицинская генетика; Том 24, № 9 (2025); 150-152 ; 2073-7998

    File Description: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/3203/2063; Iourov I.Y., Vorsanova S.G., Yurov Y.B., Kutsev S.I. Ontogenetic and pathogenetic views on somatic chromosomal mosaicism. Genes. 2019;10(5):379. https://doi.org/10.3390/genes10050379.; Costantino .I, Nicodemus J., Chun J. Genomic mosaicism formed by somatic variation in the aging and diseased brain. Genes. 2021;12(7):1071. https://doi.org/10.3390/genes12071071.; Iourov I.Y., Vorsanova S.G., Kurinnaia O.S. et al. Somatic mosaicism in the diseased brain. Mol Cytogenet. 2022;15(1):45. https://doi.org/10.1186/s13039-022-00624-y.; Vorsanova S.G., Yurov Y.B., Iourov I.Y. Dynamic nature of somatic chromosomal mosaicism, genetic-environmental interactions and therapeutic opportunities in disease and aging. Mol Cytogenet. 2020;13:16. https://doi.org/10.1186/s13039-020-00488-0.; Vorsanova S.G., Demidova I.A., Kolotii A.D. et al. Klinefelter syndrome mosaicism in boys with neurodevelopmental disorders: a cohort study and an extension of the hypothesis. Mol Cytogenet. 2022;15(1):8. https://doi.org/10.1186/s13039-022-00588-z.; Iourov I.Y., Vorsanova S.G., Yurov Y.B. The variome concept: focus on CNVariome. Mol Cytogenet. 2019;12:52. https://doi.org/10.1186/s13039-019-0467-8.

  3. 3
    Academic Journal

    Contributors: This work was supported by the Russian Science Foundation (grant No 20-75-10117-P), Работа выполнена при финансовой поддержке Российского научного фонда (грант № 20-75-10117-П)

    Source: Advances in Molecular Oncology; Vol 11, No 2 (2024); 40-49 ; Успехи молекулярной онкологии; Vol 11, No 2 (2024); 40-49 ; 2413-3787 ; 2313-805X

    File Description: application/pdf

  4. 4
    Academic Journal

    Contributors: The study was supported by the Russian Science Foundation (project Ref. No. 20-75-10117-П), Работа выполнена при финансовой поддержке Российского научного фонда (грант № 20-75-10117-П).

    Source: Medical Genetics; Том 23, № 5 (2024); 3-14 ; Медицинская генетика; Том 23, № 5 (2024); 3-14 ; 2073-7998

    File Description: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2473/1788; Ferlay J., Soerjomataram I., Dikshit R. et al. Cancer Incidence and Mortality Worldwide: Sources, Methods and Major Patterns in GLOBOCAN 2012. Int J Cancer. 2015; 136: E359-386, doi:10.1002/ijc.29210.; Japanese Gastric Cancer Association Japanese Gastric Cancer Treatment Guidelines 2018 (5th Edition). Gastric Cancer. 2021; 24: 1–21, doi:10.1007/s10120-020-01042-y.; Grabsch H.I., Tan P. Gastric Cancer Pathology and Underlying Molecular Mechanisms. Dig Surg. 2013; 30: 150–158, doi:10.1159/000350876.; Hu B., El Hajj N., Sittler S., Lammert N., Barnes R., Meloni-Ehrig A. Gastric Cancer: Classification, Histology and Application of Molecular Pathology. J Gastrointest Oncol. 2012; 3: 251–261, doi:10.3978/j.issn.2078-6891.2012.021.; Lin X., Zhao Y., Song W.-M., Zhang B. Molecular Classification and Prediction in Gastric Cancer. Comput Struct Biotechnol J. 2015; 13: 448–458, doi:10.1016/j.csbj.2015.08.001.; McCracken K.W., Aihara E., Martin B., et al. Wnt/β-Catenin Promotes Gastric Fundus Specification in Mice and Humans. Nature. 2017; 541: 182–187, doi:10.1038/nature21021.; Ma J., Shen H., Kapesa L., Zeng S. Lauren Classification and Individualized Chemotherapy in Gastric Cancer. Oncol Lett. 2016; 11: 2959–2964, doi:10.3892/ol.2016.4337.; Cancer Genome Atlas Research Network Comprehensive Molecular Characterization of Gastric Adenocarcinoma. Nature. 2014; 513: 202– 209, doi:10.1038/nature13480.; Strand M.S., Lockhart A.C., Fields R.C. Genetics of Gastric Cancer. Surg Clin North Am. 2017; 97: 345–370, doi:10.1016/j.suc.2016.11.009.; Geigl J.B., Obenauf A.C., Schwarzbraun T., Speicher M.R. Defining “Chromosomal Instability.” Trends Genet. 2008; 24: 64–69, doi:10.1016/j.tig.2007.11.006.; Loeb L.A. A Mutator Phenotype in Cancer. Cancer Res. 2001; 61: 3230–3239.; Kawakami H., Zaanan A., Sinicrope F.A. Microsatellite Instability Testing and Its Role in the Management of Colorectal Cancer. Curr Treat Options Oncol. 2015; 16: 30, doi:10.1007/s11864-015-0348-2.; Maleki S.S., Röcken C. Chromosomal Instability in Gastric Cancer Biology. Neoplasia. 2017; 19: 412–420, doi:10.1016/j.neo.2017.02.012.; Sansregret L., Vanhaesebroeck B., Swanton C. Determinants and Clinical Implications of Chromosomal Instability in Cancer. Nat Rev Clin Oncol. 2018; 15: 139–150, doi:10.1038/nrclinonc.2017.198.; Holland A.J., Cleveland D.W. Boveri Revisited: Chromosomal Instability, Aneuploidy and Tumorigenesis. Nat Rev Mol Cell Biol. 2009; 10: 478–487, doi:10.1038/nrm2718.; Roy A., Cowan G., Mead A.J., et al. Perturbation of Fetal Liver Hematopoietic Stem and Progenitor Cell Development by Trisomy 21. Proc Natl Acad Sci U S A. 2012; 109: 17579–17584, doi:10.1073/pnas.1211405109.; Castellanos G., Valbuena D.S., Pérez E., Villegas V.E., Rondón-Lagos M. Chromosomal Instability as Enabling Feature and Central Hallmark of Breast Cancer. Breast Cancer (Dove Med Press). 2023; 15: 189–211, doi:10.2147/BCTT.S383759.; Wilhelm T., Said M., Naim V. DNA Replication Stress and Chromosomal Instability: Dangerous Liaisons. Genes (Basel). 2020; 11: 642, doi:10.3390/genes11060642.; Gregan J., Polakova S., Zhang L., Tolić-Nørrelykke I.M., Cimini D. Merotelic Kinetochore Attachment: Causes and Effects. Trends Cell Biol. 2011; 21: 374–381, doi:10.1016/j.tcb.2011.01.003.; Ma H., He Z., Chen J., Zhang X., Song P. Identifying of Biomarkers Associated with Gastric Cancer Based on 11 Topological Analysis Methods of CytoHubba. Sci Rep. 2021; 11: 1331, doi:10.1038/s41598- 020-79235-9.; Mazouzi A., Velimezi G., Loizou J.I. DNA Replication Stress: Causes, Resolution and Disease. Exp Cell Res. 2014; 329: 85–93, doi:10.1016/j.yexcr.2014.09.030.; Cortez D. Replication-Coupled DNA Repair. Mol Cell. 2019; 74: 866–876, doi:10.1016/j.molcel.2019.04.027.; Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022; 12: 31–46, doi:10.1158/2159-8290.CD-21-1059.; Chen M., Linstra R., van Vugt M.A.T.M. Genomic Instability, Inflammatory Signaling and Response to Cancer Immunotherapy. Biochim Biophys Acta Rev Cancer. 2022; 1877: 188661, doi:10.1016/j.bbcan.2021.188661.; Wu C.-E., Yeh D.-W., Pan Y.-R. et al. Chromosomal Instability May Not Be a Predictor for Immune Checkpoint Inhibitors from a Comprehensive Bioinformatics Analysis. Life (Basel). 2020; 10: 276, doi:10.3390/life10110276.; Denko N.C., Giaccia A.J., Stringer J.R., Stambrook P.J. The Human Ha-Ras Oncogene Induces Genomic Instability in Murine Fibroblasts within One Cell Cycle. Proc Natl Acad Sci U S A. 1994; 91: 5124–5128, doi:10.1073/pnas.91.11.5124.; Blanchet A., Bourgmayer A., Kurtz J.-E., Mellitzer G., Gaiddon C. Isoforms of the P53 Family and Gastric Cancer: A Ménage à Trois for an Unfinished Affair. Cancers (Basel). 2021; 13: 916, doi:10.3390/ cancers13040916.; Rasnick D., Duesberg P.H. How Aneuploidy Affects Metabolic Control and Causes Cancer. Biochem J. 1999; 340 ( Pt 3): 621–630.; Cahill D.P., Lengauer C., Yu J., et al. Mutations of Mitotic Checkpoint Genes in Human Cancers. Nature. 1998; 392: 300–303, doi:10.1038/32688.; Li G.-S., Chen G., Liu J., et al. Clinical Significance of CyclinDependent Kinase Inhibitor 2C Expression in Cancers: From Small Cell Lung Carcinoma to Pan-Cancers. BMC Pulm Med. 2022; 22: 246, doi:10.1186/s12890-022-02036-5.; Bibi F., Ali I., Naseer M.I., et al. Detection of Genetic Alterations in Gastric Cancer Patients from Saudi Arabia Using Comparative Genomic Hybridization (CGH). PLoS One. 2018; 13: e0202576, doi:10.1371/journal.pone.0202576.; Ezaki T., Yanagisawa A., Ohta K., et al. Deletion Mapping on Chromosome 1p in Well-Differentiated Gastric Cancer. Br J Cancer. 1996; 73: 424–428, doi:10.1038/bjc.1996.76.; Barone G., Staples C.J., Ganesh A., et al. Human CDK18 Promotes Replication Stress Signaling and Genome Stability. Nucleic Acids Res. 2016; 44: 8772–8785, doi:10.1093/nar/gkw615.; Kim Y.-I., Pecha R.L., Keihanian T., et al. MUC1 Expressions and Its Prognostic Values in US Gastric Cancer Patients. Cancers (Basel). 2023; 15: 998, doi:10.3390/cancers15040998.; Buffart T.E., Carvalho B., Mons T., et al. DNA Copy Number Profiles of Gastric Cancer Precursor Lesions. BMC Genomics. 2007; 8: 345, doi:10.1186/1471-2164-8-345.; Morin P.J., Sparks A.B., Korinek V., et al. Activation of BetaCatenin-Tcf Signaling in Colon Cancer by Mutations in Beta-Catenin or APC. Science. 1997; 275: 1787–1790, doi:10.1126/ science.275.5307.1787.; Wistuba I.I., Maitra A., Carrasco R., et al. High Resolution Chromosome 3p, 8p, 9q and 22q Allelotyping Analysis in the Pathogenesis of Gallbladder Carcinoma. Br J Cancer. 2002; 87: 432– 440, doi:10.1038/sj.bjc.6600490.; Buffart T.E., Carvalho B., van Grieken N.C.T., et al. Losses of Chromosome 5q and 14q Are Associated with Favorable Clinical Outcome of Patients with Gastric Cancer. Oncologist. 2012; 17: 653– 662, doi:10.1634/theoncologist.2010-0379.; Dong Y., Tu R., Liu H., Qing G. Regulation of Cancer Cell Metabolism: Oncogenic MYC in the Driver’s Seat. Signal Transduct Target Ther. 2020; 5: 124, doi:10.1038/s41392-020-00235-2.; de Manzoni G., Tomezzoli A., Di Leo A., Moore P.S., Talamini G., Scarpa A. Clinical Significance of Mutator Phenotype and Chromosome 17p and 18q Allelic Loss in Gastric Cancer. Br J Surg. 2001; 88: 419–425, doi:10.1046/j.1365-2168.2001.01667.x.; Zhang R., Liu Z., Chang X., et al. Clinical Significance of Chromosomal Integrity in Gastric Cancers. Int J Biol Markers. 2022; 37: 296–305, doi:10.1177/03936155221106217.; Inoue T., Uchino S., Shiraishi N., Adachi Y., Kitano S. Loss of Heterozygosity on Chromosome 18q in Cohesive-Type Gastric Cancer Is Associated with Tumor Progression and Poor Prognosis. Clin Cancer Res. 1998; 4: 973–977.; Snijders A.M., Mao J.-H. Multi-Omics Approach to Infer Cancer Therapeutic Targets on Chromosome 20q across Tumor Types. Adv Mod Oncol Res. 2016; 2: 215–223, doi:10.18282/amor.v2.i4.141.; Ptashkin R.N., Pagan C., Yaeger R., et al. Chromosome 20q Amplification Defines a Subtype of Microsatellite Stable, Left-Sided Colon Cancers with Wild-Type RAS/RAF and Better Overall Survival. Mol Cancer Res. 2017; 15: 708–713, doi:10.1158/1541-7786.MCR-16-0352.; Gong P., Xu Y., Liu M., et al. Upregulation of LINC00659 Expression Predicts a Poor Prognosis and Promotes Migration and Invasion of Gastric Cancer Cells. Oncol Lett. 2021; 22: 557, doi:10.3892/ol.2021.12818.; de Mello R.A., Marques A.M., Araújo A. HER2 Therapies and Gastric Cancer: A Step Forward. World J Gastroenterol. 2013; 19: 6165–6169, doi:10.3748/wjg.v19.i37.6165.; Tabach Y., Kogan-Sakin I., Buganim Y., et al. Amplification of the 20q Chromosomal Arm Occurs Early in Tumorigenic Transformation and May Initiate Cancer. PLoS One. 2011; 6: e14632, doi:10.1371/journal.pone.0014632.; Cristescu R., Lee J., Nebozhyn M., et al. Molecular Analysis of Gastric Cancer Identifies Subtypes Associated with Distinct Clinical Outcomes. Nat Med. 2015; 21: 449–456, doi:10.1038/nm.3850.; Kastenhuber E.R., Lowe S.W. Putting P53 in Context. Cell. 2017; 170: 1062–1078, doi:10.1016/j.cell.2017.08.028.; Soussi T., Wiman K.G. TP53: An Oncogene in Disguise. Cell Death Differ. 2015; 22: 1239–1249, doi:10.1038/cdd.2015.53.; Frum R.A., Grossman S.R. Mechanisms of Mutant P53 Stabilization in Cancer. Subcell Biochem. 2014; 85: 187–197, doi:10.1007/978-94- 017-9211-0_10.; Li Q., Zhang L., Jiang J., et al. CDK1 and CCNB1 as Potential Diagnostic Markers of Rhabdomyosarcoma: Validation Following Bioinformatics Analysis. BMC Med Genomics. 2019; 12: 198, doi:10.1186/s12920-019-0645-x.; Li B., Zhu H.-B., Song G.-D., et al. Regulating the CCNB1 Gene Can Affect Cell Proliferation and Apoptosis in Pituitary Adenomas and Activate Epithelial-to-Mesenchymal Transition. Oncol Lett. 2019; 18: 4651–4658, doi:10.3892/ol.2019.10847.; Izadi S., Nikkhoo A., Hojjat-Farsangi M., et al. CDK1 in Breast Cancer: Implications for Theranostic Potential. Anticancer Agents Med Chem. 2020; 20: 758–767, doi:10.2174/1871520620666200203125712.; Zhang X., Ma H., Zou Q., Wu J. Analysis of Cyclin-Dependent Kinase 1 as an Independent Prognostic Factor for Gastric Cancer Based on Statistical Methods. Front Cell Dev Biol. 2020; 8: 620164, doi:10.3389/fcell.2020.620164.; Sofi S., Mehraj U., Qayoom H., et al. ;Cyclin-Dependent Kinases in Breast Cancer: Expression Pattern and Therapeutic Implications. Med Oncol. 2022; 39: 106, doi:10.1007/s12032-022-01731-x.; Yasukawa M., Ando Y., Yamashita T., et al. CDK1 Dependent Phosphorylation of HTERT Contributes to Cancer Progression. Nat Commun. 2020; 11: 1557, doi:10.1038/s41467-020-15289-7.; Huang X., Huang Q., Chen S., et al. Efficacy of Laparoscopic Adenomyomectomy Using Double-Flap Method for Diffuse Uterine Adenomyosis. BMC Womens Health. 2015; 15: 24, doi:10.1186/s12905-015-0182-5.; Huang S., Ye H., Guo W., et al. CDK4/6 Inhibitor Suppresses Gastric Cancer with CDKN2A Mutation. Int J Clin Exp Med. 2015; 8: 11692–11700.; Zhang M., Zhang L., Hei R., et al. CDK Inhibitors in Cancer Therapy, an Overview of Recent Development. Am J Cancer Res. 2021; 11: 1913–1935.; Sofi S., Mehraj U., Qayoom H., et al. Targeting Cyclin-Dependent Kinase 1 (CDK1) in Cancer: Molecular Docking and Dynamic Simulations of Potential CDK1 Inhibitors. Med Oncol. 2022; 39: 133, doi:10.1007/s12032-022-01748-2.; Giet R., Prigent C. Aurora/Ipl1p-Related Kinases, a New Oncogenic Family of Mitotic Serine-Threonine Kinases. J Cell Sci. 1999; 112 ( Pt 21): 3591–3601, doi:10.1242/jcs.112.21.3591.; Bischoff J.R., Plowman G.D. The Aurora/Ipl1p Kinase Family: Regulators of Chromosome Segregation and Cytokinesis. Trends Cell Biol. 1999; 9: 454–459, doi:10.1016/s0962-8924(99)01658-x.; Du R., Huang C., Liu K., Li X., Dong Z. Targeting AURKA in Cancer: Molecular Mechanisms and Opportunities for Cancer Therapy. Mol Cancer. 2021; 20: 15, doi:10.1186/s12943-020-01305-3.; Crosio C., Fimia G.M., Loury R., et al. Mitotic Phosphorylation of Histone H3: Spatio-Temporal Regulation by Mammalian Aurora Kinases. Mol Cell Biol. 2002; 22: 874–885, doi:10.1128/MCB.22.3.874-885.2002.; LeRoy P.J., Hunter J.J., Hoar K.M., et al. Localization of Human TACC3 to Mitotic Spindles Is Mediated by Phosphorylation on Ser558 by Aurora A: A Novel Pharmacodynamic Method for Measuring Aurora A Activity. Cancer Res. 2007; 67: 5362–5370, doi:10.1158/0008-5472.CAN-07-0122.; Chou E.-J., Hung L.-Y., Tang C.-J.C., et al. Phosphorylation of CPAP by Aurora-A Maintains Spindle Pole Integrity during Mitosis. Cell Rep. 2016; 14: 2975–2987, doi:10.1016/j.celrep.2016.02.085.; Venoux M., Basbous J., Berthenet C., et al. ASAP Is a Novel Substrate of the Oncogenic Mitotic Kinase Aurora-A: Phosphorylation on Ser625 Is Essential to Spindle Formation and Mitosis. Hum Mol Genet. 2008; 17: 215–224, doi:10.1093/hmg/ddm298.; Fu J., Bian M., Xin G., et al. TPX2 Phosphorylation Maintains Metaphase Spindle Length by Regulating Microtubule Flux. J Cell Biol. 2015; 210: 373–383, doi:10.1083/jcb.201412109.; Macůrek L., Lindqvist A., Lim D., et al. Polo-like Kinase-1 Is Activated by Aurora A to Promote Checkpoint Recovery. Nature. 2008; 455: 119–123, doi:10.1038/nature07185.; Dutertre S., Cazales M., Quaranta M., et al. Phosphorylation of CDC25B by Aurora-A at the Centrosome Contributes to the G2-M Transition. J Cell Sci. 2004; 117: 2523–2531, doi:10.1242/jcs.01108.; Dar A.A., Belkhiri A., El-Rifai W. The Aurora Kinase A Regulates GSK-3beta in Gastric Cancer Cells. Oncogene. 2009; 28: 866–875, doi:10.1038/onc.2008.434.; Katayama H., Sasai K., Kawai H., et al. Phosphorylation by Aurora Kinase A Induces Mdm2-Mediated Destabilization and Inhibition of P53. Nat Genet. 2004; 36: 55–62, doi:10.1038/ng1279.; Liu M., Li Y., Zhang C., Zhang Q. Role of Aurora Kinase B in Regulating Resistance to Paclitaxel in Breast Cancer Cells. Hum Cell. 2022; 35: 678–693, doi:10.1007/s13577-022-00675-8.; Nie M., Wang Y., Yu Z., et al. AURKB Promotes Gastric Cancer Progression via Activation of CCND1 Expression. Aging (Albany NY). 2020; 12: 1304–1321, doi:10.18632/aging.102684.; Wang Z., Yu Z., Wang G.-H., et al. AURKB Promotes the Metastasis of Gastric Cancer, Possibly by Inducing EMT. Cancer Manag Res. 2020; 12: 6947–6958, doi:10.2147/CMAR.S254250.; Tang A., Gao K., Chu L., Zhang R., Yang J., Zheng J. Aurora Kinases: Novel Therapy Targets in Cancers. Oncotarget. 2017; 8: 23937–23954, doi:10.18632/oncotarget.14893.; Kanayama K., Imai H., Usugi E., Shiraishi T., Hirokawa Y.S., Watanabe M. Association of HER2 Gene Amplification and Tumor Progression in Early Gastric Cancer. Virchows Arch. 2018; 473: 559– 565, doi:10.1007/s00428-018-2433-y.; Neve R.M., Lane H.A., Hynes N.E. The Role of Overexpressed HER2 in Transformation. Ann Oncol. 2001; 12( Suppl 1): S9-13, doi:10.1093/annonc/12.suppl_1.s9.; Dang H.-Z., Yu Y., Jiao S.-C. Prognosis of HER2 Over-Expressing Gastric Cancer Patients with Liver Metastasis. World J Gastroenterol. 2012; 18: 2402–2407, doi:10.3748/wjg.v18.i19.2402.; Shitara K., Bang Y.-J., Iwasa S., et al. Trastuzumab Deruxtecan in Previously Treated HER2-Positive Gastric Cancer. N Engl J Med. 2020; 382: 2419–2430, doi:10.1056/NEJMoa2004413.; Cai H., Jing C., Chang X., et al. Mutational Landscape of Gastric Cancer and Clinical Application of Genomic Profiling Based on Target Next-Generation Sequencing. J Transl Med. 2019; 17: 189, doi:10.1186/s12967-019-1941-0.; Díaz Del Arco C., Estrada Muñoz L., Molina Roldán E., et al. Immunohistochemical Classification of Gastric Cancer Based on New Molecular Biomarkers: A Potential Predictor of Survival. Virchows Arch. 2018; 473: 687–695, doi:10.1007/s00428-018-2443-9.; Tsai J.-H., Jeng Y.-M., Chen K.-H., Lee C.-H., Yuan C.-T., Liau J.-Y. An Integrative Morphomolecular Classification System of Gastric Carcinoma With Distinct Clinical Outcomes. Am J Surg Pathol. 2020; 44: 1017–1030, doi:10.1097/PAS.0000000000001521.; Silva A.N.S., Saito Y., Yoshikawa T., et al. Increasing Frequency of Gene Copy Number Aberrations Is Associated with Immunosuppression and Predicts Poor Prognosis in Gastric Adenocarcinoma. Br J Surg. 2022; 109: 291–297, doi:10.1093/bjs/znab460.; Wang W., Zhang Y., Chen R., et al. Chromosomal Instability and Acquired Drug Resistance in Multiple Myeloma. Oncotarget. 2017; 8: 78234–78244, doi:10.18632/oncotarget.20829.; Kohlruss M., Krenauer M., Grosser B., et al. Diverse “just-Right” Levels of Chromosomal Instability and Their Clinical Implications in Neoadjuvant Treated Gastric Cancer. Br J Cancer. 2021; 125: 1621– 1631, doi:10.1038/s41416-021-01587-4.

  5. 5
    Academic Journal

    Source: Medical Genetics; Том 21, № 10 (2022); 4-8 ; Медицинская генетика; Том 21, № 10 (2022); 4-8 ; 2073-7998

    File Description: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2154/1621; Martínez-Grau I., Vargas-Díaz J. Inmunodeficiencia con ataxia telangiectasia. Reporte de un caso. Inmunología. 2009;28(1):12-18. doi.org/10.1016/S0213-9626(09)70023-X; Rothblumoviatt C., Wright J., Lefton-greif M.A., Mcgrath-morrow S.A., Crawford T.O., Lederman H.M. Ataxia telangiectasia: a review. Orphanet J Rare Dis. 2016;11(159):159. doi.org/10.1186/s13023-016-0543-7; Chun H.H., Gatti R.A. Ataxia - telangiectasia, an evolving phenotype. DNA Repair (Amst). 2004;3(8-9):1187-1196. doi.org/10.1016/j.dnarep.2004.04.010; Teive H.A.G., Moro A., Moscovich M., Arruda W.A., Munhoz R.P., Raskin S., et al. Ataxia - telangiectasia - a historical review and a proposal for a new designation: ATM syndrome. J Neurol Sci. 2015;355(1-2):3-6. doi.org/10.1016/j.jns.2015.05.022; Celiksoy M.H., Cubuk P.O., Guner S.N., Yildiran A. A Case of Ataxia-telangiectasia Presented With Hemophagocytic Syndrome. J Pediatr Hematol Oncol. 2018;40(8):547-549. doi:10.1097/MPH.0000000000001134; Khanna K.K., Keating K.E., Kozlov S., Scott S., Gatei M., Hobson K., et al. ATM associates with and phosphorylates p53: mapping the region of interaction. Nat Genet. 1998;20(4):398-400. doi.org/10.1038/3882; Baskaran R., Wood L.D., Whitaker L.L., Canman C.E., Morgan S.E., Xu Y., et al. Ataxia telangiectasia mutant protein activates c-Abl tyrosine kinase in response to ionizing radiation. Nature, 1997;387(6632):516-519. doi:10.1038/387516a0.; Li J., Chen J., Ricupero C.L., Hart R.P., Schwartz M.S., Kusnecov A., et al. Nuclear accumulation of HDAC4 in ATM deficiency promotes neuro-degeneration in ataxia telangiectasia. Nat Med. 2012;18(5):783-790. doi:10.1038/nm.2709.; Amirifar P., Ranjouri M.R., Yazdani R., Abolhassani H., Aghamohammadi A. Ataxia-te-langiectasia: A review of clinical features and molecular pathology. Pediatr Allergy Immunol. 2019;30(3):277-288. doi:10.1111/pai.13020.; Zaki-Dizaji M., Akrami S.M., Abolhassani H., Rezaei N., Aghamohammadi A. Ataxia telangiectasia syndrome: moonlighting ATM. Expert Rev Clin Immunol. 2017 Dec;13(12):1155-1172. doi:10.1080/1744666X.2017.1392856.; Navratil M., Duranovic’ V., Nogalo B., Svigir A., Dumbovic-Dubravcic’ I., Turkalj M. Ataxia-Telangiectasia Presenting as Cerebral Palsy and Recurrent Wheezing: A Case Report. Am J Case Rep. 2015;16:631-636. doi:10.12659/AJCR.893995; Perlman S.L., Deceased E.B., Sedgewick R.P., Gatti R.A. Ataxia-telangiectasia. Handb Clin Neurol. 2012;103(3):307-322. doi:10.1016/B978-0-444-51892-7.00019-X.; Chopra C., Davies G., Taylor M., Anderson M., Bainbridge S., Tighe P., et al. Immune deficiency in Ataxia-Telangiectasia: a longitudinal study of 44 patients. Clin Exp Inmmunol. 2014;176(2):275-282. doi:10.1111/cei.12262.; Hadi-Babikir H.E. Classic ataxia-telangiectasia in a Sudanese boy: Case report and review of the literature. Sudan J Paediatr. 2011;11(1):60-63.

  6. 6
    Academic Journal

    Source: Medical Genetics; Том 16, № 12 (2017); 18-26 ; Медицинская генетика; Том 16, № 12 (2017); 18-26 ; 2073-7998

    File Description: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/352/268; Khan MA, Khan S, Windpassinger C et al. The Molecular Genetics of Autosomal Recessive Nonsyndromic Intellectual Disability: a Mutational Continuum and Future Recommendations. Ann Hum Genet. 2016; 80(6):342-368.; Chiurazzi P, Pirozzi F. Advances in understanding - genetic basis of intellectual disability. 2016; doi:10.12688/f1000research.7134.1.; Kim T, Bershteyn M, Wynshaw-Boris A. Chromosome therapy. Correction of large chromosomal aberrations by inducing ringchromosomes in induced pluripotent stem cells (iPSCs). Nucleus. 2014; 5(5):391-395.; Plona K, Kim T, Halloran K, Wynshaw-Boris A. Chromosome therapy: Potential strategies for the correction of severe chromosome aberrations. Am J Med Genet C Semin Med Genet. 2016; 172(4):422-430.; Протокол aCGH для микрочипов Agilent Technologies - http://www.chem-agilent.com/pdf/G4410-90020v3_1_CGH_ULS_Protocol.pdf; База данных геномных вариантов - http://projects.tcag.ca/variation/?source=hg18; Каталог «Менделевское наследование у человека» - https://www.ncbi.nlm.nih.gov/omim; Takahashi K, Okita K, Nakagawa M, Yamanaka S. Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc. 2007; 2(12):3081-3089.; База данных геномных вариантов и фенотипов - https://decipher.sanger.ac.uk/; Bershteyn M, Hayashi Y, Desachy G et al. Cell-autonomous correction of ring chromosomes in human induced pluripotent stem cells. Nature. 2014;507(7490):99-103.; Кашеварова АА, Лебедев ИН. Траектории интерпретации фенотипа и кариотипа через призму взаимодействия врача-генетика и лабораторного генетика. Молекулярно-биологические технологии в медицинской практике / Под ред. чл.-корр. РАЕН А.Б. Масленникова. - Вып. 26. - Новосибирск: Академиздат, 2017; 47-55.; Izykowska K, Przybylski GK, Gand C et al. Genetic rearrangements result in altered gene expression and novel fusion transcripts in Sеzary syndrome. Oncotarget. 2017; 8(24):39627-39639.; Беляева ЕО, Кашеварова АА, Никонов АМ и др. Значимость молекулярного кариотипирования для уточнения диагноза при цитогенетически визуализируемой хромосомной патологии. Медицинская генетика. 2016; 7:17-20.; Rocchi M, Archidiacono N, Carbone R et al. Isolation of a human chromosome 22-specific alpha satellite clone. Cytogenet. Cell Genet. 1991; 58:2050-2051.

  7. 7
  8. 8
  9. 9
    Academic Journal

    Source: Bulletin of NSAU (Novosibirsk State Agrarian University); № 4 (2015); 82-86 ; Вестник НГАУ (Новосибирский государственный аграрный университет); № 4 (2015); 82-86 ; 2072-6724

    File Description: application/pdf

    Relation: https://vestngau.elpub.ru/jour/article/view/265/82; Кочнева М. Л., Петухов В. Л. Цитогенетический мониторинг // Практик. - 2006. - № 3. - С. 40-43.; Акифьев А. П., Потапенко А. И. Ядерный генетический материал как инициальный субстрат старения животных // Генетика. - 2001. - Т. 31, № 11. - С. 1445-1458.; A new balanced autosomal reciprocal translocation in cattle revealed by banding techniques and human-painting probes / L. Iannuzzi, L. Molteni, G. P. Di Meo [et al.] // Cytogenetic and Genome Research. - 2001. - Vol. 94, N 3-4. - P. 225-228.; Characterization of a balanced reciprocal translocation, rcp (9;11) (q27; q11) in cattle / L. De Lorenzi, A. De Giovanni, L. Molteni [et al.] // Cytogenetic and Genome research. - 2007. - Vol. 119, N 3-4. - P. 231-234.; A Case of Y-Autosome reciprocal translocation in a Holstein-Friesian Bull / M. Switonski, I. Szczerbal, W. Krumrych, J. Nowacka-Woszuk // Cytogenetic and Genome research. - 2011. - Vol. 132, N 1-2. - P. 22-25.; De Schepper G. G., Aalbers J. G., Te Brake J. H. Double reciprocal translocation heterozygosity in a bull // The Veterinary Record. - 1982. - Vol. 110, N 9. - P. 197-199.; A balanced autosomal reciprocal translocation in an azoospermic bull / H. A. Ansari, H. R. Jung, R. Hediger [et al.] // Cytogenetics and Cell Genetics. - 1993. - Vol. 62. - P. 117-123.; A case of azoospermia in a bull carrying a Y-autosome reciprocal translocation / L. Iannuzzi, L. Molteni, G. P. Di Meo [et al.] // Cytogenetics and Cell Genetics. - 2001. - Vol. 95. - P. 225-227.; Генетическое действие излучений с разными физическими характеристиками на клетки человека и млекопитающих / E. A. Красавин, Р. Д. Говорун, Н. Л. Шмакова [и др.] // Физика элементарных частиц и атомного ядра. - 2004. - Т. 35, № 6. - С. 1484-1508.; Кочнева М. Л. Мониторинг популяций сельскохозяйственных животных в разных экологических условиях: дис. … д-ра биол. наук. - Новосибирск, 2005. - 291 с.; Новый случай реципрокной транслокации rcp (13; 26) у крупного рогатого скота / М. Л. Кочнева, А. Н. Жиденова, Л. С. Билтуева, Т. Ю. Киселева // С.-х. биология. - 2011. - № 6. - С. 84-89.; A New Case of an Inherited Reciprocal Translocation in Cattle: rcp (13; 26) (q24; q11) / L. Biltueva, A. Kulemzina, N. Vorobieva [et al.] // Cytogenetic and genome research. - 2014. - Vol. 144 (3). - P. 205-208.; Кочнева М. Л. Соматическая хромосомная нестабильность у свиней в норме и при патологии // С.-х. биология. - 2003. - № 2. - С. 69-72.; Куликова С. Г., Эрнст Л. К., Петухов В. Л. Соматические хромосомные аберрации у крупного рогатого скота // Докл. РАСХН. - 1996. - № 6. - С. 33.; Глазко В. И., Созинов И. А. Генетика изоферментов животных и растений. - Киев: Урожай, 1993. - Т. 526. - С. 147.; https://vestngau.elpub.ru/jour/article/view/265

  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
    Academic Journal

    Relation: А.М.Федота, Т.М.Ткачева. Цитогенетический анализ ихтиоза // Вiсник Харкiвського нацiонального унiверситету iм. В.Н. Каразiна. Сер.: Біологія. – 2010. – № 905, вип. 11. – С. 111 – 119; УДК: 616.575; http://dspace.univer.kharkov.ua/handle/123456789/2491

  18. 18
  19. 19

    Contributors: Томский государственный университет Институт биологии, экологии, почвоведения, сельского и лесного хозяйства (Биологический институт) Публикации студентов и аспирантов (БИ), Томский государственный университет Институт биологии, экологии, почвоведения, сельского и лесного хозяйства (Биологический институт) Научные подразделения БИ

    Source: Старт в науку : материалы LXIII научной студенческой конференции Биологического института, Томск, 21–25 апреля 2014 г. Томск, 2014. С. 36-37

    File Description: application/pdf

  20. 20