Showing 1 - 2 results of 2 for search '"хориокапиллярный слой"', query time: 0.39s Refine Results
  1. 1
    Academic Journal

    Source: National Journal glaucoma; Том 23, № 3 (2024); 45-53 ; Национальный журнал Глаукома; Том 23, № 3 (2024); 45-53 ; 2311-6862 ; 2078-4104

    File Description: application/pdf

    Relation: https://www.glaucomajournal.ru/jour/article/view/535/478; Allison K, Patel D, Alabi O. Epidemiology of Glaucoma: The Past, Present, and Predictions for the Future. Cureus 2020; 12(11):e11686. https://doi.org/10.7759/cureus.11686; Moghimi S, Hou H, Rao H, Weinreb RN. Optical coherence tomography angiography and glaucoma: a brief review [published online ahead of print April 4, 2019]. Asia Pac J Ophthalmol (Phila). https://doi.org/10.22608/APO.201914; Downs JC, Roberts MD, Burgoyne CF. Mechanical environment of the optic nerve head in glaucoma. Optometry and vision science: official publication of the American Academy of Optometry 2008; 85(6):425-435. https://doi.org/10.1097/OPX.0b013e31817841cb; Strickland RG, Garner MA, Gross AK, Girkin CA. Remodeling of the Lamina Cribrosa: Mechanisms and Potential Therapeutic Approaches for Glaucoma. Int J Mol Sci 2022; 23(15):8068. https://doi.org/10.3390/ijms23158068; Borrelli E, Shi Y, Uji A, et al. Topographic Analysis of the Choriocapillaris in Intermediate Age-related Macular Degeneration. Am J Ophthalmol 2018; 196:34-43. https://doi.org/10.1016/j.ajo.2018.08.014; Lee EJ, Lee KM, Lee SH, Kim TW. Parapapillary Choroidal Microvasculature Dropout in Glaucoma: A Comparison between Optical Coherence Tomography Angiography and Indocyanine Green Angiography. Ophthalmology 2017; 124(8):1209-1217. https://doi.org/10.1016/j.ophtha.2017.03.039; Lee EJ, Kim TW, Kim JA, Kim JA. Central Visual Field Damage and Parapapillary Choroidal Microvasculature Dropout in Primary OpenAngle Glaucoma. Ophthalmology 2018; 125(4):588-596. https://doi.org/10.1016/j.ophtha.2017.10.036; Park HL, Kim JW, Park CK. Choroidal microvasculature dropout is associated with progressive retinal nerve fiber layer thinning in glaucoma with disc hemorrhage. Ophthalmology 2018; 125(7):1003-1013. https://doi.org/10.1016/j.ophtha.2018.01.016; Alm A, Bill A. Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (Macaca irus): a study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Exp Eye Res 1973; 15(1):15-29. https://doi.org/10.1016/0014-4835(73)90185-1; Lejoyeux R, Benillouche J, Ong J, et al. Choriocapillaris: Fundamentals and advancements. Prog Retin Eye Res 2022; 87:100997. https://doi.org/10.1016/j.preteyeres.2021.100997; Anderson DR. What happens to the optic disc and retina in glaucoma? Ophthalmology 1983; 90(7):766-770. https://doi.org/10.1016/s0161-6420(83)34490-0; Anand-Apte B, Hollyfield JG. Developmental anatomy of the retinal and choroidal vasculature. In: Besharse J, Bok D, editors. Encyclopedia of the Eye. London, Academic Press, Elsevier Books, 2009. Pp. 9-15.; Roy S, Kern TS, Song B, Stuebe C. Mechanistic Insights into Pathological Changes in the Diabetic Retina: Implications for Targeting Diabetic Retinopathy. Am J Pathol 2017; 187(1):9-19. https://doi.org/10.1016/j.ajpath.2016.08.022; Jonas JB, Nguyen XN, Gusek GC, Naumann GO. Parapapillary chorioretinal atrophy in normal and glaucoma eyes. I. Morphometric data. Invest Ophthalmol Vis Sci 1989; 30(5):908-918.; Jonas JB. Clinical implications of peripapillary atrophy in glaucoma. Curr Opin Ophthalmol 2005; 16:84-88. https://doi.org/10.1097/01.icu.0000156135.20570.30; Manalastas P, Belghith A, Weinreb RN, Jonas JB, Suh MH, Yarmohammadi A, et al. Automated beta zone parapapillary area measurement to differentiate between healthy and glaucoma eyes. Am J Ophthalmol 2018; 191:140-148. https://doi.org/10.1016/j.ajo.2018.04.021; Teng CC, De Moraes CG, Prata TS, Liebmann CA, Tello C, Ritch R, et al. The region of largest beta-zone parapapillary atrophy area predicts the location of most rapid visual field progression. Ophthalmology 2011; 118:2409-2413. https://doi.org/10.1016/j.ophtha.2011.06.014; Araie M, Sekine M, Suzuki Y, Koseki N. Factors contributing to the progression of visual field damage in eyes with normal-tension glaucoma. Ophthalmology 1994; 101:1440-1444. https://doi.org/10.1016/S0161-6420(94)31153-5; Jonas JB, Jonas SB, Jonas RA, Holbach L, Dai Y, Sun X, et al. Parapapillary atrophy: histological gamma zone and delta zone. Plos One 2012; 7:e47237. https://doi.org/10.1371/journal.pone.0047237; Dai Y, Jonas JB, Huang H, Wang M, Sun X. Microstructure of parapapillary atrophy: beta zone and gamma zone. Invest Ophthalmol Vis Sci 2013; 54:2013-2018. https://doi.org/10.1167/iovs.12-11255; Kim YW, Lee EJ, Kim TW, Kim M, Kim H. Microstructure of beta-zone parapapillary atrophy and rate of retinal nerve fiber layer thinning in primary open-angle glaucoma. Ophthalmology 2014; 121:1341-1349. https://doi.org/10.1016/j.ophtha.2014.01.008; Yamada H, Akagi T, Nakanishi H, Ikeda HO, Kimura Y, Suda K, et al. Microstructure of peripapillary atrophy and subsequent visual field progression in treated primary open-angle glaucoma. Ophthalmology 2016; 123:542-551. https://doi.org/10.1016/j.ophtha.2015.10.061; Yoo YJ, Lee EJ, Kim TW. Intereye difference in the microstructure of parapapillary atrophy in unilateral primary open-angle glaucoma. Invest Ophthalmol Vis Sci 2016; 57:4187-4193. https://doi.org/10.1167/iovs.16-19059; Shang K, Hu X, Dai Y. Morphological features of parapapillary beta zone and gamma zone in chronic primary angle-closure glaucoma. Eye 2019; 33:1378-1386. https://doi.org/10.1038/s41433-019-0541-9; Kim M, Kim TW, Weinreb RN, Lee EJ. Differentiation of parapapillary atrophy using spectral-domain optical coherence tomography. Ophthalmology 2013; 120:1790-1797. https://doi.org/10.1016/j.ophtha.2013.02.011; Jonas JB, Wang YX, Zhang Q, Fan YY, Xu L, Wei WB, et al. Parapapillary gamma zone and axial elongation-associated optic disc rotation: the Beijing Eye Study. Invest Ophthalmol Vis Sci 2016; 57:396-402. https://doi.org/10.1167/iovs.15-18263; Zhang Q, Wang YX, Wei WB, Xu L, Jonas JB. Parapapillary Beta Zone and Gamma Zone in a Healthy Population: The Beijing Eye Study 2011. Invest Ophthalmol Vis Sci. 2018; 59(8):3320-3329. https://doi.org/10.1167/iovs.18-24141; O'Brart DP, de Souza Lima M, Bartsch DU, Freeman W, Weinreb RN. Indocyanine green angiography of the peripapillary region in glaucomatous eyes by confocal scanning laser ophthalmoscopy. Am J Ophthalmol 1997; 123(5):657-666. https://doi.org/10.1016/s0002-9394(14)71078-5; Spraul CW, Lang GE, Lang GK, Grossniklaus HE. Morphometric changes of the choriocapillaris and the choroidal vasculature in eyes with advanced glaucomatous changes. Vision Res 2002; 42(7):923-932. https://doi.org/10.1016/s0042-6989(02)00022-6; Lee SH, Kim T-W, Lee EJ, et al. Focal lamina cribrosa defects are not associated with steep lamina cribrosa curvature but with choroidal microvascular dropout. Sci Rep 2020; 10:6761. https://doi.org/10.1038/s41598-020-63681-6; Nicolela MT. Clinical clues of vascular dysregulation and its association with glaucoma. Can J Ophthalmol 2008; 43(3):337-341. https://doi.org/10.3129/i08-063; Boltz A, Schmidl D, Weigert G, et al. Effect of latanoprost on choroidal blood flow regulation in healthy subjects. Invest Ophthalmol Vis Sci 2011; 52(7):4410-4415. https://doi.org/10.1167/iovs.11-7263; Schmidl D, Weigert G, Dorner GT, et al. Role of adenosine in the control of choroidal blood flow during changes in ocular perfusion pressure. Invest Ophthalmol Vis Sci 2011; 52(8):6035-6039. https://doi.org/10.1167/iovs.11-7491; Flügel C, Tamm ER, Mayer B, Lütjen-Drecoll E. Species differences in choroidal vasodilative innervation: evidence for specific intrinsic nitrergic and VIP-positive neurons in the human eye. Invest Ophthalmol Vis Sci 1994; 35(2):592-599.; Курышева Н.И., Царегородцева М.А., Иртегова Е.Ю., Рябова Т.Я., Шлапак В.Н. Глазное перфузионное давление и первичная сосудистая дисрегуляция у больных глаукомой нормального давления. Глаукома. Журнал НИИ Глазных Болезней РАМН 2011; 3:11-17.; Курышева Н.И. Глазная гемоперфузия и глаукома. М: Гринлайт 2014; 128.; Курышева Н.И. Роль нарушений ретинальной микроциркуляции в прогрессировании глаукомной оптиконейропатии. Вестник офтальмологии 2020; 136(4):57-65. https://doi.org/10.17116/oftalma202013604157; Krzyżanowska-Berkowska P, Czajor K, Iskander DR. Associating the biomarkers of ocular blood flow with lamina cribrosa parameters in normotensive glaucoma suspects. Comparison to glaucoma patients and healthy controls. PLoS One 2021; 16(3):e0248851. https://doi.org/10.1371/journal.pone.0248851; Kwon JM, Weinreb RN, Zangwill LM, Suh MH. Juxtapapillary DeepLayer Microvasculature Dropout and Retinal Nerve Fiber Layer Thinning in Glaucoma. Am J Ophthalmol 2021; 227:154-165. https://doi.org/10.1016/j.ajo.2021.02.014; Suh MH, Zangwill LM, Manalastas PIC, et al. Deep-Layer Microvasculature Dropout by Optical Coherence Tomography Angiography and Microstructure of Parapapillary Atrophy. Invest Ophthalmol Vis Sci 2018; 59(5):1995-2004. https://doi.org/10.1167/iovs.17-23046; Suh MH, Na JH, Zangwill LM, Weinreb RN. Deep-layer Microvasculature Dropout in Preperimetric Glaucoma Patients. J Glaucoma 2020; 29(6):423-428. https://doi.org/10.1097/IJG.0000000000001489; Rao HL, Pradhan ZS, Suh MH, Moghimi S, Mansouri K, Weinreb RN. Optical Coherence Tomography Angiography in Glaucoma. J Glaucoma 2020; 29(4):312-321. https://doi.org/10.1097/IJG.0000000000001463; Liu L, Jia Y, Takusagawa HL, et al. Optical Coherence Tomography Angiography of the Peripapillary Retina in Glaucoma. JAMA Ophthalmol 2015; 133(9):1045-1052. https://doi.org/10.1001/jamaophthalmol.2015.2225; Wang Y, Fawzi AA, Varma R, et al. Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases. Invest Ophthalmol Vis Sci 2011; 52(2):840-845. https://doi.org/10.1167/iovs.10-5985; Курышева Н.И., Маслова Е.В. Оптическая когерентная томография с функцией ангиографии в диагностике глаукомы. Вестник офтальмологии 2016;1 32(5):98-102. https://doi.org/10.17116/oftalma2016132598-102; Kurysheva NI, Shatalova EO. Parafoveal vessel density dropout may predict glaucoma progression in the long-term follow up. Journal of Ophthalmology and Research 2022; 5:150-166.; Jia Y, Morrison JC, Tokayer J, et al. Quantitative OCT angiography of optic nerve head blood flow. Biomed Opt Express 2012; 3(12): 3127-3137. https://doi.org/10.1364/BOE.3.003127; Moghimi S, Bowd C, Zangwill LM, et al. Measurement Floors and Dynamic Ranges of OCT and OCT Angiography in Glaucoma. Ophthalmology 2019; 126(7):980-988. https://doi.org/10.1016/j.ophtha.2019.03.003; Van Melkebeke L, Barbosa-Breda J, Huygens M, Stalmans I. Optical Coherence Tomography Angiography in Glaucoma: A Review. Ophthalmic Res 2018; 60(3):139-151. https://doi.org/10.1159/000488495; WuDunn D, Takusagawa HL, Sit AJ, et al. OCT Angiography for the Diagnosis of Glaucoma: A Report by the American Academy of Ophthalmology. Ophthalmology 2021; 128(8):1222-1235. https://doi.org/10.1016/j.ophtha.2020.12.027; https://www.glaucomajournal.ru/jour/article/view/535

  2. 2
    Academic Journal

    Source: National Journal glaucoma; Том 23, № 4 (2024); 54-59 ; Национальный журнал Глаукома; Том 23, № 4 (2024); 54-59 ; 2311-6862 ; 2078-4104

    File Description: application/pdf

    Relation: https://www.glaucomajournal.ru/jour/article/view/544/487; Suh MH, Zangwill LM, Manalastas PI, et al. Deep Retinal Layer Microvasculature Dropout Detected by the Optical Coherence Tomography Angiography in Glaucoma. Ophthalmology 2016; 123(12):2509-2518. https://doi.org/10.1016/j.ophtha.2016.09.002; Kwon JM, Weinreb RN, Zangwill LM, Suh MH. Parapapillary DeepLayer Microvasculature Dropout and Visual Field Progression in Glaucoma. Am J Ophthalmol 2019; 200:65-75. https://doi.org/10.1016/j.ajo.2018.12.007; Rao HL, Srinivasan T, Pradhan ZS, et al. Optical Coherence Tomography Angiography and Visual Field Progression in Primary Angle Closure Glaucoma. J Glaucoma 2021; 30(3):e61-e67. https://doi.org/10.1097/IJG.0000000000001745; Lee SH, Kim TW, Lee EJ et al. Focal lamina cribrosa defects are not associated with steep lamina cribrosa curvature but with choroidal microvascular dropout. Sci Rep 2020; 10:6761. https://doi.org/10.1038/s41598-020-63681-6; Kwon JM, Weinreb RN, Zangwill LM, Suh MH. Juxtapapillary DeepLayer Microvasculature Dropout and Retinal Nerve Fiber Layer Thinning in Glaucoma. Am J Ophthalmol 2021; 227:154-165. https://doi.org/10.1016/j.ajo.2021.02.014; Suh MH, Zangwill LM, Manalastas PIC, et al. Deep-Layer Microvasculature Dropout by Optical Coherence Tomography Angiography and Microstructure of Parapapillary Atrophy. Invest Ophthalmol Vis Sci 2018; 59(5):1995-2004. https://doi.org/10.1167/iovs.17-23046; Suh MH, Na JH, Zangwill LM, Weinreb RN. Deep-layer Microvasculature Dropout in Preperimetric Glaucoma Patients. J Glaucoma 2020; 29(6):423-428. https://doi.org/10.1097/IJG.0000000000001489; Shin JW, Jo YH, Song MK, Won HJ, Kook MS. Nocturnal blood pressure dip and parapapillary choroidal microvasculature dropout in normal-tension glaucoma. Sci Rep 2021; 11(1):206. https://doi.org/10.1038/s41598-020-80705-3; Lee EJ, Kim JA, Kim TW. Influence of Choroidal Microvasculature Dropout on the Rate of Glaucomatous Progression: A Prospective Study. Ophthalmol Glaucoma 2020; 3(1):25-31. https://doi.org/10.1016/j.ogla.2019.10.001; Kim JA, Lee EJ, Kim TW. Evaluation of Parapapillary Choroidal Microvasculature Dropout and Progressive Retinal Nerve Fiber Layer Thinning in Patients With Glaucoma. JAMA Ophthalmol 2019; 137(7):810-816. https://doi.org/10.1001/jamaophthalmol.2019.1212; Lin S, Cheng H, Zhang S, et al. Parapapillary Choroidal Microvasculature Dropout Is Associated With the Decrease in Retinal Nerve Fiber Layer Thickness: A Prospective Study. Invest Ophthalmol Vis Sci 2019; 60(2):838-842. https://doi.org/10.1167/iovs.18-26115; Jo YH, Shin JW, Song MK, Won HJ, Kook MS. Baseline Choroidal Microvasculature Dropout as a Predictor of Subsequent Visual Field Progression in Open-angle Glaucoma. J Glaucoma 2021; 30(8):672-681. https://doi.org/10.1097/IJG.0000000000001853; Yoon J, Lee A, Song WK et al. Association of superficial macular vessel density with visual field progression in open-angle glaucoma with central visual field damage. Sci Rep 2023; 13(1):7190. https://doi.org/10.1038/s41598-023-34000-6; Igarashi R, Ochiai S, Akagi T, et al. Parapapillary choroidal microvasculature dropout in eyes with primary open-angle glaucoma. Sci Rep 2023; 13(1):20601. https://doi.org/10.1038/s41598-023-48102-8; Micheletti E, Moghimi S, Nishida T, et al. Factors associated with choroidal microvascular dropout change. Br J Ophthalmol 2023; 107(10):1444-1451. https://doi.org/10.1136/bjo-2022-321157; Suh MH, Zangwill LM, Manalastas PI, et al. Optical Coherence Tomography Angiography Vessel Density in Glaucomatous Eyes with Focal Lamina Cribrosa Defects. Ophthalmology 2016; 123(11):2309-2317. https://doi.org/10.1016/j.ophtha.2016.07.023; Курышева Н.И., Ким В.Ю., Ким В.Е., Лавер А.Б. Индекс кривизны решетчатой мембраны склеры и его связь с морфофункциональными и микроциркуляторными нарушениями при глаукоме. Национальный журнал Глаукома 2023; 22(3):15-25. https://doi.org/10.53432/2078-4104-2023-22-3-15-25; Курышева Н.И. Роль нарушений ретинальной микроциркуляции в прогрессировании глаукомной оптиконейропатии. Вестник офтальмологии 2020; 136(4):57-65. https://doi.org/10.17116/oftalma202013604157; Burgoyne CF, Downs JC. Premise and prediction-how optic nerve head biomechanics underlies the susceptibility and clinical behavior of the aged optic nerve head. J Glaucoma 2008; 17(4):318-328. https://doi.org/10.1097/IJG.0b013e31815a343b; Akagi T, Zangwill LM, Shoji T, et al. Optic disc microvasculature dropout in primary open-angle glaucoma measured with optical coherence tomography angiography. PLoS One 2018; 13(8):e0201729. https://doi.org/10.1371/journal.pone.0201729; Lee JY, Shin JW, Song MK, Hong JW, Kook MS. An Increased Choroidal Microvasculature Dropout Size is Associated With Progressive Visual Field Loss in Open-Angle Glaucoma. Am J Ophthalmol 2021; 223:205-219. https://doi.org/10.1016/j.ajo.2020.10.018; Kim JA, Kim TW, Lee EJ, Girard MJA, Mari JM. Comparison of Lamina Cribrosa Morphology in Eyes with Ocular Hypertension and NormalTension Glaucoma. Invest Ophthalmol Vis Sci 2020; 61(4):4. https://doi.org/10.1167/iovs.61.4.4; Lee EJ, Kee HJ, Park KA, Han JC, Kee C. Comparative Topographical Analysis of Choroidal Microvascular Dropout Between Glaucoma and Nonarteritic Anterior Ischemic Optic Neuropathy. Invest Ophthalmol Vis Sci 2021; 62(13):27. https://doi.org/10.1167/iovs.62.13.27; Lee A, Shin JW, Lee JY, Baek MS, Kook MS. Vasculature-function relationship in open-angle glaucomatous eyes with a choroidal microvasculature dropout [published correction appears in Sci Rep. 2023; 13(1):915]. Sci Rep 2022; 12(1):19507. https://doi.org/10.1038/s41598-022-23109-9; Lee EJ, Song JE, Hwang HS, Kim JA, Lee SH, Kim TW. Choroidal Microvasculature Dropout in the Absence of Parapapillary Atrophy in POAG. Invest Ophthalmol Vis Sci 2023; 64(3):21. https://doi.org/10.1167/iovs.64.3.21; Cheng W, Song Y, Li F, et al. Longitudinal Choriocapillaris Vascular Density Changes in Different Types of Primary Open-Angle Glaucoma. Transl Vis Sci Technol 2023; 12(1):21. https://doi.org/10.1167/tvst.12.1.21; Kim JA, Kim TW, Lee EJ, Girard MJA, Mari JM. Microvascular Changes in Peripapillary and Optic Nerve Head Tissues After Trabeculectomy in Primary Open-Angle Glaucoma. Invest Ophthalmol Vis Sci 2018; 59(11):4614-4621. https://doi.org/10.1167/iovs.18-25038; Shin JW, Sung KR, Uhm KB, et al. Peripapillary Microvascular Improvement and Lamina Cribrosa Depth Reduction After Trabeculectomy in Primary Open-Angle Glaucoma. Invest Ophthalmol Vis Sci 2017; 58(13):5993-5999. https://doi.org/10.1167/iovs.17-22787; https://www.glaucomajournal.ru/jour/article/view/544