Showing 1 - 14 results of 14 for search '"химиоиммунотерапия"', query time: 0.65s Refine Results
  1. 1
    Academic Journal

    Contributors: The article was prepared without sponsorship., Статья подготовлена без спонсорской поддержки.

    Source: Malignant tumours; Том 14, № 4 (2024); 77-83 ; Злокачественные опухоли; Том 14, № 4 (2024); 77-83 ; 2587-6813 ; 2224-5057

    File Description: application/pdf

    Relation: https://www.malignanttumors.org/jour/article/view/1428/1026; Sung H., Ferlay J., Siegel R.L., et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71(3):209–249. https://doi.org/10.3322/caac.21660; Злокачественные новообразования в России в 2020 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена − филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2021.252.; Al-Batran S.E., Homann N., Pauligk C., et al. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): a randomised, phase 2/3 trial. Lancet 2019;393(10184):1948–1957. https://doi.org/10.1016/S0140-6736(18)32557-1; Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014;513(7517):202–9. https://doi.org/10.1038/nature13480; Cristescu R., Lee J., Nebozhyn M., et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med 2015;21(5):449–456. https://doi.org/10.1038/nm.3850; Tran-Minh M.L., Lehmann-Che J., Lambert J., et al. Prevalence and prognosis of microsatellite instability in oesogastric adenocarcinoma, NORDICAP 16–01. Clin Res Hepatol Gastroenterol 2021;45(4):101691. https://doi.org/10.1016/j.clinre.2021.101691; Narita Y., Muro K. Updated immunotherapy for gastric cancer. J Clin Med 2023:12(7):2636. https://doi.org/10.3390/jcm12072636; Saeterdal I., Bjørheim J., Lislerud K., et al. Frameshift-mutation-derived peptides as tumor-specific antigens in inherited and spontaneous colorectal cancer. Proc Natl Acad Sci U S A 2001;98(23):13255–60. https://doi.org/10.1073/pnas.231326898; Pietrantonio F., Miceli R., Raimondi A., et al. Individual patient data meta-analysis of the value of microsatellite instability as a biomarker in gastric cancer. J Clin Oncol 2019;37(35):p.3392–3400. https://doi.org/10.1200/JCO.19.01124; Derks S., Liao X., Chiaravalli A.M., et al. Abundant PD-L1 expression in Epstein-Barr Virus-infected gastric cancers. Oncotarget 2016;7(22):32925–32. https://doi.org/10.18632/oncotarget.9076; Sun H., Nered S., Tryakin A., et al. Microsatellite instability (MSI) in patients with gastric cancer (GC) and correlation with PD-L1 expression. J Clin Oncol 2024;42(3_suppl):389–389. https://doi.org/10.1200/JCO.2024.42.3_suppl.389; Сунь Х., Неред С.Н., Трякин А.А. и соавт. Прогностическая значимость микросателлитной нестабильности у больных раком желудка, получающих неоадъювантную терапию. Вопросы онкологии 2023;69(2):275–284. https://doi.org/10.37469/0507-3758-2023-69-2-275-284.; Сунь Х., Неред С.Н., Трякин А.А. и соавт. Результаты комбинированного лечения резектабельного рака желудка в зависимости от статуса микросателлитной нестабильности. Тазовая хирургия и онкология 2023;13(2):17–26. https://doi.org/10.17650/2686-9594-2023-13-2-17-26.; Smyth E.C., Wotherspoon A., Peckitt C., et al. Mismatch repair deficiency, microsatellite instability, and survival: an exploratory analysis of the Medical Research Council Adjuvant Gastric Infusional Chemotherapy (MAGIC) Trial. JAMA Oncol 2017;3(9):1197–1203. https://doi.org/10.1001/jamaoncol.2016.6762; Hashimoto T., Kurokawa Y., Takahashi T., et al. Predictive value of MLH1 and PD-L1 expression for prognosis and response to preoperative chemotherapy in gastric cancer. Gastric Cancer 2019;22(4):785–792. https://doi.org/10.1007/s10120-018-00918-4; Nappo F., Fornaro L., Pompella L., et al. Pattern of recurrence and overall survival in esophagogastric cancer after perioperative FLOT and clinical outcomes in MSI-H population: the PROSECCO Study. J Cancer Res Clin Oncol 2023;149(9):6601–6611. https://doi.org/10.1007/s00432-023-04636-y; Choi Y.Y., Kim H., Shin S.J., et al. Microsatellite instability and programmed cell death-ligand 1 expression in stage II/III gastric cancer: post hoc analysis of the CLASSIC randomized controlled study. Ann Surg 2019;270(2):309–316. https://doi.org/10.1097/SLA.0000000000002803; Janjigian Y.Y., Shitara K., Moehler M., et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial. Lancet 2021;398(10294):27–40. https://doi.org/10.1016/S0140-6736(21)00797-2; Marrelli D., Polom K., Pascale V., et al. Strong Prognostic Value of Microsatellite Instability in Intestinal Type Non-cardia Gastric Cancer. Ann Surg Oncol 2016;23(3):943–50. https://doi.org/10.1245/s10434-015-4931-3; Cunningham D., Allum W.H., Stenning S.P., et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med 2006;355(1):11–20. https://doi.org/10.1056/NEJMoa055531; Tabernero J., Van Cutsem E., Bang Y.J., et al. Pembrolizumab with or without chemotherapy versus chemotherapy for advanced gastric or gastroesophageal junction (G/GEJ) adenocarcinoma: The phase III KEYNOTE-062 study. J Clin Oncol 2019;37(18_suppl):LBA4007-LBA4007. https://doi.org/10.1200/JCO.2019.37.18_suppl.LBA4007; Chao J., Fuchs C.S., Shitara K., et al. Assessment of pembrolizumab therapy for the treatment of microsatellite instability-high gastric or gastroesophageal junction cancer among patients in the KEYNOTE-059, KEYNOTE-061, and KEYNOTE-062 clinical trials. JAMA Oncol 2021;7(6):895–902. https://doi.org/10.1001/jamaoncol.2021.0275; André T., Tougeron D., Piessen G., et al. Neoadjuvant nivolumab plus ipilimumab and adjuvant nivolumab in localized deficient mismatch repair/microsatellite instability-high gastric or esophagogastric junction adenocarcinoma: The GERCOR NEONIPIGA Phase II Study. J Clin Oncol 2023;41(2):255–265. https://doi.org/10.1200/JCO.22.00686; Al-Batran S.E., Lorenzen S., Thuss-Patience P.C., et al. A randomized, open-label, phase II/III efficacy and safety study of atezolizumab in combination with FLOT versus FLOT alone in patients with gastric cancer and adenocarcinoma of the oesophagogastric junction and high immune responsiveness: the IKF-S633/DANTE trial, a trial of AIO in collaboration with SAKK. J Clin Oncol 2023;41:TPS4177. https://doi.org/10.1200/JCO.2023.41.16_suppl.TPS4177; https://www.malignanttumors.org/jour/article/view/1428

  2. 2
    Academic Journal

    Source: Russian Journal of Pediatric Hematology and Oncology; Том 10, № 2 (2023); 77-91 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 10, № 2 (2023); 77-91 ; 2413-5496 ; 2311-1267

    File Description: application/pdf

    Relation: https://journal.nodgo.org/jour/article/view/939/826; Johnsen J.I., Dyberg C., Wickström M. Neuroblastoma – A Neural Crest Derived Embryonal Malignancy. Front Mol Neurosci. 2019;12:9. doi:10.3389/fnmol.2019.00009.; Matthay K.K., Maris J.M., Schleiermacher G., Nakagawara A., Mackall C.L., Diller L., Weiss W.A. Neuroblastoma. Nat Rev Dis Primers. 2016;2:16078. doi:10.1038/nrdp.2016.78.; Park J.R., Eggert A., Caron H. Neuroblastoma: biology, prognosis, and treatment. Hematol Oncol Clin North Am. 2010;24(1):65–86. doi :10.1016/j.hoc.2009.11.011.; Maris J.M., Hogarty M.D., Bagatell R., Cohn S.L. Neuroblastoma. Lancet. 2007;369(9579):2106–20. doi:10.1016/S0140-6736(07)60983-0.; Brodeur G.M., Pritchard J., Berthold F., Carlsen N.L., Castel V., Castelberry R.P., De Bernardi B., Evans A.E., Favrot M., Hedborg F. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol. 1993;11(8):1466–77. doi:10.1200/JCO.1993.11.8.1466.; Spitz R., Betts D.R., Simon T., Boensch M., Oestreich J., Niggli F.K., Ernestus K., Berthold F., Hero B. Favorable outcome of triploid neuroblastomas: a contribution to the special oncogenesis of neuroblastoma. Cancer Genet Cytogenet. 2006;167(1):51–6. doi:10.1016/j.cancergencyto.2005.09.001.; [Electronic resource]: https://nodgo.org/sites/default/files/protokol_neuroblastoma-1.pdf. NB 2004 Trial Protocol for Risk Adapted Treatment of Children with Neuroblastoma. Berthold F. (principal investigator).; Kachanov D., Shamanskaya T., Andreev E., Talypov S., Khismatullina R., Shevtsov D., Skorobogatova E., Kirgizov K., Hachatryan L., Roschin V., Olshanskaya Y., Kazakova A., Shcherbakov A., Tereschenko G., Nechesnyuk A., Grachev N., Fomin D., Maschan M., Likar Y., Varfolomeeva S. P-0503 Treatment of High-Risk Neuroblastoma: Experience of Russian Federal Centers. 48th Congress of the International Society of Paediatric Oncology (SIOP). 19–22 October, 2016. Dublin, Ireland. Pediatric Blood Cancer. 2016;63(Suppl. S3):197.; Tepmongkol S., Heyman S. 131I-MIBG therapy in neuroblastoma: mechanisms, rationale, and current status. Med Pediatr Oncol. 1999;32(6):427–31. doi:10.1002/(sici)1096-911x(199906)32:63.0.co;2-t.; Шаманская Т.В., Андреева Н.А., Уталиева Д.Т., Качанов Д.Ю. GD2-направленная иммунотерапия нейробластомы группы высокого риска с использованием химерных антител ch14.18. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2020;19(3):173–8. doi:10.24287/1726-1708-2020-19-3-173-188.; Pinto N., Naranjo A., Hibbitts E., Kreissman S.G., Granger M.M., Irwin M.S., Bagatell R., London W.B., Greengard E.G., Park J.R., DuBois S.G. Predictors of diff erential response to induction therapy in high-risk neuroblastoma: A report from the Children’s Oncology Group (COG). Eur J Cancer. 2019;112:66–79. doi:10.1016/j.ejca.2019.02.003.; Шаманская Т.В., Качанов Д.Ю., Ядгаров М.Я. Оценка влияния ответа на индукционный этап терапии у пациентов с нейробластомой группы высокого риска на бессобытийную и общую выживаемость: систематический обзор и метаанализ. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2022;21(2):141–56. doi:10.24287/1726-1708-2022-21-2-141-156.; Pearson A.D., Pinkerton C.R., Lewis I.J., Imeson J., Ellershaw C., Machin D., European Neuroblastoma Study Group; Children’s Cancer and Leukaemia Group (CCLG formerly United Kingdom Children's Cancer Study Group). High-dose rapid and standard induction chemotherapy for patients aged over 1 year with stage 4 neuroblastoma: a randomised trial. Lancet Oncol. 2008;9(3):247–56. doi:10.1016/S1470-2045(08)70069-X.; Peinemann F., Tushabe D.A., van Dalen E.C., Berthold F. Rapid COJEC versus standard induction therapies for high-risk neuroblastoma. Cochrane Database Syst Rev. 2015;(5):CD010774. doi:10.1002/14651858.CD010774.pub2.; Garaventa A., Poetschger U., Valteau-Couanet D., Luksch R., Castel V., Elliott M., Ash S., Chan G.C.F., Laureys G., Beck-Popovic M., Vettenranta K., Balwierz W., Schroeder H., Owens C., Cesen M., Papadakis V., Trahair T., Schleiermacher G., Ambros P., Sorrentino S., Pearson A.D.J., Ladenstein R.L. Randomized Trial of Two Induction Therapy Regimens for High-Risk Neuroblastoma: HR-NBL1.5 International Society of Pediatric Oncology European Neuroblastoma Group Study. J Clin Oncol. 2021;39(23):2552–63. doi:10.1200/JCO.20.03144.; Berthold F., Faldum A., Ernst A., Boos J., Dilloo D., Eggert A., Fischer M., Frühwald M., Henze G., Klingebiel T., Kratz C., Kremens B., Krug B., Leuschner I., Schmidt M., Schmidt R., Schumacher-Kuckelkorn R., von Schweinitz D., Schilling F.H., Theissen J., Volland R., Hero B., Simon T. Extended induction chemotherapy does not improve the outcome for high-risk neuroblastoma patients: results of the randomized open-label GPOH trial NB2004-HR. Ann Oncol. 2020;31(3):422–9. doi:10.1016/j.annonc.2019.11.011.; DuBois S.G., Bagatell R. Improving Outcomes in Children With High-Risk Neuroblastoma: The Role of Randomized Trials. J Clin Oncol. 2021;39(23):2525–7. doi:10.1200/JCO.21.01066.; Sharma P., Jhawat V., Mathur P., Dutt R. Innovation in cancer therapeutics and regulatory perspectives. Med Oncol. 2022;39(5):76. doi:10.1007/s12032-022-01677-0.; Plana D., Palmer A.C., Sorger P.K. Independent Drug Action in Combination Therapy: Implications for Precision Oncology. Cancer Discov. 2022;12(3):606–24. doi:10.1158/2159-8290.CD-21-0212.; Salas-Benito D., Pérez-Gracia J.L., Ponz-Sarvisé M., Rodriguez-Ruiz M.E., Martínez-Forero I., Castañón E., López-Picazo J.M., Sanmamed M.F., Melero I. Paradigms on Immunotherapy Combinations with Chemotherapy. Cancer Discov. 2021;11(6):1353–67. doi:10.1158/2159-8290.CD-20-1312.; Yoshida S., Kawaguchi H., Sato S., Ueda R., Furukawa K. An anti-GD2 monoclonal antibody enhances apoptotic eff ects of anticancer drugs against small cell lung cancer cells via JNK (c-Jun terminal kinase) activation. Jpn J Cancer Res. 2002;93(7):816–24. doi:10.1111/j.1349-7006.2002.tb01324.x.; Kowalczyk A., Gil M., Horwacik I., Odrowaz Z., Kozbor D., Rokita H. The GD2-specifi c 14G2a monoclonal antibody induces apoptosis and enhances cytotoxicity of chemotherapeutic drugs in IMR-32 human neuroblastoma cells. Cancer Lett. 2009;281(2):171–82. doi:10.1016/j.canlet.2009.02.040.; Иванов Н.С., Качанов Д.Ю., Ларин С.С., Моллаев М.Д., Коновалов Д.М., Шаманская Т.В. Роль GD2 как диагностического и прогностического опухолевого маркера при нейробластоме (обзор литературы). Российский журнал детской гематологии и онкологии (РЖДГиО). 2021;8(4):47–59. doi:10.21682/2311-1267-2021-8-4-47-59.; Cazet A., Lefebvre J., Adriaenssens E., Julien S., Bobowski M., Grigoriadis A., Tutt A., Tulasne D., Le Bourhis X., Delannoy P. GD2 synthase expression enhances proliferation and tumor growth of MDA-MB-231 breast cancer cells through c-Met activation. Mol Cancer Res. 2010;8(11):1526–35. doi:10.1158/1541-7786.MCR-10-0302.; Cazet A., Bobowski M., Rombouts Y., Lefebvre J., Steenackers A., Popa I., Guérardel Y., Le Bourhis X., Tulasne D., Delannoy P. The ganglioside G(D2) induces the constitutive activation of c-Met in MDA-MB-231 breast cancer cells expressing the G(D3) synthase. Glycobiology. 2012;22(6):806–16. doi:10.1093/glycob/cws049.; Иванов Н.С., Холоденко Р.В., Качанов Д.Ю., Ларин С.С., Моллаев М.Д., Шаманская Т.В. Роль ганглиозидов в модуляции канцерогенеза. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2022;21(2):157–66. doi:10.24287/1726-1708-2022-21-2-157-166.; Mody R., Naranjo A., Van Ryn C., Yu A.L., London W.B., Shulkin B.L., Parisi M.T., Servaes S.E., Diccianni M.B., Sondel P.M., Bender J.G., Maris J.M., Park J.R., Bagatell R. Irinotecantemozolomide with temsirolimus or dinutuximab in children with refractory or relapsed neuroblastoma (COG ANBL1221): an openlabel, randomised, phase 2 trial. Lancet Oncol. 2017;18(7):946–57. doi:10.1016/S1470-2045(17)30355-8.; Mody R., Yu A.L., Naranjo A., Zhang F.F., London W.B., Shulkin B.L., Parisi M.T., Servaes S.E., Diccianni M.B., Hank J.A., Felder M., Birstler J., Sondel P.M., Asgharzadeh S., Glade-Bender J., Katzenstein H., Maris J.M., Park J.R., Bagatell R. Irinotecan, Temozolomide, and Dinutuximab With GM-CSF in Children With Refractory or Relapsed Neuroblastoma: A Report From the Children’s Oncology Group. J Clin Oncol. 2020;38(19):2160–9. doi:10.1200/JCO.20.00203.; Bagatell R., London W.B., Wagner L.M., Voss S.D., Stewart C.F., Maris J.M., Kretschmar C., Cohn S.L. Phase II study of irinotecan and temozolomide in children with relapsed or refractory neuroblastoma: a Children’s Oncology Group study. J Clin Oncol. 2011;29(2):208–13. doi:10.1200/JCO.2010.31.7107.; Federico S.M., McCarville M.B., Shulkin B.L., Sondel P.M., Hank J.A., Hutson P., Meagher M., Shafer A., Ng C.Y., Leung W., Janssen W.E., Wu J., Mao S., Brennan R.C., Santana V.M., Pappo A.S., Furman W.L. A Pilot Trial of Humanized Anti-GD2 Monoclonal Antibody (hu14.18K322A) with Chemotherapy and Natural Killer Cells in Children with Recurrent/Refractory Neuroblastoma. Clin Cancer Res. 2017;23(21):6441–9. doi:10.1158/1078-0432.CCR-17-0379.; Park J.R., Scott J.R., Stewart C.F., London W.B., Naranjo A., Santana V.M., Shaw P.J., Cohn S.L., Matthay K.K. Pilot induction regimen incorporating pharmacokinetically guided topotecan for treatment of newly diagnosed high-risk neuroblastoma: a Children’s Oncology Group study. J Clin Oncol. 2011;29(33):4351–7. doi:10.1200/JCO.2010.34.3293.; Talleur A.C., Triplett B.M., Federico S., Mamcarz E., Janssen W., Wu J., Shook D., Leung W., Furman W.L. Consolidation Therapy for Newly Diagnosed Pediatric Patients with High-Risk Neuroblastoma Using Busulfan/Melphalan, Autologous Hematopoietic Cell Transplantation, Anti-GD2 Antibody, Granulocyte-Macrophage Colony-Stimulating Factor, Interleukin-2, and Haploidentical Natural Killer Cells. Biol Blood Marrow Transplant. 2017;23(11):1910–7. doi:10.1016/j.bbmt.2017.07.011.; Furman W.L., Federico S.M., McCarville M.B., Shulkin B.L., Davidoff A.M., Krasin M.J., Sahr N., Sykes A., Wu J., Brennan R.C., Bishop M.W., Helmig S., Stewart E., Navid F., Triplett B., Santana V.M., Bahrami A., Anthony G., Yu A.L., Hank J., Gillies S.D., Sondel P.M., Leung W.H., Pappo A.S. A Phase II Trial of Hu14.18K322A in Combination with Induction Chemotherapy in Children with Newly Diagnosed High-Risk Neuroblastoma. Clin Cancer Res. 2019;25(21):6320–8. doi:10.1158/1078-0432.CCR-19-1452.; Furman W.L., McCarville B., Shulkin B.L., Davidoff A., Krasin M., Hsu C.W., Pan H., Wu J., Brennan R., Bishop M.W., Helmig S., Stewart E., Navid F., Triplett B., Santana V., Santiago T., Hank J.A., Gillies S.D., Yu A., Sondel P.M., Leung W.H., Pappo A., Federico S.M. Improved Outcome in Children With Newly Diagnosed High-Risk Neuroblastoma Treated With Chemoimmunotherapy: Updated Results of a Phase II Study Using hu14.18K322A. J Clin Oncol. 2022;40(4):335–44. doi:10.1200/JCO.21.01375.; Federico S.M., Naranjo A., Zhang F., Marachelian A., Desai A.V., Shimada H., Braunstein S.E., Tinkle C.L., Yanik G.A., Asgharzadeh S., Sondel P.M., Yu A.L., Acord M., Parisi M.T., Shulkin B.L., DuBois S.G., Bagatell R., Park J.R., Furman W.L., Shusterman S. A pilot induction regimen incorporating dinutuximab and sargramostim for the treatment of newly diagnosed high-risk neuroblastoma: A report from the Children’s Oncology Group. J Clin Oncol. 2022;40(16_suppl):10003. doi:10.1200/JCO.2022.40.16_suppl.10003.; [Electronic resource]: https://clinicaltrials.gov/ProvidedDocs/83/NCT03786783/Prot_SAP_000.pdf. ANBL17P1 Trial Protocol for Pilot Induction Regimen Incorporating Chimeric 14.18 Antibody (ch14.18, dinutuximab) (NSC# 764038) and Sargramostim (GM-CSF) for the Treatment of Newly Diagnosed High Risk Neuroblastoma. S.M. Federico (study chair).; Modak S., Kushner B.H., Mauguen A., Castañeda A., Varo A., Gorostegui M., Muñoz J.P., Santa-Maria V., Basu E.M., Iglesias Cardenas F., Pandit-Taskar N., Cheung N.K.V., Mora J. Naxitamabbased chemoimmunotherapy for resistant high-risk neuroblastoma: Results of “HITS” phase II study. J Clin Oncol. 2022;10028. doi:10.1200/JCO.2022.40.16_suppl.10028.; Ladenstein R., Pötschger U., Valteau-Couanet D., Luksch R., Castel V., Ash S., Laureys G., Brock P., Michon J.M., Owens C., Trahair T., Chi Fung Chan G., Ruud E., Schroeder H., Beck-Popovic M., Schreier G., Loibner H., Ambros P., Holmes K., Castellani M.R., Gaze M.N., Garaventa A., Pearson A.D.J., Lode H.N. Investigation of the Role of Dinutuximab Beta-Based Immunotherapy in the SIOPEN High-Risk Neuroblastoma 1 Trial (HR-NBL1). Cancers (Basel). 2020;12(2):309. doi:10.3390/cancers12020309.; Mueller I., Ehlert K., Endres S., Pill L., Siebert N., Kietz S., Brock P., Garaventa A., Valteau-Couanet D., Janzek E., Hosten N., Zinke A., Barthlen W., Varol E., Loibner H., Ladenstein R., Lode H.N. Tolerability, response and outcome of high-risk neuroblastoma patients treated with long-term infusion of anti-GD2 antibody ch14.18/ CHO. MAbs. 2018;10(1):55–61. doi:10.1080/19420862.2017.1402997.; Ladenstein R., Pötschger U., Valteau-Couanet D., Gray J., Luksch R., Balwierz W., Castel V., Ash S., Popovic M., Laureys G., Chan G., Ruud E., Vettenranta K., Owens C., Schroeder H., Loibner H., Ambros P., Sarnacki S., Boterberg T., Lode H. Randomization of dosereduced subcutaneous interleukin-2 (scIL2) in maintenance immunotherapy (IT) with anti-GD2 antibody dinutuximab beta (DB) long-term infusion (LTI) in front-line high risk neuroblastoma patients: Early results from the HR-NBL1/SIOPEN trial. J Clin Oncol. 2019;37(15):10013. doi:10.1200/JCO.2019.37.15_suppl.10013.; Lode H., Eggert A., Ladenstein R., Riesebeck S., Siebert N., Dworzak M., Arnardottir H., Hundsdoerfer P. Ch14.18/CHO and GPOH Induction Chemotherapy Cycles in Refractory Relapsed or Progressing High Risk Neuroblastoma Patients. Abstract Book for the ANR2018 Conference. P. 61.; Gray J., Moreno L., Weston R., Barone G., Rubio A., Makin G., Vaidya S., Ng A., Castel V., Nysom K., Laureys G., Van Eijkelenburg N., Owens C., Gambart M., DJ Pearson A., Laidler J., Kearns P., Wheatley K. BEACON-Immuno: Results of the dinutuximab beta (dB) randomization of the BEACON-Neuroblastoma phase 2 trial – A European Innovative Therapies for Children with Cancer (ITCC – International Society of Paediatric Oncology Europe Neuroblastoma Group (SIOPEN) trial. J Clin Oncol. 2022;40(16_suppl):10002.; [Electronic resource]: https://clinicaltrials.gov/ct2/show/study/NCT05272371. ChIm-NB-PL Trial Protocol for Immunotherapy With Dinutuximab Beta in Combination With Chemotherapy for the Treatment of Patients With Primary Neuroblastoma Refractory to Standard Therapy and With Relapsed or Progressive Disease. W. Balwierz., A. Wieczorek.; Wieczorek A., Zaniewska-Tekieli A., Ehlert K., Pawinska-Wasikowska K., Balwierz W., Lode H. Dinutuximab beta combined with chemotherapy in patients with relapsed or refractory neuroblastoma. Front Oncol. 2023;13:1082771. doi:10.3389/fonc.2023.1082771.; Olgun N., Cecen E., Ince D., Kizmazoglu D., Baysal B., Onal A., Ozdogan O., Guleryuz H., Cetingoz R., Demiral A., Olguner M., Celik A., Kamer S., Ozer E., Altun Z., Aktas S. Dinutuximab beta plus conventional chemotherapy for relapsed/refractory high-risk neuroblastoma: A single-center experience. Front Oncol. 2022;12:1041443. doi:10.3389/fonc.2022.1041443.; Cheung I.Y., Hsu K., Cheung N.K. Activation of peripheral-blood granulocytes is strongly correlated with patient outcome after immunotherapy with anti-GD2 monoclonal antibody and granulocytemacrophage colony-stimulating factor. J Clin Oncol. 2012;30(4):426–32. doi:10.1200/JCO.2011.37.6236.; Petros W.P., Crawford J. Safety of concomitant use of granulocyte colony-stimulating factor or granulocyte-macrophage colonystimulating factor with cytotoxic chemotherapy agents. Curr Opin Hematol. 1997;4(3):213–6. doi:10.1097/00062752-199704030-00010.; Martinez Sanz P., van Rees D.J., van Zogchel L.M.J., Klein B., Bouti P., Olsman H., Schornagel K., Kok I., Sunak A., Leeuwenburg K., Timmerman I., Dierselhuis M.P., Kholosy W.M., Molenaar J.J., van Bruggen R., van den Berg T.K., Kuijpers T.W., Matlung H.L., Tytgat G.A.M., Franke K. G-CSF as a suitable alternative to GM-CSF to boost dinutuximab-mediated neutrophil cytotoxicity in neuroblastoma treatment. J Immunother Cancer. 2021;9(5):e002259. doi:10.1136/jitc-2020-002259.; Mora J., Chantada G.L. Correspondence on “G-CSF as a suitable alternative to GM-CSF to boost dinutuximab-mediated neutrophil cytotoxicity in neuroblastoma treatment” by Martinez Sanz et al. J Immunother Cancer. 2021;9(12):e003751. doi:10.1136/jitc-2021-003751.; https://journal.nodgo.org/jour/article/view/939

  3. 3
  4. 4
  5. 5
    Academic Journal

    Source: Medical Immunology (Russia); Том 16, № 6 (2014); 559-566 ; Медицинская иммунология; Том 16, № 6 (2014); 559-566 ; 2313-741X ; 1563-0625 ; 10.15789/1563-0625-2014-6

    File Description: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/768/741; Абрамов М.Е., Кадагидзе З.Г., Славина Е.Г., Черткова А.И., Личиницер М.Р. Ингарон (интерферон-гамма) в сочетании с химиотерапией в лечении онкологических больных // Фарматека, 2006. Т. 11, № 126. С. 38-42. [Abramov ME, Kadagidze ZG, E. Slavinа, A.I. Chertkova, M.R. Lichinicer Ingaron (interferongamma) in combination with chemotherapy in cancer patients. Farmateka = Farmateka. 2006. Vol. 11, no. 126, pp. 38-42. (In Russ.)]; Ершов Ф.И., Киселев О.И. Интерфероны и их индукторы. М.: Геотар, 2005. 356 с. [Ershov F.I., Kiselev O.I. Interferons and their inducers.] Moscow: GEOTAR, 2005. 356 p.]; Лазутин Ю.Н., Зинькович С.А., Карташов С.З. Сергостьянц Г.З., Пыльцин С.П., Кабанов С.Н. Адьювантная терапия аденокарциномы легкого // Известия высших учебных заведений. Северо-Кавказский регион. Естественные науки, 2012. № 1. С. 121-125. [Lazutin Yu. N., Zinkovich S.A., Kartashov S.Z., Sergostyants G.Z., Pyltsin S.P., Kabanov S.N. Adjuvant therapy of lung adenocarcinoma. News of Higher Educational Institutions. North Caucasus region. Natural Sciences in 2012. no. 1, pp. 121-125. (In Russ)].; Лазутин Ю.Н., Пыльцин С.П., Кабанов С.Н., Мисюренко А.Ю. Результаты адьювантной химио-иммунотерапии аденокарциномы легкого с использованием отечественного рекомбинантного интерферона-гамма-Ингарона // Российский биотерапевтический журнал, 2012. Т. 11, № 2. С. 30. [Lazutin Yu.N., Pyltsin S.P., Kabanov S.N., Misyurenko A.Yu. Results of adjuvant chemoimmunotherapy of lung adenocarcinoma using domestic recombinant interferon-gamma Ingaron. Rossiyskiy bioterapevticheskiy zhurnal = Russian Journal of Biotherapeutic, 2012, Vol. 11, no. 2, p. 30. (In Russ.)]; Шмелев В. А. Интерферон-гамма, фактор некроза опухолей, тимозин- альфа1- противоинфекционные и противоопухолевые цитокины и препараты. М.: Медпрактика-М, 2008. 535 с. [Shmelev V.A. Interferon-gamma, tumor necrosis factor, thymosin-alpha 1-anti-infective and anti-cancer drugs and cytokines]. Moscow: Medical practice-M, 2008. 535 p.; Хорхе Р. Кесада. Биологические методы лечения интерфероном-гамма. В кн: Биологические методы лечения онкологических заболеваний. Под ред. В. Т. ДеВита мл., С. Хеллмана, С. А. Розенберга; пер. с англ. под ред. Л. А. Певницкого. М.: Медицина, 2002. С. 452-459. [Jorge R. Quesada. Biological methods of treatment with interferon-gamma. In the book: Biological treatments for cancer. Ed. VT DeVita jr., S. Hellman, S.A. Rosenberg; lane. from English. ed. LA Pevnitsky.] Moscow: Medicine, 2002, pp. 452-459.; Arriagada R., Bergman B., Dunant A., Le Chevalier T., Pignon J.P., Vansteenkiste J. Cisplatin-based adjuvant chemotherapy in patients with completely resected non-small-cell lung cancer. N. Engl. J. Med., 2004, Vol. 350, no. 4, pp. 351-360.; Arriagada R., Auperin A., Burdett S., Le Chevalier T., Le Pechoux C., Pignon J.-P., Stewart L.A., Tierney J.F. Adjuvant chemotherapy, with or without postoperative radiotherapy, in operable non-small-cell lung cancer: two meta-analyses of individual patient data. Lancet, 2010, Vol. 375, no. 9722, pp. 1267-1277.; Chawla-Sarkar M., Linder D.J., Liu Y-F., Williams B.R., Sen G.C., Silverman R.H., Borden E.C. Apoptosis and interferons: role of interferon- stimulated genes as mediators of apoptosis. Apoptosis, 2003, Vol. 8 , no. 3, pp. 237-249.; Douillard J.Y., Rossel R., De Lena M., Carpagnano F., Ramlau R., Gonz les-Larriba J.L., Grodzki T., Pereira J.R., Le Groumellec A., Lorusso V., Clary C., Torres A.J., Dahabreh J., Souquet P.J., Astudillo J., Fournel P., Artal-Cortes A., Jassem J., Koubkova L., His P., Riggi M., Hurteloup P. Adjuvant vinorelbine plus cisplatin versus observation in patients with completely resected stage 1B-3A non-small-cell lung cancer (Adjuvant Navelbine International Trialist Association [ANITA]): a randomized controlled trial. Lancet Oncol., 2006, Vol. 7, no. 9, pp. 719-727.; Dunn G.P., Koebel C.M., Schreiber R.D. Interferons, immunity and cancer immunoediting. Nat. Rev. Immunol., 2006, Vol. 6, no. 11, pp. 836-848.; Fidler I. J. Regulation of neoplastic angiogenesis. J. Natl. Cancer Inst. Monogr., 2001, Vol. 28, p. 10.; Fruh M., Rolland E., Pignon J.P., Seymour L., Ding K., Tribodet H., Winton T., Le Chevalier T., Scagliotti G.V., Douillard J.Y., Spiro S., Shepherd F.A. Pooled analysis of the effect of age on adjuvant cisplatin-based chemotherapy for completely resected non-small-cell lung cancer. J. Clin. Oncol., 2008, Vol. 26, no. 21, pp. 3573-3581.; Kaplan D.H., Shankaran V., Dighe A.S., Stockert E., Aguet M., Old L.J., Schreiber RD. Demonstration of an interferon-gamma-dependent tumor surveillance system in immunocompetent mice. Proc. Natl. Acad. Sci. USA, 1998, Vol. 95, no. 13, pp. 7556-7561.; Kato H., Ichinose Y., Ohta M., Hata E., Tsubota N., Tada H., Watanabe Y., Wada H., Tsuboi M., Hamajima N. A randomized trial of adjuvant chemotherapy with uracil-tegafur for adenocarcinoma of the lung. N. Engl. J. Med., 2004, Vol. 350, no. 17, pp. 1713-1721.; Mattson K., Niiranen A., Pyrhonen S., F rkkilä M., Cantell K. Recombinant interferon gamma treatment in non-small-cell lung cancer. Antitumor effect and cardiotoxicity. Acta Oncol., 1991, Vol. 30, no. 5, pp. 607-610.; Platanias L.C. Mechanisms of type-1 and type-2 interferons-mediated signaling. Nat. Rev. Immunol., 2005, Vol. 5, pp. 375-386.; Shiller J.H., Storer B., Dreicer R., Rosenquist D., Frontiera M., Carbone P.P. Randomized phase 2-3 trial of combination beta and gamma interferons, and etopozid, and cisplatin in inoperable non-small cell cancer of the lung. J. Natl Cancer Inst. 1989 Nov. 15, Vol. 81, no. 22, pp. 1739-1743.; Strauss G.M., Herndon J.E., Maddaus M.A., Johnstone D.W., Johnson E.A., Harpole D.H., Gillenwater H.H., Watson D.M., Sugarbaker D.J., Schilsky R.L., Vokes E.E., Green M.R. Adjuvant paclitaxel; plus carboplatin compared with observation in stage 1B non-small-cell lung cancer: CALGB 9633 with the Cancer and Leukemia Group B, Radiation Therapy Oncology Group, and North Central Cancer Treatment Group Study Groups. J. Clin. Oncol., 2008, Vol. 26, no. 31, pp. 5043-5051.; Winton T., Livingston R., Johnson D., Rigas J., Johnston M., Butts C., Cormier Y., Goss G., Inculet R., Vallieres E., Fry W., Bethune D., Ayoub J., Ding K., Seymour L., Graham B., Tsao M.S., Gandara D., Kesler K., Demmy T., Shepherd F. Vinorelbine plus cisplatin vs. observation in resected non-small-cell lung cancer. N. Engl. J. Med., 2005, Vol. 352, no. 25, pp. 2589-2597.; Zimmerer J., Lesinski G.B., Kondadasula S.V., Karpa V.I., Lehman A., Raychaudhury A., Becknell B., Carson W.E. IFN-alpha-induced signal transduction, gene expression, and antitumor activity of immune effector cells are negatively regulated by suppressor of cytokine signaling protein. J. Immunol., 2007, Vol. 178, no. 8, pp. 4832-4845.; https://www.mimmun.ru/mimmun/article/view/768

  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14