Showing 1 - 7 results of 7 for search '"хиазмально-селлярная область"', query time: 0.45s Refine Results
  1. 1
    Academic Journal

    Source: Ophthalmology in Russia; Том 17, № 2 (2020); 238-248 ; Офтальмология; Том 17, № 2 (2020); 238-248 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2020-2

    File Description: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/1202/695; Pereira A., Monteiro M.L. Computerized and manual perimetry in patients with severe temporal visual field defects due to suprasellar tumors. Arq Bras Oftalmol. 2005;(68):587–591. DOI:10.1590/S0004-27492005000500003; Cannavó S., De Natale R., Curtó L., Li Calzi L., Trimarchi F. Effectiveness of computer-assisted perimetry in the follow-up of patients with pituitary microadenoma responsive to medical treatment. Clin Endocrinol. 1992;(37):157–161. DOI:10.1111/j.1365-2265.1992.tb02300.x; Cannavó S., De Natale R., Princi P., Li Calzi L., Aragona A., Trimarchi F. Effectiveness of computer-assisted perimetry in the diagnosis of pituitary adenomas. Clin Endocrinol. 1989;(31):673–678. DOI:10.1111/j.1365-2265.1989.tb01292.x; Shen M.Q., Ye W., Zhang Y.Y., Chen J. Visual field defects in 169 cases of pituitary adenomas. Chung-Hua Yen Ko Tsa Chih. 2009;(45):1074–1079. DOI:10.3760/cma.j.issn.0412-4081.2009.12.005; Fujimoto N., Saeki N., Miyauchi O., Adachi-Usami E. Criteria for early detection of temporal hemianopia in asymptomatic pituitary tumor. Eye. 2002;(16):731–738. DOI:10.1038/sj.eye.6700165; Rowe F.J., Cheyne C.P., García-Fiñana M., Noonan C.P., Howard C., Smith J., Adeoye J. Detection of Visual Field Loss in Pituitary Disease: Peripheral Kinetic Versus Central Static. Neuro-Ophthalmology. 2015;(39):116–124. DOI:10.3109/01658107.2014.990985; Fledelius H.C. Temporal visual field defects are associated with monocular inattention in chiasmal pathology. Acta Ophthalmol. 2009;(87):769–775. DOI:10.1111/j.1755-3768.2008.01328.x; Hudson H., Rissell C., Gauderman W.J., Feldon S.E. Pituitary tumor volume as a predictor of postoperative visual field recovery. Quantitative analysis using automated static perimetry and computed tomography morphometry. J Clin Neuroophthalmol. 1991;(11):280–283.; Thomas R., Shenoy K., Seshadri M.S. Muliyil J., Rao A., Paul P. Visual field defects in non-functioning pituitary adenomas. Indian Journal of Ophthalmology. 2002;(50):127–130.; Gedik S., Gur S., Atalay B., Colak M., Altinors N., Akova Y.A. Humphrey visual field analysis, visual field defects, and ophthalmic findings in patients with macro pituitary adenoma. Saudi Med J. 2007;(28):1380–1384.; Lee I.H., Miller N.R., Zan E., Tavares F., Blitz A.M., Sung H., Yousem D.M., Boland M.V. Visual defecs in patients with pituitary adenomas: the myth of bitemporal hemianopsia. American Journal of Roentgenology. 2015;(205):512–518. DOI:10.2214/AJR.15.14527; Zhong Y., Shen X., Min Y. The role of blue-on-yellow perimetry in patients with pituitary tumor. Annals of Ophthalmology. 2009;(41):40–43.; Huang C.Q., Carolan J., Redline D., Taravati P., Woodward K.R., Johnson C.A., Wall M., Keltner J.L. Humphrey Matrix perimetry in optic nerve and chiasmal disorders: comparison with Humphrey SITA standard 24-2. Invest Ophthalmol. 2008;(49):917–923. DOI:10.1167/iovs.07-0241; Noval S., Contreras I., Rebolleda G., Muñoz-Negrete F.J., Ruiz de Zárate B. A comparison between Humphrey and frequency doubling perimetry for chiasmal visual field defects. Eur J Ophthalmol. 2005;(15):739–745.; Monteiro M.L., Moura F.C., Cunha L.P. Frequency doubling perimetry in patients with mild and moderate pituitary tumor-associated visual field defects detected by conventional perimetry. Arq Bras Oftalmol. 2007;(70):323–329. DOI:10.1590/S0004-27492007000200024; Yoon M.K., Hwang T.N., Day S., Hong J., Porco T., McCulley T.J. Comparison of Humphrey Matrix frequency doubling technology to standard automated perimetry in neuro-ophthalmic disease. Middle East Afr J Ophthalmol. 2012;(19):211–215. DOI:10.4103/0974-9233.95254; Jones J., Ruge J. Intraoperative magnetic resonance imaging in pituitary macroadenoma surgery: an assessment of visual outcome. Neurosurg. 2007;(23):E12. DOI:10.3171/FOC-07/11/E12; Alleyne CH, Jr., Barrow D.L., Oyesiku N.M. Combined transsphenoidal and pterional craniotomy approach to giant pituitary tumors. Surgical Neurology. 2002;(57):380–390. DOI:10.1016/S0090-3019(02)00705-X; Astradsson A., Wiencke A.K., Munck af Rosenschold P., Engelholm S.-A., Ohlhues L., Roed H., Juhler M. Visual outcome after fractionated stereotactic radiation therapy of benign anterior skull base tumors. J Neurooncol. 2014;(118):101–108. DOI:10.1007/s11060-014-1399-0; Astradsson A., Munck af Rosenschold P., Feldt-Rasmussen U., Poulsgaard L., Wiencke A.K., Ohlhues L., et. al. Visual outcome, endocrine function and tumor control after fractionated stereotactic radiation therapy of craniopharyngiomas in adults: findings in a prospective cohort. Acta Oncol. 2017;(56):415–421. DOI:10.1080/0284186X.2016.1270466; Ma J., Zhao C., Wang R., Feng F., Wang E., You H., Jiang Y., Zhang M., Zhong Y. Visual field improvement after pituitary tumor surgery in patients with McCune–Albright syndrome. Journal of Neuro-Ophthalmology. 2013;(33):26–29. DOI:10.1097/WNO.0b013e3182726b69; Danesh-Meyer H.V., Carroll S.C., Foroozan R., Savino P.J., Fan J., Jiang Y., Vander Hoorn S. Relationship between retinal nerve fiber layer and visual field sensitivity as measured by optical coherence tomography in chiasmal compression. Invest Ophthalmol Vis Sci. 2006;(47):4827–4835. DOI:10.1167/iovs.06-0327; Monteiro M.L., Cunha L.P., Costa-Cunha L.V., Maia O.O. Jr., Oyamada M.K. Relationship between optical coherence tomography, pattern electroretinogram and automated perimetry in eyes with temporal hemianopia from chiasmal compression. Invest Ophthalmol Vis Sci. 2009;(50):3535–3541. DOI:10.1167/iovs.08-3093; Moura F.C., Costa-Cunha L.V., Malta R.F., Monteiro M.L. Relationship between visual field sensitivity loss and quadrantic macular thickness measured with Stratus-Optical coherence tomography in patients with chiasmal syndrome. Arq Bras Oftalmol. 2010;(73):409–413. DOI:10.1590/S0004-27492010000500004; Tang Y., Qu Y.Z., Yang L., Wang J., Wang L.N., Fang M., Lu W. Assessing the damage to visual function by optical coherence tomography and the visual field test in Saddle area tumor patients. Chung-Hua Yen Ko Tsa Chih. 2012;(48):1001–1004. DOI:10.3760/cma.j.issn.0412-4081.2012.11.010; Danesh-Meyer H.V., Papchenko T., Savino P.J., Law A., Evans J., Gamble G.D. In vivo retinal nerve fiber layer thickness measured by optical coherence tomography predicts visual recovery after surgery for parachiasmal tumors. Invest Ophthalmol Vis Sci. 2008;(49):1879–1885. DOI:10.1167/iovs.07-1127; Danesh-Meyer H.V., Wong A., Papchenko T., Matheos K., Stylli S., Nichols A., Frampton C., Daniell M., Savino P.J., Kaye A.H. Optical coherence tomography predicts visual outcome for pituitary tumors. J Clin Neurosci. 2015;(22):1098–1104. DOI:10.1016/j.jocn.2015.02.001; Ohkubo S., Higashide T., Takeda H., Murotani E., Hayashi Y., Sugiyama K. Relationship between macular ganglion cell complex parameters and visual field parameters after tumor resection in chiasmal compression. Jpn J Ophthalmol. 2012;(56):68–75. DOI:10.1007/s10384-011-0093-4; Yum H.R., Park S.H., Park H.Y., Shin S.Y. Macular ganglion cell analysis determined by Cirrus HD optical coherence tomography for early detecting chiasmal compression. PLoS One. 2016;(11): e0153064. DOI:10.1371/journal.pone.0153064; Zhang L., Sun C., Sun X. The clinical features and value of macular ganglion cell complex thickness patterns in patients with optic chiasma lesion. Chung-Hua Yen Ko Tsa Chih. 2016;(52):335–342. DOI:10.1371/journal.pone.0153064; Tieger M.G., Hedges T.R. 3rd, Ho J., Erlich-Malona N.K., Vuong L.N., Athappilly G.K., Mendoza-Santiesteban C.E. Ganglion Cell Complex Loss in Chiasmal Compression by Brain Tumors. Journal of Neuro-Ophthalmology. 2017;(37):7–12. DOI:10.1097/WNO.0000000000000424; https://www.ophthalmojournal.com/opht/article/view/1202

  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7