Εμφανίζονται 1 - 9 Αποτελέσματα από 9 για την αναζήτηση '"характеристики производительности"', χρόνος αναζήτησης: 0,47δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Συγγραφείς: V. I. Klimenok, В. И. Клименок

    Πηγή: Informatics; Том 20, № 3 (2023); 50-60 ; Информатика; Том 20, № 3 (2023); 50-60 ; 2617-6963 ; 1816-0301

    Περιγραφή αρχείου: application/pdf

    Relation: https://inf.grid.by/jour/article/view/1254/1060; Flatto L., Hahn S. Two parallel queues created by arrivals with two demands. SIAM Journal on Applied Mathematics, 1984, vol. 44, pp. 1041-1053.; Nelson R., Tantawi A. N. Approximate analysis of fork/join synchronization in parallel queues. IEEE Transactions on Computers, 1988, vol. 37, pp. 739-743.; Kim C., Agrawala A. K. Analysis of the fork-join queue. IEEE Transactions on Computers, 1989, vol. 38, pp. 250-255.; Qiu Z., Juan P., Harrison H. G. Beyond the mean in fork-join queues: Efficient approximation for response-time tails. Performance Evaluation, 2015, vol. 91, pp. 99-116.; Lui J. C.-S., Muntz R. R., Towsley D. Computing Performance Bounds for Fork-Join Queueing Models. Los Angeles, University of California, Computer Science Department, 1994, 38 р.; Varma S., Makowski A. M. Interpolation approximations for symmetric fork-join queues. Performance Evaluation, 1994, vol. 20, pp. 245-265.; Ko S.-S., Serfozo R. F. Response times in M/M/s fork-join networks. Advances in Applied Probability, 2004, vol. 36, pp. 854-871.; Ko S.-S., Serfozo R. F. Sojourn times in G/M/1 fork-join networks. Naval Research Logistics, 2008, vol. 55, pp. 432-443.; Thomasian A. Analysis of fork/join and related queueing systems. ACM Computing Surveys, 2014, vol. 47, pp. 1-71.; Wang W., Harchol-Balter M., Jiang H., Scheller-Wolf A., Srikant R. Delay asymptotics and bounds for multitask parallel jobs. ACM SIGMETRICS Performance Evaluation Review, 2018, vol. 46, pp. 2-7.; Lee K., Shah N. B., Huang L., Ramchandran K. TheMDS queue: analysing the latency performance of erasure codes. IEEE Transactions on Information Theory, 2017, vol. 63, pp. 2822-2842.; Rizk A., Poloczek F., Ciucu F. Stochastic bounds in fork-join queueing systems under full and partial mapping. Queueing Systems, 2016, vol. 83, pp. 261-291.; Baccelli F., Makowski A. M., Shwartz A. The fork-join queue and related systems with synchronization constraints: stochastic ordering and computable bounds. Advances in Applied Probability, 1989, vol. 21, pp. 629-660.; Balsamo S., Donatiello L., Van Dijk N. M. Bound performance models of heterogeneous parallel processing systems. IEEE Transactions on Parallel and Distributed Systems, 1998, vol. 9, pp. 1041-1056.; Neuts M. F. Matrix-Geometric Solutions in Stochastic Models. Baltimore, The Johns Hopkins University Press, 1981, 352 p.; Dudin A. N., Klimenok V. I., Vishnevsky V. M. The theory of queuing systems with correlated flows. Springer, 2020, 430 р.; Graham A. Kronecker Products and Matrix Calculus with Applications. Ellis Horwood, Cichester, 1981, 130 р.; Ozawa T. Sojourn time distributions in the queue defined by a general QBD process. Queueing Systems, 2006, vol. 53, pp. 203–211.; https://inf.grid.by/jour/article/view/1254

  3. 3
    Academic Journal

    Συγγραφείς: V. I. Klimenok, В. И. Клименок

    Πηγή: Informatics; Том 19, № 2 (2022); 56-67 ; Информатика; Том 19, № 2 (2022); 56-67 ; 2617-6963 ; 1816-0301

    Περιγραφή αρχείου: application/pdf

    Relation: https://inf.grid.by/jour/article/view/1201/1023; Ghosh A., Banik A. D. An algorithmic analysis of the / /1 generalized processor-sharing queue. Computers and Operations Research, 2017, vol. 79, pp. 1–11.; Telek M., van Houdt B. Response time distribution of a class of limited processor sharing queues. Performance Evaluation Review, 2018, vol. 45, no. 3, pp. 143–155. https://doi.org/10.1145/3199524.3199548; Yashkov S., Yashkova A. Processor sharing: a survey of the mathematical theory. Automation and Remote Control, 2007, vol. 68, pp. 662–731.; Zhen Q., Knessl C. On sojourn times in the finite capacity / /1 queue with processor sharing. Operations Research Letters, 2009, vol. 37, pp. 447–450.; Masuyama H., Takine T. Sojourn time distribution in a / /1 processor-sharing queue. Operations Research Letters, 2003, vol. 31, pp. 406–412.; Dudin S., Dudin A., Dudina O., Samouylov K. Analysis of a retrial queue with limited processor sharing operating in the random environment. Lecture Notes in Computer Science, 2017, vol. 10372, pp. 38–49.; Dudin A., Dudin S., Dudina O., Samouylov K. Analysis of queuing model with limited processor sharing discipline and customers impatience. Operations Research Perspectives, 2018, vol. 5, pp. 245–255.; Klimenok V., Dudin A. A retrial queueing system with processor sharing. Communications in Computer and Information Science, 2021, vol. 1391, pp. 46–60.; He Q. M. Queues with marked customers. Advances in Applied Probability, 1996, vol. 28, pp. 567–587.; Dudin A. N., Klimenok V. I., Vishnevsky V. M. The Theory of Queuing Systems with Correlated Flows. Springer, 2020, 410 p.; Neuts M. F. Matrix-Geometric Solutions in Stochastic Models. Baltimore, the Johns Hopkins University Press, 1981, 352 p.; Graham A. Kronecker Products and Matrix Calculus with Applications. Cichester, Ellis Horwood, 1981, 130 p.; Ramaswami V. Independent Markov processes in parallel. Communications in Statistics. Stochastic Models, 1985, vol. 1, pp. 419–432.; Ramaswami V., Lucantoni D. M. Algorithms for the multi-server queue with phase-type service. Communications in Statistics. Stochastic Models, 1985, vol. 1, pp. 393–417.; Dudina O., Kim C. S., Dudin S. Retrial queueing system with Markovian arrival flow and phase type service time distribution. Computers and Industrial Engineering, 2013, vol. 66, pp. 360–373.; Klimenok, V. I., Dudin A. N. Multi-dimensional asymptotically quasi-Toeplitz Markov chains and their application in queueing theory. Queueing Systems, 2006, vol. 54, pp. 245–259.; https://inf.grid.by/jour/article/view/1201

  4. 4
    Academic Journal

    Πηγή: Radio Electronics, Computer Science, Control; No. 1 (2021): Radio Electronics, Computer Science, Control; 158-171
    Радиоэлектроника, информатика, управление; № 1 (2021): Радиоэлектроника, информатика, управление; 158-171
    Радіоелектроніка, iнформатика, управління; № 1 (2021): Радіоелектроніка, інформатика, управління; 158-171

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: http://ric.zntu.edu.ua/article/view/228042

  5. 5
    Academic Journal

    Συγγραφείς: V. I. Klimenok, В. И. Клименок

    Συνεισφορές: This work has been financially supported by the joint grant of Belarusian Republican Foundation for Fundamental Research (no. F18R-136) and Russian Foundation for Fundamental Research (no. 18-57-00002)., Исследование выполнено в рамках совместного проекта Белорусского республиканского фонда фундаментальных исследований (грант № Ф18Р-136) и Российского фонда фундаментальных исследований (грант № 18-57-00002).

    Πηγή: Informatics; Том 16, № 3 (2019); 69-78 ; Информатика; Том 16, № 3 (2019); 69-78 ; 2617-6963 ; 1816-0301

    Περιγραφή αρχείου: application/pdf

    Relation: https://inf.grid.by/jour/article/view/870/821; Reliability-based measures for a retrial system with mixed standby components / C. C. Kuoa [et al.] // Applied Mathematical Modelling. – 2014. – Vol. 38. – P. 4640–4651.; Modeling of multi-server repair problem with switching failure and reboot delay and related profit analysis / Y. L. Hsu [et al.] // Computers and Industrial Engineering. – 2014. – Vol. 69. – P. 21–28.; Wu, C. H. Multi-server machine repair problems under a ( , synchronous single vacation policy / C. H. Wu, J. C. Ke // Applied Mathematical Modelling. – 2014. – Vol. 38. – P. 2180–2189.; Klimenok, V. I. A / / queue with negative customers and partial protection of service / V. I. Klimenok, A. N. Dudin // Communications in Statistics – Simulation and Computation. – 2012. – Vol. 41. – P. 1062–1082.; Priority retrial queueing model operating in random environment with varying number and reservation of servers / A. Dudin [et al.] // Applied Mathematics and Computations. – 2015. – Vol. 269. – P. 674–690.; Lucantoni, D. New results on the single server queue with a batch Markovian arrival process / D. Lucantoni // Communications in Statistics. Stochastic Models. – 1991. – Vol. 7. – P. 1–46.; Neuts, M. F. Matrix-Geometric Solutions in Stochastic Models / M. F. Neuts. – Baltimore : The Johns Hopkins University Press, 1981. – 352 р.; Graham, A. Kronecker Products and Matrix Calculus with Applications / A. Graham. – Cichester : Ellis Horwood, 1981. – 130 р.; Klimenok, V. I. Multi-dimensional asymptotically quasi-Toeplitz Markov chains and their application in queueing theory / V. I. Klimenok, A. N. Dudin // Queueing Systems. – 2006. – Vol. 54. – P. 245–259.; https://inf.grid.by/jour/article/view/870

    Διαθεσιμότητα: https://inf.grid.by/jour/article/view/870

  6. 6
  7. 7
  8. 8
  9. 9