-
1Academic Journal
Συγγραφείς: Anton Rakitskiy, Boris Ryabko
Πηγή: Вычислительные технологии. :104-115
Θεματικοί όροι: Вычислительная Способность, теория Шеннона, архитектура процессоров, характеристики производительности процессоров, теория информации
-
2Academic Journal
Συγγραφείς: V. I. Klimenok, В. И. Клименок
Πηγή: Informatics; Том 20, № 3 (2023); 50-60 ; Информатика; Том 20, № 3 (2023); 50-60 ; 2617-6963 ; 1816-0301
Θεματικοί όροι: границы для среднего времени пребывания, stationary Poisson flow, phase-type distribution of service times, stationary performance measures, bounds for the mean sojourn time, стационарный пуассоновский поток, фазовое распределение времени обслуживания, стационарные характеристики производительности
Περιγραφή αρχείου: application/pdf
Relation: https://inf.grid.by/jour/article/view/1254/1060; Flatto L., Hahn S. Two parallel queues created by arrivals with two demands. SIAM Journal on Applied Mathematics, 1984, vol. 44, pp. 1041-1053.; Nelson R., Tantawi A. N. Approximate analysis of fork/join synchronization in parallel queues. IEEE Transactions on Computers, 1988, vol. 37, pp. 739-743.; Kim C., Agrawala A. K. Analysis of the fork-join queue. IEEE Transactions on Computers, 1989, vol. 38, pp. 250-255.; Qiu Z., Juan P., Harrison H. G. Beyond the mean in fork-join queues: Efficient approximation for response-time tails. Performance Evaluation, 2015, vol. 91, pp. 99-116.; Lui J. C.-S., Muntz R. R., Towsley D. Computing Performance Bounds for Fork-Join Queueing Models. Los Angeles, University of California, Computer Science Department, 1994, 38 р.; Varma S., Makowski A. M. Interpolation approximations for symmetric fork-join queues. Performance Evaluation, 1994, vol. 20, pp. 245-265.; Ko S.-S., Serfozo R. F. Response times in M/M/s fork-join networks. Advances in Applied Probability, 2004, vol. 36, pp. 854-871.; Ko S.-S., Serfozo R. F. Sojourn times in G/M/1 fork-join networks. Naval Research Logistics, 2008, vol. 55, pp. 432-443.; Thomasian A. Analysis of fork/join and related queueing systems. ACM Computing Surveys, 2014, vol. 47, pp. 1-71.; Wang W., Harchol-Balter M., Jiang H., Scheller-Wolf A., Srikant R. Delay asymptotics and bounds for multitask parallel jobs. ACM SIGMETRICS Performance Evaluation Review, 2018, vol. 46, pp. 2-7.; Lee K., Shah N. B., Huang L., Ramchandran K. TheMDS queue: analysing the latency performance of erasure codes. IEEE Transactions on Information Theory, 2017, vol. 63, pp. 2822-2842.; Rizk A., Poloczek F., Ciucu F. Stochastic bounds in fork-join queueing systems under full and partial mapping. Queueing Systems, 2016, vol. 83, pp. 261-291.; Baccelli F., Makowski A. M., Shwartz A. The fork-join queue and related systems with synchronization constraints: stochastic ordering and computable bounds. Advances in Applied Probability, 1989, vol. 21, pp. 629-660.; Balsamo S., Donatiello L., Van Dijk N. M. Bound performance models of heterogeneous parallel processing systems. IEEE Transactions on Parallel and Distributed Systems, 1998, vol. 9, pp. 1041-1056.; Neuts M. F. Matrix-Geometric Solutions in Stochastic Models. Baltimore, The Johns Hopkins University Press, 1981, 352 p.; Dudin A. N., Klimenok V. I., Vishnevsky V. M. The theory of queuing systems with correlated flows. Springer, 2020, 430 р.; Graham A. Kronecker Products and Matrix Calculus with Applications. Ellis Horwood, Cichester, 1981, 130 р.; Ozawa T. Sojourn time distributions in the queue defined by a general QBD process. Queueing Systems, 2006, vol. 53, pp. 203–211.; https://inf.grid.by/jour/article/view/1254
-
3Academic Journal
Συγγραφείς: V. I. Klimenok, В. И. Клименок
Πηγή: Informatics; Том 19, № 2 (2022); 56-67 ; Информатика; Том 19, № 2 (2022); 56-67 ; 2617-6963 ; 1816-0301
Θεματικοί όροι: характеристики производительности, heterogeneous input, repeated calls, limited processor sharing, stationary distribution, performance measures, неоднородный входной поток, повторные вызовы, ограниченное разделение процессора, стационарное распределение
Περιγραφή αρχείου: application/pdf
Relation: https://inf.grid.by/jour/article/view/1201/1023; Ghosh A., Banik A. D. An algorithmic analysis of the / /1 generalized processor-sharing queue. Computers and Operations Research, 2017, vol. 79, pp. 1–11.; Telek M., van Houdt B. Response time distribution of a class of limited processor sharing queues. Performance Evaluation Review, 2018, vol. 45, no. 3, pp. 143–155. https://doi.org/10.1145/3199524.3199548; Yashkov S., Yashkova A. Processor sharing: a survey of the mathematical theory. Automation and Remote Control, 2007, vol. 68, pp. 662–731.; Zhen Q., Knessl C. On sojourn times in the finite capacity / /1 queue with processor sharing. Operations Research Letters, 2009, vol. 37, pp. 447–450.; Masuyama H., Takine T. Sojourn time distribution in a / /1 processor-sharing queue. Operations Research Letters, 2003, vol. 31, pp. 406–412.; Dudin S., Dudin A., Dudina O., Samouylov K. Analysis of a retrial queue with limited processor sharing operating in the random environment. Lecture Notes in Computer Science, 2017, vol. 10372, pp. 38–49.; Dudin A., Dudin S., Dudina O., Samouylov K. Analysis of queuing model with limited processor sharing discipline and customers impatience. Operations Research Perspectives, 2018, vol. 5, pp. 245–255.; Klimenok V., Dudin A. A retrial queueing system with processor sharing. Communications in Computer and Information Science, 2021, vol. 1391, pp. 46–60.; He Q. M. Queues with marked customers. Advances in Applied Probability, 1996, vol. 28, pp. 567–587.; Dudin A. N., Klimenok V. I., Vishnevsky V. M. The Theory of Queuing Systems with Correlated Flows. Springer, 2020, 410 p.; Neuts M. F. Matrix-Geometric Solutions in Stochastic Models. Baltimore, the Johns Hopkins University Press, 1981, 352 p.; Graham A. Kronecker Products and Matrix Calculus with Applications. Cichester, Ellis Horwood, 1981, 130 p.; Ramaswami V. Independent Markov processes in parallel. Communications in Statistics. Stochastic Models, 1985, vol. 1, pp. 419–432.; Ramaswami V., Lucantoni D. M. Algorithms for the multi-server queue with phase-type service. Communications in Statistics. Stochastic Models, 1985, vol. 1, pp. 393–417.; Dudina O., Kim C. S., Dudin S. Retrial queueing system with Markovian arrival flow and phase type service time distribution. Computers and Industrial Engineering, 2013, vol. 66, pp. 360–373.; Klimenok, V. I., Dudin A. N. Multi-dimensional asymptotically quasi-Toeplitz Markov chains and their application in queueing theory. Queueing Systems, 2006, vol. 54, pp. 245–259.; https://inf.grid.by/jour/article/view/1201
-
4Academic Journal
Πηγή: Radio Electronics, Computer Science, Control; No. 1 (2021): Radio Electronics, Computer Science, Control; 158-171
Радиоэлектроника, информатика, управление; № 1 (2021): Радиоэлектроника, информатика, управление; 158-171
Радіоелектроніка, iнформатика, управління; № 1 (2021): Радіоелектроніка, інформатика, управління; 158-171Θεματικοί όροι: автономність, надійність, елементи інформаційно-керуючої системи, діагностика, характеристики продуктивності, алгоритм динамічного розподілу, програмна модель, вбудована система тестового діагностування, autonomy, reliability, elements of an information management system, diagnostics, performance characteristics, dynamic distribution algorithm, software model, built-in test diagnostics, автономность, надeжность, элементы информационно-управляющей системы, диагностика, характеристики производительности, алгоритм динамического распределения, программная модель, встроенная система тестового диагностирования
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: http://ric.zntu.edu.ua/article/view/228042
-
5Academic Journal
Συγγραφείς: V. I. Klimenok, В. И. Клименок
Συνεισφορές: This work has been financially supported by the joint grant of Belarusian Republican Foundation for Fundamental Research (no. F18R-136) and Russian Foundation for Fundamental Research (no. 18-57-00002)., Исследование выполнено в рамках совместного проекта Белорусского республиканского фонда фундаментальных исследований (грант № Ф18Р-136) и Российского фонда фундаментальных исследований (грант № 18-57-00002).
Πηγή: Informatics; Том 16, № 3 (2019); 69-78 ; Информатика; Том 16, № 3 (2019); 69-78 ; 2617-6963 ; 1816-0301
Θεματικοί όροι: характеристики производительности, unreliable servers, batch Markovian arrival process, phase type distribution, stationary distribution, performance characteristics, ненадежные приборы, групповой марковский поток, фазовое распределение времени обслуживания, стационарное распределение
Περιγραφή αρχείου: application/pdf
Relation: https://inf.grid.by/jour/article/view/870/821; Reliability-based measures for a retrial system with mixed standby components / C. C. Kuoa [et al.] // Applied Mathematical Modelling. – 2014. – Vol. 38. – P. 4640–4651.; Modeling of multi-server repair problem with switching failure and reboot delay and related profit analysis / Y. L. Hsu [et al.] // Computers and Industrial Engineering. – 2014. – Vol. 69. – P. 21–28.; Wu, C. H. Multi-server machine repair problems under a ( , synchronous single vacation policy / C. H. Wu, J. C. Ke // Applied Mathematical Modelling. – 2014. – Vol. 38. – P. 2180–2189.; Klimenok, V. I. A / / queue with negative customers and partial protection of service / V. I. Klimenok, A. N. Dudin // Communications in Statistics – Simulation and Computation. – 2012. – Vol. 41. – P. 1062–1082.; Priority retrial queueing model operating in random environment with varying number and reservation of servers / A. Dudin [et al.] // Applied Mathematics and Computations. – 2015. – Vol. 269. – P. 674–690.; Lucantoni, D. New results on the single server queue with a batch Markovian arrival process / D. Lucantoni // Communications in Statistics. Stochastic Models. – 1991. – Vol. 7. – P. 1–46.; Neuts, M. F. Matrix-Geometric Solutions in Stochastic Models / M. F. Neuts. – Baltimore : The Johns Hopkins University Press, 1981. – 352 р.; Graham, A. Kronecker Products and Matrix Calculus with Applications / A. Graham. – Cichester : Ellis Horwood, 1981. – 130 р.; Klimenok, V. I. Multi-dimensional asymptotically quasi-Toeplitz Markov chains and their application in queueing theory / V. I. Klimenok, A. N. Dudin // Queueing Systems. – 2006. – Vol. 54. – P. 245–259.; https://inf.grid.by/jour/article/view/870
Διαθεσιμότητα: https://inf.grid.by/jour/article/view/870
-
6Report
Θεματικοί όροι: Марковский входной ноток, Machine Learning, фазовое распределение времени обслуживания, fork-join система массового обслуживания, Markovian Arrival process, fork-join system, Phase-Type distribution, стационарные характеристики производительности, машинное обучение, stationary performance characteristics
-
7Academic Journal
Συγγραφείς: Ефросинин, Дмитрий
Θεματικοί όροι: СМО С ПОВТОРНЫМИ ЗАЯВКАМИ, УПРАВЛЯЕМАЯ ОЧЕРЕДЬ, СТАЦИОНАРНЫЙ РЕЖИМ, УСЛОВИЕ ЭРГОДИЧНОСТИ, ХАРАКТЕРИСТИКИ ПРОИЗВОДИТЕЛЬНОСТИ
Περιγραφή αρχείου: text/html
-
8Academic Journal
Πηγή: Вестник Российского университета дружбы народов. Серия: Математика, информатика, физика.
Θεματικοί όροι: СМО С ПОВТОРНЫМИ ЗАЯВКАМИ, УПРАВЛЯЕМАЯ ОЧЕРЕДЬ, СТАЦИОНАРНЫЙ РЕЖИМ, УСЛОВИЕ ЭРГОДИЧНОСТИ, ХАРАКТЕРИСТИКИ ПРОИЗВОДИТЕЛЬНОСТИ
Περιγραφή αρχείου: text/html
-
9Academic Journal
Συγγραφείς: Efrosinin D.V.
Πηγή: RUDN Journal of Mathematics, Information Sciences and Physics
Θεματικοί όροι: СМО с повторными заявками, управляемая очередь, стационарный режим, условие эргодичности, характеристики производительности, retrial queue, controllable queueing system, stationary regime, ergodicity condition, threshold control policy, waiting time distribution
Διαθεσιμότητα: https://repository.rudn.ru/records/article/record/54705/