Showing 1 - 7 results of 7 for search '"фототромбоз"', query time: 0.59s Refine Results
  1. 1
    Academic Journal

    Source: General Reanimatology; Том 19, № 3 (2023); 54-65 ; Общая реаниматология; Том 19, № 3 (2023); 54-65 ; 2411-7110 ; 1813-9779

    File Description: application/pdf

    Relation: https://www.reanimatology.com/rmt/article/view/2314/1735; https://www.reanimatology.com/rmt/article/view/2314/1742; Paul S., Candelario-Jalil E. Emerging neuroprotective strategies for the treatment of ischemic stroke: an overview of clinical and preclinical studies. Exp Neurol. 2021; 335: 113518. DOI:10.1016/j.expneurol.2020.113518. PMID: 33144066; Golubev A.M. Models of ischemic stroke (Review). General Reanimatology. 2020; 16 (1): 59–72. DOI:10.15360/1813-9779-2020-1-59-72; Тюренков И. Н., Куркин Д. В., Литвинов А. А., Логвинова Е. А., Морковин Е. И., Бакулин Д. А., Волотова Е. В. Методы моделирования острых нарушений мозгового кровообращения, применяемые при проведении доклинических исследований церебропротекторов. Разработка и регистрация лекарственных средств. 2018; 1: 186–197.; Weber R.Z., Grönnert L., Mulders G., Maurer M.A., Tackenberg C., Schwab M.E., Rust R. Characterization of the blood brain barrier disruption in the photothrombotic stroke model. Front Physiol. 2020; 11: 586226. DOI:10.3389/fphys.2020.586226. PMID: 33262704.; Carmichael S.T. Rodent models of focal stroke: size, mechanism, and purpose. NeuroRx. 2005; 2 (3): 396–409. DOI: 10. 1602/neurorx.2.3.396.; Llovera G., Pinkham K., Liesz A. Modeling stroke in mice: focal cortical lesions by photothrombosis. J Vis Exp. 2021; (171). DOI:10.3791/ 62536. PMID: 34028443; Eid M., Dzreyan V., Demyanenko S. Sirtuins 1 and 2 in the acute period after photothrombotic stroke: expression, localization and involvement in apoptosis. Front. Physiol. 2022; 13: 782684. DOI:10.3389/fphys.2022.782684. PMID: 35574497; Nucci M.P., Oliveira F.A., Ferreira J.M., Pinto Y.O., Alves A.H., Mamani J.B., Nucci L.P. et al. Effect of cell therapy and exercise training in a stroke model, considering the cell track by molecular image and behavioral analysis. Cells. 2022; 11 (3): 485. DOI:10.3390/cells11030485. PMID: 35159294; Qian C., Li P.C., Jiao Y., Yao H.H., Chen Y.C., Yang J., Ding J. et al. Precise characterization of the penumbra revealed by MRI: a modified photothrombotic stroke model study. PLoS One. 2016; 11 (4): e0153756. DOI:10.1371/journal.pone.0153756. PMID: 27093556; Macrae I.M. Preclinical stroke research--advantages and disadvantages of the most common rodent models of focal ischemia. Br J Pharmacol. 2011; 164 (4): 1062–1078. DOI:10.1111/j.1476-5381.2011.01398.x. PMID: 21457227; Узденский А. Б., Демьяненко С. В. Фототромботический инсульт. Биохимия пенумбры. 2016. Издательство: Южный федеральный университет. eLibrary: 29456163; EDN: YUPIBL; Hu Sh., Wu G., Wu B., Du Zh., Zhang Yi. Rehabilitative training paired with peripheral stimulation promotes motor recovery after ischemic cerebral stroke. Exp Neurol. 2021; 349: 113960. DOI:10.1016/j.expneurol.2021.113960. PMID: 34953896; Барсков И.В., Тактаров В.Г., Иванова М.В., Сергеев В.А., Павлова Е. А. Морфологическое исследование очага фокального ишемического повреждения коры головного мозга крыс на модели лазерного фотоиндуцированного тромбоза. Вестник медицинского института «Реавиз»: реабилитация, врач и здоровье. 2016. 3 (23): 39–43. eLIBRARY ID: 27631994. EDN: XGRLHZ; Yao Z., Yazdan-Shahmorad A.A. Quantitative model for estimating the scale of photochemically induced ischemic stroke. Annu Int Conf IEEE Eng Med Biol Soc. 2018; 2018: 2744–2747. DOI:10.1109/EMBC.2018.8512880. PMID: 30440969; Ota Y., Kubota Y., Hotta Y., Matsumoto M., Matsuyama N., Kato T., Hamakawa T. et al. Change in the central control of the bladder function of rats with focal cerebral infarction induced by photochemically-induced thrombosis. PLoS One. 2021; 16 (11): e0255200. DOI:10.1371/journal.pone.0255200. PMID: 34752461; Yoo H.J., Ham J., Duc N.T., Lee B. Quantification of stroke lesion volume using epidural EEG in a cerebral ischeamic rat model. Sci Rep. 2021; 11 (1): 2308. DOI:10.1038/s41598-021-81912-2. PMID: 33504903; Knezic A., Broughton B.R.S., Widdop R.E., McCarthy C.A. Optimising the photothrombotic model of stroke in the C57BI/6 and FVB/N strains of mouse. Sci Rep. 2022; 12 (1): 7598. DOI:10.1038/s41598-022-11793-6. PMID: 35534531.; Aswendt M., Pallast N., Wieters F., Baues M., Hoehn M., Fink G.R. Lesion size- and location-dependent recruitment of contralesional thalamus and motor cortex facilitates recovery after stroke in mice. Transl Stroke Res. 2021; 12 (1): 87–97. DOI:10.1007/s129. PMID: 32166716; Sommer C.J. Ischemic stroke: experimental models and reality. Acta Neuropathol. 2017; 133 (2): 245–261. DOI:10.1007/s00401-017-1667-0. 2017. PMID: 28064357.; Clark T.A., Sullender C., Kazmi S.M., Speetles B.L., Williamson M.R., Palmberg D.M., Dunn A.K. et al. Artery targeted photothrombosis widens the vascular penumbra, instigates peri-infarct neovascularization and models forelimb impairments. Sci Rep. 2019; 9 (1): 2323. DOI:10.1038/s41598-019-39092-7.PMID: 30787398.; Barthels D., Das H. Current advances in ischemic stroke research and therapies. Biochim Biophys Acta Mol Basis Dis. 2020; 1866 (4): 165260. DOI:10.1016/j.bbadis.2018.09.012. PMID: 31699365.; Uzdensky A.B. Photothrombotic stroke as a model of ischemic stroke. Transl Stroke Res. 2018; 9 (5): 437–451. DOI:10.1007/s12975-017-0593-8. 2017. PMID: 29188434.; Astrup J., Siesjö B.K., Symon L. Thresholds in cerebral ischemia — the ischemic penumbra. Stroke. 1981; 12 (6): 723–725. DOI:10.1161/01.str.12.6.723. PMID: 6272455; Back T. Pathophysiology of the ischemic penumbra--revision of a concept. Cell Mol Neurobiol. 1998; 18 (6): 621–638. DOI:10.1023/a:1020629818207. PMID: 9876870; Tuor U.I., Deng Q., Rushforth D., Foniok T., Qiao M. Model of minor stroke with mild peri-infarct ischemic injury. J. Neurosci Methods. 2016; 268: 56–65. DOI:10.1016/j.jneumeth.2016.04.025. PMID: 27139736; Kuo Y.M., Sun Y.Y., Kuan C.Y. A Fibrin-enriched and tPA-sensitive photothrombotic stroke model. J Vis Exp. 2021; (172). DOI:10.3791/61740. PMID: 34152310.; Kim Y., Lee Y.B., Bae S.K., Oh S.S., Choi J.R. Development of a photochemical thrombosis investigation system to obtain a rabbit ischemic stroke model. Sci Rep. 2021; 11 (1): 5787. DOI:10.1038/s41598-021-85348-6. PMID: 33707580.; Kuroiwa T., Xi G., Hua Y., Nagaraja T.N., Fenstermacher J.D., Keep R.F. Development of a rat model of photothrombotic ischemia and infarction within the caudoputamen. Stroke. 2009; 40 (1): 248–253. DOI:10.1161/STROKEAHA.108.527853. PMID: 19038913.; Hosseini S.M., Pourbadie H.G., Naderi N., Sayyah M., Zibaii M.I. Photothrombotically induced unilateral selective hippocampal ischemia in rat. J Pharmacol Toxicol Methods. 2018; 94 (Pt 1): 77–86. DOI:10.1016/j.vascn.2018.06.003. 2018 PM. PMID: 29906509; Генина Э.А., Башкатов А.Н., Семячкина-Глушковская О.В., Тучин В.В. Оптическое просветление черепной кости многокомпонентными иммерсионными растворами и визулизация церебрального венозного кровотока. Известия Саратовского университета. Новая серия. Серия Физика. 2017; 17 (2): 98–110. DOI:10.18500/1817-3020-2017-17-2-98-110; Zhang C., Feng W., Zhao Y., Yu T., Li P., Xu T., Luo Q. et al. A large, switchable optical clearing skull window for cerebrovascular imaging. Theranostics. 2018; 8 (10): 2696–2708. DOI:10.7150/thno. 23686. PMID: 29774069.; Li Z., Gao H., Zeng P., Jia Y., Kong X., Xu K., Bai R. Secondary degeneration of white matter after focal sensorimotor cortical ischemic stroke in rats. Front Neurosci. 2021; 14: 611696. DOI:10.3389/fnins.2020.611696. PMID: 33536869; Wahl A.S., Correa D., Imobersteg S., Maurer M.A., Kaiser J., Augath M.A., Schwab M.E. Targeting therapeutic antibodies to the CNS: a comparative study of intrathecal, intravenous, and subcutaneous anti-Nogo A antibody treatment after stroke in rats. Neurotherapeutics. 2020; 17 (3): 1153–1159. DOI:10.1007/s13311-020-00864-z. PMID: 32378027.; Poinsatte K., Betz D., Torres V.O., Ajay A.D., Mirza S., Selvaraj U.M., Plautz E.J. et al. Visualization and quantification of post-stroke neural connectivity and neuroinflammation using serial twophoton tomography in the whole mouse brain. Front Neurosci. 2019; 13: 1055. DOI:10.3389/fnins.2019.01055. PMID: 31636534.; Pallast N., Diedenhofen M., Blaschke S., Wieters F., Wiedermann D., Hoehn M., Fink R.G. et al. Processing pipeline for atlas-based imaging data analysis of structural and functional mouse brain MRI (AIDAmri). Front Neuroinform. 2019; 13: 42. DOI:10.3389/fninf.PMID: 31231202; Pallast N., Wieters F., Fink G.R., Aswendt M. Atlas-based imaging data analysis tool for quantitative mouse brain histology (AIDAhisto). J Neurosci Methods. 2019; 326: 108394. DOI:10.1016/j.jneumeth.2019.108394. PMID: 31415844; Li H., Zhang N., Lin H.Y., Yu Y., Cai Q.Y., Ma L., Ding S. Histological, cellular and behavioral assessments of stroke outcomes after photothrombosis-induced ischemia in adult mice. BMC Neurosci. 2014; 15: 58. DOI:10.1186/1471-2202-15-58. PMID: 24886391; Williamson M.R., Franzen R.L., Fuertes C.J.A., Dunn A.K., Drew M.R., Jones T.A. A window of vascular plasticity coupled to behavioral recovery after stroke. J Neurosci. 2020; 40 (40): 7651–7667. DOI:10.1523/JNEUROSCI.1464-20.2020. PMID: 32873722; Aamir R., Fyffe C., Korin N., Lawrence D.A., Su E.J., Kanapathipillai M. Heparin and arginine based plasmin nanoformulation for ischemic stroke therapy. International Journal of Molecular Sciences. 2021; 22 (21): 11477. DOI:10.3390/ijms222111477.; Zhou M.Y., Zhang Y.J., Ding H.M., Wu W.F., Cai W.W., Wang Y.Q., Geng D.Q. Diprotin A TFA exerts neurovascular protection in ischemic cerebral stroke. Front Neurosci. 2022; 16: 861059. DOI:10.3389/fnins.2022.861059. PMID: 35615279.; Sanchez-Bezanilla S., Hood R.J., Collins-Praino L.E., Turner R.J., Walker F.R., Nilsson M., Ong L.K. More than motor impairment: a spatiotemporal analysis of cognitive impairment and associated neuropathological changes following cortical photothrombotic stroke. J Cereb Blood Flow Metab. 2021; 41 (9): 2439–2455. DOI:10.1177/0271678X211005877 2021. PMID: 33779358.; Yew W.P., Djukic N.D., Jayaseelan J.S.P., Woodman R.J., Muyderman H., Sims N.R. Differential effects of the cell cycle inhibitor, olomoucine, on functional recovery and on responses of peri-infarct microglia and astrocytes following photothrombotic stroke in rats. J Neuroinflammation. 2021; 18 (1): 168. DOI:10.1186/s12974-021-02208-w. PMID: 34332596.; Lee S., Lim W., Ryu HW., Jo D., Min JJ., Kim HS., Hyun H. ZW800-1 for assessment of blood-brain barrier disruption in a photothrombotic stroke model. Int J Med Sci. 2017; 14 (13): 1430–1435. DOI:10.7150/ijms.22294. PMID: 29200957; Noll J.M., Augello C.J., Kürüm E., Pan L., Pavenko A., Nam A., Ford B.D. Spatial analysis of neural cell proteomic profiles following ischemic stroke in mice using high-plex digital spatial profiling. Mol Neurobiol. 2022; 59 (12): 7236–7252. DOI:10.1007/s12035-022-03031-x. PMID: 36151369; Frase S., Löffler F., Hosp J.A. Enhancing post-stroke rehabilitation and preventing exo-focal dopaminergic degeneration in rats-a role for substance P. Int J Mol Sci. 2022; 23 (7): 3848. DOI:10.3390/ijms23073848. PMID: 35409207.; Uzdensky A., Demyanenko S., Fedorenko G., Lapteva T., Fedorenko A. Protein profile and morphological alterations in penumbra after focal photothrombotic infarction in the rat cerebral cortex. Mol Neurobiol. 2017; 54 (6): 4172–4188. DOI:10.1007/s12035-016-9964-5. PMID: 27324898.; Choi I.A., Yun J.H., Kim J.H., Kim H.Y., Choi D.H., Lee J. Sequential transcriptome changes in the penumbra after ischemic stroke. Int J Mol Sci. 2019; 20 (24): 6349. DOI:10.3390/ijms20246349. PMID: 31888302; Pushie M.J., Sylvain N.J., Hou H., Caine S., Hackett M.J., Kelly M.E. Tracking elemental changes in an ischemic stroke model with Xray fluorescence imaging. Sci Rep. 2020; 10 (1): 17868. DOI:10.1038/s41598-020-74698-2. PMID: 33082455; Gu W.G., Brännström T., Jiang W., Wester P. A photothrombotic ring stroke model in rats with remarkable morphological tissue recovery in the region at risk. Exp Brain Res. 1999; 125 (2): 171–183. DOI:10.1007/s002210050672. PMID: 10204770.; Hu X., Johansson I.M., Brännström T., Olsson T., Wester P. Longlasting neuronal apoptotic cell death in regions with severe ischemia after photothrombotic ring stroke in rats. Acta Neuropathol. 2002; 104 (5): 462–470. DOI:10.1007/s00401-002-0579-8. PMID: 12410394; Gu W., Brännström T., Wester P. Cortical neurogenesis in adult rats after reversible photothrombotic stroke. J Cereb Blood Flow Metab. 2000; 20 (8): 1166–1173. DOI:10.1097/00004647-200008000-00002. PMID: 10950377.; Zhang J., Zhang Y., Xing S., Liang Z., Zeng J. Secondary neurodegeneration in remote regions after focal cerebral infarction: a new target for stroke management? Stroke. 2012; 43 (6): 1700–1705. DOI:10.1161/STROKEAHA.111.632448. PMID: 22492515; Pietrogrande G., Zalewska K., Zhao Z., Abdolhoseini M., Chow W.Z., Sanchez-Bezanilla S., Ong L.K. et al. Low oxygen post conditioning prevents thalamic secondary neuronal loss caused by excitotoxicity after cortical stroke. Sci Rep. 2019; 9 (1): 4841. DOI:10.1038/s41598-019-39493-8. PMID: 30890719.; Necula D., Cho F.S., He A., Paz J.T. Secondary thalamic neuroinflammation after focal cortical stroke and traumatic injury mirrors corticothalamic functional connectivity. J Comp Neurol. 2022; 530 (7): 998–1019. DOI:10.1002/cne.25259. PMID: 34633669.; Hosp J.A., Greiner K.L., Arellano L.M., Roth F., Löfflfler F., Reis J., Fritsch B. Progressive secondary exo-focal dopaminergic neurodegeneration occurs in not directly connected midbrain nuclei after pure motor-cortical stroke. Exp. Neurol. 2020; 327: 113211. DOI:10.1016/j.expneurol.2020.113211. PMID: 31987834; Hertz L. Bioenergetics of cerebral ischemia: a cellular perspective. Neuropharmacology. 2008; 55 (3): 289–309. DOI:10.1016/j.neuropharm.2008.05.023. PMID: 18639906; Leichsenring A., Riedel T., Qin Y., Rubini P., Illes P. Anoxic depolarization of hippocampal astrocytes: possible modulation of P2X7 receptors. Neurochem Int. 2013; 62 (1): 15–22. DOI:10.1016/j.neuint.2012.11.002. PMID: 23147683; Abdullahi W., Tripathi D., Ronaldson P.T. Blood-brain barrier dysfunction in ischemic stroke: targeting tight junctions and transporters for vascular protection. Am J Physiol Cell Physiol. 2018; 315 (3): C343–C356. DOI:10.1152/ajpcell.00095.2018. PMID: 29949404; Hoff E.I., oude Egbrink M.G., Heijnen V.V., Steinbusch H.W., van Oostenbrugge R.J. In vivo visualization of vascular leakage in photochemically induced cortical infarction. J Neurosci Methods. 2005; 141 (1): 135–141. DOI:10.1016/j.jneumeth.2004.06.004. PMID: 15585297.; Hirschberg H., Uzal F.A., Chighvinadze D., Zhang M. J., Peng Q., Madsen S. J. Disruption of the blood-brain barrier following ALAmediated photodynamic therapy. Lasers Surg Med. 2008; 40 (8): 535–542. DOI:10.1002/lsm.20670. PMID: 18798293; Sun L., Strelow H., Mies G., Veltkamp R. Oxygen therapy improves energy metabolism in focal cerebral ischemia. Brain Res. 2011; 1415: 103–108. DOI:10.1016/j.brainres.2011.07.064. PMID: 21872850; Qin C., Yang S., Chu Y.H., Zhang H., Pang X.W., Chen L., Zhou L.Q. et al. Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther. 2022; 7 (1): 215. DOI:10.1038/s41392-022-01064-1. PMID: 35794095.; Chen H., Yoshioka H., Kim G.S., Jung J.E., Okami N., Sakata H., Maier C.M. et al. Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal. 2011; 14 (8): 1505–1517. DOI:10.1089/ars.2010.3576. PMID: 20812869; Banjara M., Ghosh C. Sterile neuroinflammation and strategies for therapeutic intervention. Int J Inflam. 2017; 2017: 8385961. DOI:10.1155/2017/8385961. PMID: 28127491.; Gülke E., Gelderblom M., Magnus T. Danger signals in stroke and their role on microglia activation after ischemia. Ther Adv Neurol Disord. 2018; 11: 1756286418774254. DOI:10.1177/1756286418774254. PMID: 29854002.; Jayaraj R.L., Azimullah S., Beiram R., Jalal F.Y., Rosenberg G.A. Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflammation. 2019; 16 (1): 142. DOI:10.1186/s12974-019-1516-2. PMID: 31291966; Gorlamandala N., Parmar J., Craig A.J., Power J.M., Moorhouse A.J., Krishnan A.V., Housley G.D. Focal ischaemic infarcts expand faster in cerebellar cortex than cerebral cortex in a mouse photothrombotic stroke model. Transl Stroke Res. 2018; 9 (6): 643–653. DOI:10.1007/s12975-018-0615-1. PMID: 29455391; Nowicka D., Rogozinska K., Aleksy M., Witte O.W., Skangiel-Kramska J. Spatiotemporal dynamics of astroglial and microglial responses after photothrombotic stroke in the rat brain. Acta Neurobiol Exp (Wars). 2008; 68 (2): 155–168. PMID: 18511952.; Hennessy E., Griffin É.W., Cunningham C. Astrocytes are primed by chronic neurodegeneration to produce exaggerated chemokine and cell infiltration responses to acute stimulation with the cytokines IL-1β and TNF-α. J Neurosci. 2015; 35 (22): 8411–8422. DOI:10.1523/JNEUROSCI.2745-14.2015. PMID: 26041910; Wang H., Song G., Chuang H., Chiu C., Abdelmaksoud A., Ye Y., Zhao L. Portrait of glial scar in neurological diseases. Int J Immunopathol Pharmacol. 2018; 31: 2058738418801406. DOI:10.1177/2058738418801406. PMID: 30309271; Clausen B.H., Lambertsen K.L., Babcock A.A., Holm T.H., DagnaesHansen F., Finsen B. Interleukin-1beta and tumor necrosis factoralpha are expressed by different subsets of microglia and macrophages after ischemic stroke in mice. J Neuroinflammation. 2008; 5: 46. DOI:10.1186/1742-2094-5-46. PMID: 18947400; Jin R., Liu L., Zhang S., Nanda A., Li G. Role of inflammation and its mediators in acute ischemic stroke. J Cardiovasc Transl Res. 2013; 6 (5): 834–851. DOI:10.1007/s12265-013-9508-6. PMID: 24006091; Xie L., Yang S.H. Interaction of astrocytes and T cells in physiological and pathological conditions. Brain Res. 2015; 1623: 63–73. DOI:10.1016/j.brainres.2015.03.026. PMID: 25813828; Qiu Y.M., Zhang C.L., Chen A.Q., Wang H.L., Zhou Y.F., Li Y.N., Hu B. Immune cells in the BBB disruption after acute ischemic stroke: targets for immune therapy? Front Immunol. 2021; 12: 678744. DOI:10.3389/fimmu.2021.678744. PMID: 34248961; Chamorro Á., Meisel A., Planas A.M., Urra X., van de Beek D., Veltkamp R. The immunology of acute stroke. Nat Rev Neurol. 2012; 8 (7): 401–410. DOI:10.1038/nrneurol.2012.98. PMID: 22664787.; Veltkamp R., Gill D. Clinical trials of immunomodulation in ischemic stroke. Neurotherapeutics. 2016; 13 (4): 791–800. DOI:10.1007/s13311-016-0458-y. PMID: 27412685; https://www.reanimatology.com/rmt/article/view/2314

  2. 2
  3. 3
  4. 4
    Academic Journal

    Source: General Reanimatology; Том 16, № 1 (2020); 59-72 ; Общая реаниматология; Том 16, № 1 (2020); 59-72 ; 2411-7110 ; 1813-9779 ; 10.15360/1813-9779-2020-1

    File Description: application/pdf

    Relation: https://www.reanimatology.com/rmt/article/view/1856/1381; https://www.reanimatology.com/rmt/article/view/1856/1382; Guzik A., Bushnell C. Stroke Epidemiology and Risk Factor Management. Continuum (Minneap Minn). 2017; 23 (1, Cerebrovascular Disease): 15–39. DOI:10.1212/CON.0000000000000416.; Thrift A.G., Howard G., Cadilhac D.A., Howard V.J., Rothwell P.M., Thayabaranathan T., Feigin V.L., Norrving B., Donnan G.A. Global stroke statistics: An update of mortality data from countries using a broad code of «cerebrovascular diseases». Int J Stroke. 2017; 12 (8): 796–801. DOI:10.1177/1747493017730782.; Cadilhac D.A., Andrew N.E., Kilkenny M.F., Hill K, Grabsch B, Lannin NA, Thrift A.G., Anderson C.S., Donnan G.A., Middleton S., Grimley R. Improving quality and outcomes of stroke care in hospitals: Protocol and statistical analysis plan for the Stroke123 implementation study. Int J Stroke. 2018; 13 (1): 96–106. DOI:10.1177/1747493017730741.; Wang W., Jiang B., Sun H., Ru X., Sun D., Wang L., Wang L., Jiang Y., Li Y., Wang Y., Chen Z., Wu S., Zhang Y., Wang D., Wang Y., Feigin V.L. NESSChina Investigators. Prevalence, Incidence, and Mortality of Stroke in China: Results from a Nationwide Population-Based Survey of 480 687 Adults. Circulation. 2017; 135 (8): 759–771. Available at:. DOI:10.1161/CIRCULATIO-NAHA.116.025250. (accessed 22.02.2019).; Saber H., Amiri A., Thrift A.G., Stranges S., Bavarsad Shahripour R., Farzadfard M.T., Mokhber N., Behrouz R., Azarpazhooh M.R. Epidemiology of Intracranial and Extracranial Large Artery Stenosis in a Population-Based Study of Stroke in the Middle East. Neuroepidemiology. 2017; 48 (3-4): 188–192. DOI:10.1159/000479519; Cruz C., Campuzano-Rincón J.C., Calleja-Castillo J.M., HernándezÁlvarez A., Parra M.D., Moreno-Macias H., Hernández-Girón C.Temporal Trends in Mortality from Ischemic and Hemorrhagic Stroke in Mexico, 1980–2012. J Stroke Cerebrovasc Dis. 2017 Apr; 26 (4): 725–732. DOI:10.1016/j.jstrokecerebrovasdis.2016.09.042; Узденский А.Б., Демьяненко С.В. Фототромботический инсульт Биохимия пенумбры. Ростов-на-Дону. 2016. ISBN 978-5-9275-2131-9.; Филимонов Д.А., Евтушенко С.К., Трубникова Н.Н., Белоцерковская М.А., Самойлов В.Г. Моделирование фокальной церебральной ишемии путем окклюзии средней мозговой артерии в дистальной и проксимальной ее частях. Вестник неотложной и восстановительной хирургии. 2018; 3 (1): 58–68.; Девятов А.А. Оценка репрезентативности показателей тяжести ишемического поражения мозга у крыс. Вопросы питания. 2016; 85 (S2): 230.; The IMPROVE Guidelines (Ischaemia Models: Procedural Refinements Of in Vivo Experiments. J Cereb Blood Flow Metab. 2017 Nov; 37 (11): 3488–3517. DOI:10.1177/0271678X17709185. PMCID: PMC5669349. PMID: 28797196.; Wayman C., Duricki D.A., Roy L.A., Haenzi B., Tsai S.Y., Kartje G., Beech J.S., Cash D., Moon L. Performing Permanent Distal Middle Cerebral with Common Carotid Artery Occlusion in Aged Rats to Study Cortical Ischemia with Sustained Disability. J Vis Exp. 2016; (108): 53106. DOI:10.3791/53106.; Fluri F., Schuhmann M.K., Kleinschnitz C. Animal models of ischemic stroke and their application in clinical research. Drug Des Dev Ther 2015; 9: 3445–3454. PMID: 26170628. PMCID: PMC4494187. DOI:10.2147/DDDT.S56071; Durukan Tolvanen A., Tatlisumak E., Pedrono E., Abo-Ramadan U., Tatlisumak T.TIA model is attainable in Wistar rats by intraluminal occlusion of the MCA for 10min or shorter. Brain Res. 2017; 1663: 166–173. DOI:10.1016/j.brainres.2017.03.010.; Crupi R., Di Paola R., Esposito E., Cuzzocrea S. Middle Cerebral Artery Occlusion by an Intraluminal Suture Method. Methods Mol Biol. 2018; 1727: 393–401. PMID: 29222799. DOI:10.1007/978-1-4939-7571-6_31.; Pedder H., Vesterinen H.M., Macleod M.R., Wardlaw J.M. Systematic review and meta-analysis of interventions tested in animal models of lacunar stroke. Stroke. 2014; 45 (2): 563–570. DOI:10.1161/STROKEAHA.113.003128.; Bailey E.L., McCulloch J., Sudlow C., Wardlaw J.M. Potential animal models of lacunar stroke: a systematic review. Stroke. 2009 Jun; 40 (6): e451–8. DOI:10.1161/STROKEAHA.108.528430.; Sommer C.J. Ischemic stroke: experimental models and reality. Acta Neuropathol. 2017; 133 (2): 245–261. DOI:10.1007/s00401-017-1667-0.; Grifoni E., Giglio D., Guazzini G., Cosentino E., Latini E., Dei A., Del Rosso A., Guarnaccia V., Baldini M., Bartolozzi M.L., Martinucci P., Sani F., Giordano A., Dainelli F., Maggi F., Giulietti C., Romagnoli M., Cinotti S., Schipani E., Murgida G.S., Di Martino S., Cozzi A., Carli Ballola A., Dacomo D., Valori D., Masotti L. Age-related burden and characteristics of embolic stroke of undetermined source in the real world clinical practice. J Thromb Thrombolysis. 2019 Sep 7. DOI:10.1007/s11239-019-01951-5.; Kamel H., Healey J.S. Cardioembolic Stroke. Circ Res. 2017; 120 (3): 514–526. PMID: 28154101. PMCID: PMC5312810. DOI:10.1161/CIRCRESAHA.116.308407.; Uzdensky A.B. Photothrombotic Stroke as a Model of Ischemic Stroke. Transl Stroke Res. 2018; 9 (5): 437–451. PMID: 29188434. DOI:10.1007/s12975-017-0593-8.; Fiebig C., Keiner S., Ebert B., Schäffner I., Jagasia R., Lie D.C., Beckervordersandforth R.Mitochondrial Dysfunction in Astrocytes Impairs the Generation of Reactive Astrocytes and Enhances Neuronal Cell Death in the Cortex Upon Photothrombotic Lesion. Front Mol Neurosci. 2019; 12: 40. PMID: 30853890. PMCID: PMC6395449. DOI:10.3389/fnmol.2019.00040.; Chen Y., Zhu W., Zhang W., Libal N., Murphy S.J., Offner H., Alkayed N.J. A novel mouse model of thromboembolic stroke. J Neurosci Methods. 2015; 256: 203–211. DOI:10.1016/j.jneumeth.2015.09.013.; Katsumata M., Oki K., Tsukada N., Abe T., Itoh Y., Takahashi S., Suzuki N. Rivaroxaban Promotes Reduction of Embolus Size within Cerebrocortical Microvessels in a Mouse Model of Embolic Stroke. Keio J Med. 2018; 68 (3): 45–53. DOI:10.2302/kjm.2018-0010-OA.; Fluri F., Schuhmann M.K., Kleinschnitz C. Animal models of ischemic stroke and their application in clinical research. Drug Des Devel Ther. 2015; 9: 3445–3454. PMID: 26170628. PMCID: PMC4494187. DOI:10.2147/DDDT.S56071.; Dojo Soeandy C., Salmasi F., Latif M., Elia A.J., Suo N.J., Henderson J.T. Endothelin-1-mediated cerebral ischemia in mice: early cellular events and the role of caspase-3. Apoptosis. 2019; 24 (7–8): 578–595. PMID: 31073782. DOI:10.1007/s10495-019-01541-z.; Fan J., Li Y., Fu X., Li L., Hao X., Li S. Nonhuman primate models of focal cerebral ischemia. Neural Regen Res. 2017; 12 (2): 321–328. PMID: 28400817. PMCID: PMC5361519. DOI:10.4103/1673-5374.200815.; Llovera G., Roth S., Plesnila N., Veltkamp R., Liesz A. Modeling stroke in mice: permanent coagulation of the distal middle cerebral artery. J Vis Exp. 2014; (89): e51729. PMID: 25145316. PMCID: PMC4692348. DOI:10.3791/51729.; Kamel H., Okin P.M., Elkind M.S., Iadecola C. Atrial Fibrillation and Mechanisms of Stroke: Time for a New Model. Stroke. 2016; 47 (3): 895–900. PMID: 26786114. PMCID: PMC4766055. DOI:10.1161/STROKEAHA.115.012004; Kumar A., Aakriti., Gupta V. A review on animal models of stroke: An update. Brain Res Bull. 2016; 122: 35–44. PMID: 26902651. DOI:10.1016/j.brainresbull.2016.02.016; European Commission. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Official J Eur Union 2010; 53: 33–79.; Swallow J., Anderson D., Buckwell A.C., Harris T., Hawkins P., Kirkwood J., Lomas M., Meacham S., Peters A., Prescott M., Owen S., Quest R., Sutcliffe R., Thompson K.; Transport Working Group, Laboratory Animal Science Association (LASA). Guidance on the transport of laboratory animals. Lab Anim. 2005; 39 (1): 1–39. PMID: 15703122. DOI:10.1258/0023677052886493; Shinozuka K., Tajiri N., Ischikava H., Tuazon J.P., Lee J.Y., Sanberg P.R., Zarriello S., Corey S., Kaneko Y., Borlongan C. Empathy in stroke rats is modulated by social settings. J. Cereb. Blood Flow Metab. 2019; 1: 271678X19867908. DOI:10.1177/0271678X19867908.; Mering S., Jolkkonen J. Proper housing conditions in experimental stroke studies-special emphasis on environmental enrichment. Front Neurosci. 2015; 9: 106. DOI:10.3389/fnins.2015.00106. eCollection 2015.; Gomez-Smith M., Janik R., Adams C., Lake EM.,Thomason LAM., Jeffers MS., Stefanovic B., Corbett D. Reduced Cerebrovascular Reactivity and increased Resting Cerebral Pеrfusion in Rats Exposed to a Cafeteria Diet. Neuroscience. 2018. 371: 166–177. DOI:10.1016/j.neuroscience.2017.11.054.; Watanabe H., Sasatani M., Doi T., Masaki T., Satoh K., Yoshizumi M. Protective Effects of Japanese Soybean Paste (Miso) on Stroke in Stroke-Prone Sponteneously Hypertensive Rats (SHRSP). Am. J. Hypertens. 2017; 31 (1): 43–47. PMID: 28985324. DOI:10.1093/ajh/hpx129.; Benakis C., Brea D., Caballero S., Faraco G., Moore J., Murphy M., Sita G., Racchumi G., Ling L., Pamer E.G., Iadecola C., Anrather J. Commensal microbiota affects ischemic stroke outcome by regulating intestinal gammadelta T cells. Nat Med. 2016 05 28; 22 (5): 516–523. DOI:10.1038/nm.4068; Singh V., Roth S., Llovera G., Sadler R., Garzetti D., Stecher B., Dichgans M., Liesz A. Microbiota Dysbiosis Controls the Neuroinflammatory Response after Stroke. J Neurosci. 2016; 36 (28): 7428–7440. PMID: 27413153. PMCID: PMC6705544. DOI:10.1523/JNEUROSCI.1114-16.2016; Houlden A., Goldrick M., Brough D., Vizi E.S., Lénárt N., Martinecz B., Roberts I.S., Denes A. Brain injury induces specific changes in the caecal microbiota of mice via altered autonomic activity and mucoprotein production. Brain Behav Immun 2016; 57: 10–20. PMID: 27060191. PMCID: PMC5021180. DOI:10.1016/j.bbi.2016.04.003; Winek K., Engel O., Koduah P., Heimesaat M.M., Fischer A., Bereswill S., Dames C., Kershaw O., Gruber A.D., Curato C., Oyama N., Meisel C., Meisel A., Dirnagl U. Depletion of cultivatable gut microbiota by broad-spectrum antibiotic pretreatment worsens outcome after murine stroke. Stroke. 2016; 47: 1354–1363. PMID: 27056982. PMCID: PMC4839545. DOI:10.1161/STROKEAHA.115.011800; Trotman-Lucas M., Kelly M.E., Janus J., Gibson C.L. Middle Cerebral Artery Occlusion Allowing Reperfusion via Common Carotid Artery Repair in Mice. J. Vis. Exp. 2019; 143. PMID: 30735149. DOI:10.3791/58191.; Yao Y., Nabika T. Standards and pitfalls of focal ischemia models in spontaneously hypertensive rats with a systematic review of recent articles. J.Transl. Med. 2012; 10: 139. PMID: 22770528. PMCID: PMC3579704. DOI:10.1186/1479-5876-10-139; Misir M., Renic M., Mihalj M., Novak S., Drenjancevic I. Is shorter transient middle cerebral artery occlusion (t-MCAO) duration better in stroke experiments on diabetic female Sprague Dewely rats? Brain inj. 2016; 30 (11): 1390–1396. PMID: 27541599. DOI:10.1080/02699052.2016.1195518; Thomas A., Detilleux J., Flecknell P., Sandersen C. Impact of Stroke Therapy Academic Industry Roundtable (STAIR) Guidelines on perianesthesia care for rat models of stroke: a meta-analysis comparing the years 2005 and 2015. PLoS One 2017; 12: e0170243. PMID: 28122007. PMCID: PMC5266292. DOI:10.1371/journal.pone.0170243; Hoffmann U., Sheng., Ayata C., Warner D.S. Anessthesia in Experimental Stroke Research. Transl. Stroke Res. 2016; 7 (5) 358–367. DOI:10.1007/s12975-016-0491-5.; Ruxanda F., Gal AF., Ratiu C., MIclaus V., Rus V., Oana LI. Comparative immunohistochemical assessment of the effect of repetitive anesthesia with isoflurane and sevoflurane on rat liver. Braz.J.Anesthesiol. 2016; 66 (5): 465–469. PMID: 27591459. DOI:10.1016/j.bjane.2015.02.003; Romero A., Moreno A., Garcia J., Sanchez C., Santos M., Garcia J. Effects of sevoflurane on ventilator induced lung injury in a healthy lung experimental model. Rev. Esp. Anestesiol. Reanim. 2016; 63 (1): 22–28. PMID: 26143338. DOI:10.1016/j.redar.2015.04.006; Hanci V., Gille K., Karakaya K., Yurtlu S., Akrolat M., Yuce M.F., Yuce F.Z., Turan I.O. Rectal dexmedetomidine in rats: evaluation of sedative and mucosal effects. Rev. Bras. Anestesiol. 2015; 65 (1): 1–6. PMID: 25497742. DOI:10.1016/j.bjan.2013.09.004; Nai G.A., de Oliveira M.C., de Oliveira Tavares G., Pereira L.F., Soares N.D., Silva P.G. Evaluation of genotoxicity induced by repetitive administration of local anaesthetics: an experimental study in rats. Rev. Bras. Anestesiol. 2015; 65 (1): 21–26. DOI:10.1016/j.bjan.2013.07.006.; Whittaker A.L, Howarth G.S. Use of spontaneous behaviour measures to assess pain in laboratory rats and mice: how are we progressing? Appl Anim Behav Sci 2014; 151: 1–12. DOI:10.1016/j.applanim.2013.11.001; Sacerdote P., Franchi S., Panerai A.E. Non-analgesic effects of opioids: mechanisms and potential clinical relevance of opioid-induced immunodepression. Curr Pharm Des. 2012; 18: 6034–6042. PMID: 22747535. DOI:10.2174/138161212803582469; Sauer M., Fleischmann T., Lipiski M., Arras.M. Buprenorphine via drinking water and combined oral-injection protocols for pain relief in mice. Appl Anim Behav Sci. 2016; 185: 103–112. DOI:10.1016/j.applanim.2016.09.009; Kesici S., Kesici U., Ulusoy H., Ertukuner P., Turkmen A., Arda O. Effects of local anestethics on wound healing. Rev. Bras. Anestesiol. 2018; 68 (4): 375–382. DOI:10.1016/j.bjan.2018.01.016.; Stanley D., Mason L.J., Mackin K.E., Srikhanta Y. Translocation and dissemination of commensal bacteria in post-stroke infection. Nat Med. 2016; 22: 1277–1284. DOI:10.1038/nm.4194; Yenari M.A., Han H.S. Neuroprotective mechanisms of hypothermia in brain ischaemia. Nat Rev Neurosci. 2012; 13: 267–278. PMID: 22353781. DOI:10.1038/nrn3174; Lee J.S., Song D.J., Hong J.H., Kim T.S., Joo S.P. Diverse Ischemic Postconditioning Protocols Affect the infarction Size in focal ischemic Stroke. J. Cerebrovasc. Neurosurg. 2018; 20 (3): 159–167. DOI: 10/7461/jcen.2018.20.3.159.; Balkaya M.G., Trueman R.C., Boltze J., Corbett D., Jolkkonen J. Behavioral outcome measures to improve experimental stroke research. Behav. Brain Res. 2018; 352: 161–171. PMID: 28760700. DOI:10.1016/j.bbr.2017.07.039; Scherbakov N., Dirnagl U., Doehner W. Body weight after stroke: lessons from the obesity paradox. Stroke. 2011; 42: 3646–3650. PMID: 21960580. DOI:10.1161/STROKEAHA.111.619163; Venna V.R., Xu Y., Doran S.J., Patrizz A., McCullough L.D. Social interaction plays a critical role in neurogenesis and recovery after stroke. Translational Psychiatry 2014; 4: e351. PMID: 24473442. PMCID: PMC3905235. DOI:10.1038/tp.2013.128; Emik U., Unal Y., Arslan M., Demirel C.B. The effects of memantine on recovery, cognitive functions, and pain after propofol anesthesia. Braz. J. Anesthesiol. 2016; 66 (5): 485–491. PMID: 27591462. DOI:10.1016/j.bjane.2015.03.002; Ifergane G., Boyko M., Frank D., Shiyntum H.N., Grinshpun J., Kuts R., Geva A., Kaplan Z., Zeldetz V., Cohen Y. Biological and Behavioral Patterns of Post-Stroke Depression in Rats. Can. J. Neurol. Sci. 2018; 45 (4): 451–461. PMID: 29880078. DOI:10.1017/cjn.2017.302; Toman N.G., Grande A.W., Low W.C. Neural Repair in Stroke. Cell Transplant. 2019; 28 (9-10): 1123–1126. PMID: 31353939. PMCID: PMC6767877. DOI:10.1177/0963689719863784; Xu P., Zhang X., Liu Q., Xie Y., Shi X., Chen J., Li Y., Guo H., Sun R., Hong Y., Liu X., Xu G. Vicroglial TREM-1 receptor mediates neuroinflammatory injury via interaction with SYK in experimental ischemic stroke. Cell Death Dis. 2019; 10 (8): 555. DOI:10.1038/s414419-019-1777-9.; Cardenas-Rivera A., Campero-Romero A.N., Heras-RomeroY., Penagos-Puig A., Rincon-Heredia R., Tovar-Y-Romo L.B. Early Post-stroke Activation of Vascular Endothelial Growth Factor Receptor 2 Hinders the Receptor 1-Dependent Neuroprotection Afforded by the Endogenous Ligand. Front Cell Neurosci. 2019; 13: 270. DOI: o10.3389/fncel.2019.00270; Altintas O., Ozgen Altintas M., Kumas M., Asil T. Neuroprotective effect of ischemic preconditioning via modulating the expression of cerebral miRNAs against transient cerebral ischemia in diabetic rats. Neurol. Res. 2016: 38 (11): 1003–1011. PMID: 27635859. DOI:10.1080/01616412.2016.1232013; Xing Y., Yang S.D., Wang M.M., Dong F., Feng Y.S., Zhang F. Electroacupuncture Alleviated Neuronal Apoptosis Following Ischemic Stroke in Rats via Midkine and ERK/JNK/p38 Signaling Pathway. J.Mol. Neurosci. 2018; 66 (1): 26–36. DOI:10.1007/s12031-018-1142-y.; Altintas O., Kumas M., Altintas M. Neuroprotective effect of ischemic preconditioning via modulating the expression of adropin and oxidative markers against transient cerebral ischemia in diabetic rats. Peptides. 2016; 79: 31–38. PMID: 27020247. DOI:10.1016/j.peptides.2016.03.011; McDonough A., Weinstein J.R. The role micrjglia in ischemic preconditioning. Glia. 2019; 68 (3), 455-471. PMID: 31386233. DOI:10.1002/glia.23695; Ли М., Зоу З.-П., Сан М., Као Л., Чен Дж., Кин И.-Т., Гу Дж.-Г., Хан Ф., Шенг Р., Ву Дж.-Л., Динг И., Кин З.-Г. Восстановленный никотинамидадениндинуклеотид-фосфат, продукт пентозофосфатного пути, может быть новым перспективным препаратом для лечения ишемического инсульта. Журнал национальной ассоциации по борьбе с инсультом /STROKE/. 2016; 1 (41): 44–54. ID: 25774752.; Safari A., Fazeli M., Namavar MR., Tanideh N., Jafari P., Borhani-Haghighi A. Therapeutic effects of oral dimethyl fumarate on stroke induced by middle cerebral artery occlusion: An animal experimental study. Restor Neurol. Neurusci. 2017; 35 (3): 265–274. PMID: 28506000. DOI:10.3233/RNN-160670; Wang S., Gu X., Paudal R., Wei L., Dix T.A.,Yu S.P., Zhang X. Longitudenal MRI evakuation of neuroprotective effects of pharmacologically induced hypothermia in experimental ischemic stroke. Magn. Reson. Imaging. 2017; 40: 24–30. DOI:10.1016/mri.2017.03.011.; Vahidinia Z., Alipour N., Atlasi M.A., Naderian Y., Beyer C., Azami Tameh F. Gonadal steroids block the calpain-1-dependent intrinsic pathway of apoptosis in an experimental rat stroke model. Neurol. Res. 2017; 39 (1): 54–64. PMID: 27832728. DOI:10.1080/01616412.2016.1250459; Острова И.В., Голубева Н.В., Кузовлев А.Н., Голубев А.М. Прогностическая значимость и терапевтический потенциал мозгового нейротрофическго фактора BDNF при повреждении головного мозга (обзор). Общая реаниматология. 2019; 15 (1): 70–86. DOI:10.15360/1813-9779-2019-1-70-86; Голубев А.М., Петрова М.В., Гречко А.В., Захарченко В.Е., Кузовлев А.Н., Ершов А.В. Молекулярные маркеры ишемического инсульта. Общая реаниматология. 2019; 15 (5): 11–22. DOI:10.15360/1813-9779-2019-5-11-22; Шевелев О.А., Петрова М.В., Саидов Ш.Х., Ходорович Н.А., Прадхан П. Механизмы нейропротекции при церебральной гипотермии (обзор). Общая реаниматология. 2019; 15 (6): 94–114. DOI:10.15360/1813-9779-2019-6-94-114.; Zhao C.S., Li H., Wang Z., Chen G. Potential application value of xenon in stroke treatment. Med Gas Res. 2018; 8 (3): 116–120. PMID: 30319767. PMCID: PMC6178644. DOI:10.4103/2045-9912.241077; Koziakova M., Harris K., Edge C.J., Franks N.P., White I.L., Dickinson R. Noble gas neuroprotection: xenon and argon protect against hypoxic-ischaemic injury in rat hippocampus in vitro via distinct mechanisms. Br J Anaesth. 2019 Nov; 123 (5): 601–609. PMID: 31470983. PMCID: PMC6871267. DOI:10.1016/j.bja.2019.07.010; Miao Y.F., Peng T., Moody M.R., Klegerman M.E., Aronowski J., Grotta J., McPherson D.D., Kim H., Huang S.L. Delivery of xenon-containing echogenic liposomes inhibits early brain injury following subarachnoid hemorrhage. Sci Rep. 2018; 8 (1): 450. PMID: 29323183. PMCID: PMC5765033. DOI:10.1038/s41598-017-18914-6; Klegerman M.E., Moody M.R., Hurling J.R., Peng T., Huang S.L., McPherson D.D. Gas chromatography/mass spectrometry measurement of xenon in gas-loaded liposomes for neuroprotective applications. Rapid Commun Mass Spectrom. 2017; 31 (1): 1–8. PMID: 27689777. PMCID: PMC5154815. DOI:10.1002/rcm.7749; David H.N., Haelewyn B., Risso J.J, Colloc’h N., Abraini J.H. Xenon is an inhibitor of tissue-plasminogen activator: adverse and beneficial effects in a rat model of thromboembolic stroke. J Cereb Blood Flow Metab. 2010; 30 (4): 718–728. PMID: 20087367. PMCID: PMC2949169. DOI:10.1038/jcbfm.2009.275; Hoffmann U., Sheng H., Ayata C., Warner D.S. Anesthesia in Experimental Stroke Research. Transl Stroke Res. 2016; 7 (5): 358–367. PMID: 27534542. PMCID: PMC5016251. DOI:10.1007/s12975-016-0491-5; Лалетин В.С., Быков Ю.Н. Общие анестетики как фактор эффективной нейропротекции в моделях ишемического инсульта. Биомед Хим. 2015 июль-август; 61 (4): 440–448. DOI:10.18097/PBMC20156104440.; Liu T.J., Zhang J.C., Gao X.Z., Tan Z.B., Wang J.J., Zhang P.P., Cheng A.B., Zhang S.B. Effect of sevoflurane on the ATPase activity of hippocampal neurons in a rat model of cerebral ischemia-reperfusion injury via the cAMP-PKA signaling pathway. J Med Sci. 2018; 34 (1): 22–33. DOI:10.1016/j.kjms.2017.09.004.; Liu J.J., Pan S.Y. Protective effects of estrogen combined with sevoflurane in an experimental model of cerebral infarction and focal cerebral ischemia-reperfusion injury. Eur Rev Med Pharmacol Sci. 2016; 20 (9): 1839–1844. PMID: 27212178.; Zhang Y., Shan Z., Zhao Y., Ai Y. Sevoflurane prevents miR-181a-induced cerebral ischemia/reperfusion injury. Chem Biol Interact. 2019; 308: 332–338. PMID: 31170386. DOI:10.1016/j.cbi.2019.06.008; https://www.reanimatology.com/rmt/article/view/1856

  5. 5
    Academic Journal

    Source: Drug development & registration; № 1 (2018); 186-197 ; Разработка и регистрация лекарственных средств; № 1 (2018); 186-197 ; 2658-5049 ; 2305-2066

    File Description: application/pdf

    Relation: https://www.pharmjournal.ru/jour/article/view/564/559; Е.И. Гусев, А.С. Чуканова. Современные патогенетические аспекты формирования хронической ишемии мозга // Журнал неврологии и психиатрии им. C.C. Корсакова. 2015. Т. 115. № 3-1. С. 4-8.; S.T. Carmichael. Rodent models of focal stroke: size, mechanism, and purpose // NeuroRx. 2005. V. 2. № 3. P. 396-409.; U. Dirnagl, M.R. Macleod. Stroke research at a road block: the streets from adversity should be paved with meta-analysis and good laboratory practice // Br. J. Pharmacol. 2009. V. 157. № 7. P. 1154-1156.; S. Braeuninger, C. Kleinschnitz, B. Nieswandt, G. Stoll. Focal cerebral ischemia methods // Mol. Biol. 2012. V. 788. P. 29-42; E.G. Sozmen, J.D. Hinman, S.T. Carmichael. Models that matter: white matter stroke models // Neurotherapeutics. 2012. V. 9. № 2. P. 349-358.; D.W. Howells, M.J. Porritt, S.S. Rewell, V. O’Collins, E.S. Sena, H.B. van der Worp, R.J. Traystman, M.R. Macleod. Different strokes for different folks: the rich diversity of animal models of focal cerebral ischemia // J. Cereb. Blood Flow Metab. 2010. V. 30. № 8. P. 1412-1431.; N. Beckmann. High resolution magnetic resonance angiography non-invasively reveals mouse strain differences in the cerebrovascular anatomy in vivo // Magn Reson Med. 2000. V. 44. № 2. P. 252-258.; B.W. McColl, H.V. Carswell, J. McCulloch, K. Horsburgh. Extension of cerebral hypoperfusion and ischaemic pathology beyond MCA territory after intraluminal filament occlusion in C57Bl/6J mice // Brain Res. 2004. V. 997. № 1. P. 15-23.; F.C. Barone, D.J. Knudsen, A.H. Nelson, G.Z. Feuerstein, R.N. Willette. Mouse strain differences in susceptibility to cerebral ischemia are related to cerebral vascular anatomy // J. Cereb. Blood Flow Metab. 1993. V. 13. № 4. P. 683-692.; Y. Yamori. Neural and non-neural mechanisms in spontaneous hypertension // Clin. Sci. Mol. Med. Suppl. 1976. V. 3. P. 431-434.; E.L. Bailey, C. Smith, C.L. Sudlow, J.M. Wardlaw. Is the spontaneously hypertensive stroke prone rat a pertinent model of sub cortical ischemic stroke? A systematic review // Int. J. Stroke. 2011. V. 6. № 5. P. 434-444.; Manual of stroke models in rats / Ed. by Yanlin Wang Fischer. - Taylor & Francis Group: CRC Press, 2008. 340 p.; S.J. Murphy, L.D. McCullough, J.M. Smith. Stroke in the female: Role of biological sex and estrogen // ILAR J. 2004. V. 45. № 2. P. 147-153.; S.M. Graham, L.D. McCullough, S.J. Murphy. Animal models of ischemic stroke: balancing experimental aims and animal care // Comp. Med. 2004. V. 54. № 5. P. 486-497.; K.A. Radermacher, K. Wingler, F. Langhauser, S. Altenhöfer, P. Kleikers, J.J. Hermans, M. Hrabě de Angelis, C. Kleinschnitz, H.H. Schmidt. Neuroprotection after stroke by targeting NOX4 as a source of oxidative stress // Antioxid. Redox. Signal. 2013. V. 18. № 12. P. 1418-1427.; K.A. Hossmann, F.J. Schuier. Experimental brain infarcts in cats. Pathophysiological observations // Stroke. 1989. V. 11. № 6. P. 583-592.; B. Bose, J.L. Osterholm, R. Berry. A reproducible experimental model of focal cerebral ischemia in the cat // Brain Res. 1984. V. 311. № 2. P. 385-391.; W. Paschen, M. Sato, G. Pawlik, C. Umbach, W.D. Heiss. Neurologic deficit, blood flow and biochemical sequelae of reversible focal cerebral ischemia in cats // J. Neurol Sci. 1985. V. 68. № 2-3. P. 119-134.; T.H. Jones, R.B. Morawetz, R.M. Crowell, F.W. Marcoux, S.J. FitzGibbon, U. DeGirolami, R.G. Ojemann. Thresholds of focal cerebral ischemia in awake monkeys // J. Neurosurg. 1981. V. 54. № 6. P. 773-782.; S. Hayashi, D.G. Nehls, C.F. Kieck, J. Vielma, U. DeGirolami, R.M. Crowell. Beneficial effects of induced hypertension on experimental stroke in awake monkeys // J. Neurosurg. 1984. V. 60. № 1. P. 151-157.; M.J. Robinson, I.M. Macrae, M. Todd, J.L. Reid, J. McCulloch. Reduction of local cerebral blood flow to pathological levels by endothelin-1 applied to the middle cerebral artery in the rat // Neurosci. Lett. 1990. V. 118. № 2. P. 269-272.; A. Tamura, D.I. Graham, J. McCutloсh, G.M. Teasdale. Focal cerebral ischaemia in the rat: description of the technique and early neuropathological consequences following middle cerebral artery occlusion // J. Cereb. Blood Flow Metab. 1981. V. 1. P. 53-60.; P. Coyle. Diameter and length changes in cerebral collaterals after middle cerebral artery occlusion in the young rat // Anat. Rec. 1984. V. 210. № 2. P. 357-364.; P. Coyle. Outcomes to middle cerebral artery occlusion in hypertensive and normotensive rats // Hypertension. 1984. V. 6. № 2. P. 69-74.; J.B. Bederson, L.H. Pitts, M. Tsuji, M.C. Nishimura, R.L. Davis, H. Bartkowski. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination // Stroke. 1986. V. 17. № 3. P. 472-476.; S.T. Chen, C.Y. Hsu, E.L. Hogan, H. Maricq, J.D. Balentine. A model of focal ischemic stroke in the rat: reproducible extensive cortical infarction // Stroke. 1986. V. 17. № 4. P. 738-743.; A.B. Топчян, P.C. Мирзоян, М.Г. Баласанян. Локальная ишемия мозга крыс, вызванная перевязкой средней мозговой артерии // Экспериментальная и клиническая фармакология. 1996. Т. 59. № 5. С. 62-64.; И.Н. Тюренков, Е.В. Волотова, Д.В. Куркин, Д.А. Бакулин, И.О. Логвинов, Т.А. Антипова. Нейропротекторное действие нейроглутама в условиях активации свободно-радикально- го окисления // Экспериментальная и клиническая фармакология. 2014. Т. 77. № 8. С. 16-19.; А.А. Шмонин. Перевязка средней мозговой артерии крысы: сравнение модификаций моделей фокальной ишемии мозга у крысы // Регионарное кровообращение и микроциркуляция. 2011. Т. 10. № 3. C. 68-76.; D. Chalothorn, J.E. Faber. Formation and vaturation of the native cerebral collateral circulation // J. Mol. Cell Cardiol. 2010. V. 49. № 2. P. 251-259.; J. Sharkey, I.M. Ritchie, P.A. Kelly. Perivascular microapplication of endothelin-1: a new model of focal cerebral ischaemia in the rat // J. Cereb. Blood Flow Metab. 1993. V. 13. № 5. P. 865-871.; P.M. Hughes, D.C. Anthony, M. Ruddin. Focal lesions in the rat central nervous system induced by endothelin-1 // J. Neuropathol. Exp. Neurol. 2003. V. 62. № 12. P. 1276-1286.; K. Fuxe, B. Bjelke, B. Andbjer, H. Grahn, R. Rimondini, L.F. Agnati. Endothelin-1 induced lesions of the frontoparietal cortex of the rat. A possible model of focal cortical ischemia // Neuroreport. 1997. V. 8. № 11. P. 2623-2629.; S.B. Frost, S. Barbay, M.L. Mumert, A.M. Stowe, R.J. Nudo. An animal model of capsular infarct: endothelin-1 injections in the rat // Behav. Brain Res. 2006. V. 169. № 2. P. 206-211.; N.M. Ward, J. Sharkey, H.M. Marston, V.J. Brown. Simple and choice reactiontime performance following occlusion of the anterior cerebral arteries in the rat // Exp. Brain Res. 1998. V. 123. № 3. P. 269-281.; J. Koizumi, Y. Yoshida, T. Nakazawa, G. Ooneda. Experimental studies of ischemic brain edema: a new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area // Jpn. J. Stroke. 1986. V. 8. P. 1-8.; E.Z. Longa, P.R. Weinstein, S. Carlson, R. Cummins. Reversible middle cerebral artery occlusion without craniectomy in rats // Stroke. 1989. V. 20. P. 84-91.; L. Belayev, O.F. Alonso, R. Busto, W. Zhao, M.D. Ginsberg. Middle cerebral artery occlusion in the rat by intraluminal suture neurological and pathological evaluation of an improved model // Stroke. 1996. V. 27. № 9. P. 1616-1622.; И.Н. Тюренков, Д.В. Куркин, Д.А. Бакулин, Е.В. Волотова. Изучение нейропротекторного действия нового производного глутаминовой кислоты - нейроглутама при фокальной ишемии мозга у крыс // Экспериментальная и клиническая фармакология. 2014. Т. 77. № 9. С. 8-12.; А.А. Спасов, В.Ю. Федорчук, Н.А. Гурова, Н.И. Чепляева, Е.В. Резников. Методологический подход для изучения нейропротекторной активности в эксперименте // Ведомости Научного центра экспертизы средств медицин- ского применения. 2014. № 4. С. 39-45.; N. Futrell N. C. Millikan, B.D. Watson, W.D. Dietrich, M.D. Ginsberg. Embolic stroke from a carotid arterial source in the rat: pathology and clinical implications // Neurology. 1989. V. 39. № 8. P. 1050-1056.; P. Wester, B.D. Watson, R. Prado, W.D. Dietrich. A photothrombotic «ring» model of rat stroke-in-evolution displaying putative penumbral inversion // Stroke. 1995. V. 26. P. 444-456.; H. Yanamoto, I. Nagata, Y. Niitsu, J.H. Xue, Z. Zhang, H. Kikuchi. Evaluation of MCAO stroke models in normotensive rats: standardized neocortical infarction by the 3VO technique // Exp. Neurol. 2003. V. 182. № 2. P. 261-274.; A.M. Buchan, D. Xue, A. Slivka. A new model of temporary focal neocortical ischemia in the rat // Stroke. 1992. V. 23. № 2. P. 273-279.; K. Hiramatsu, N.F. Kassell, Y. Goto, S. Soleau, K.S. Lee. A reproducible model of reversible, focal, neocortical ischemia in Sprague-Dawley rat // Acta Neurochir. (Wien). 1993. V. 120. № 1-2. P. 66-71.; B.D. Watson. Concepts and techniques of experimental stroke induced by cerebrovascular photothrombosis. Central Nervous System Trauma. - Florida: CRC Press, 1995. 438 p.; J.L. Tremoleda, A. Kerton, W. Gsell. Anaesthesia and physiological monitoring during in vivo imaging of laboratory rodents: considerations on experimental outcomes and animal welfare // EJNMMI Res. 2012. V. 2. № 1. P. 44.; J.A. Davis. Mouse and rat anesthesia and analgesia // Curr. Protoc. Neurosci. 2008. Appendix 4:Appendix 4B.; F. Fluri, M.K. Schuhmann, C. Kleinschnitz. Animal models of ischemic stroke and their application in clinical research // Drug Des. Devel. Ther. 2015. V. 2. № 9. P. 3445-3354.; https://www.pharmjournal.ru/jour/article/view/564

  6. 6
  7. 7