-
1Academic Journal
Authors: Maximciuc, N., Lis, A.
Source: Biotehnologiile şi tendinţele actuale (Ediția 1)
Subject Terms: аминокислоты, коллаген, аффинная хроматография, фибробласты, трипсин
File Description: application/pdf
Access URL: https://ibn.idsi.md/vizualizare_articol/226393
-
2Academic Journal
Authors: Larisa V. Antonova, Vera G. Matveeva, Evgenia A. Torgunakova, Maryam Yu. Khanova, Marina S. Kolomeets, Evgenia A. Senokosova, Лариса Валерьевна Антонова, Вера Геннадьевна Матвеева, Евгения Александровна Торгунакова, Марьям Юрисовна Ханова, Марина Сергеевна Коломеец, Евгения Андреевна Сенокосова
Contributors: Исследование выполнено в рамках фундаментальной темы НИИ КПССЗ № 0419-2022-0001 «Молекулярные, клеточные и биомеханические механизмы патогенеза сердечно-сосудистых заболеваний в разработке новых методов лечения заболеваний сердечно-сосудистой системы на основе персонифицированной фармакотерапии, внедрения малоинвазивных медицинских изделий, биоматериалов и тканеинженерных имплантатов».
Source: Complex Issues of Cardiovascular Diseases; Том 14, № 4 (2025); 91-101 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 14, № 4 (2025); 91-101 ; 2587-9537 ; 2306-1278
Subject Terms: xCelligence, Endothelial cells, Fibroblasts, MTT, Viability, Proliferation, Эндотелиальные клетки, Фибробласты, Жизнеспособность, Пролиферация
File Description: application/pdf
Relation: https://www.nii-kpssz.com/jour/article/view/1607/1063; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1607/1918; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1607/1919; ГОСТ ISO 10993-5-2011. Изделия медицинские. Оценка биологического действия медицинских изделий. Часть 5. Исследования на цитотоксичность: методы in vitro. - Введ. 2013.01.01 – М.: Стандарт информ, 2014. – 10 с. – (Система стандартов по информации, библиотечному и издательскому делу).; Gruber S., Nickel A. Toxic or not toxic? The specifications of the standard ISO 10993-5 are not explicit enough to yield comparable results in the cytotoxicity assessment of an identical medical device. Front. Med. Technol. 2023;5:1195529. https://doi.org/10.3389/fmedt.2023.1195529.; Bellucci D., Salvatori R., Anesi A., Chiarini L., Cannillo V. SBF assays, direct and indirect cell culture tests to evaluate the biological performance of bioglasses and bioglass-based composites: Three paradigmatic cases. Materials Science and Engineering: C. 2019;96:757-764. https://doi.org/10.1016/j.msec.2018.12.006.; Braun K., Stürzel C.M., Biskupek J., Kaiser U., Kirchhoff F., Lindén M. Comparison of different cytotoxicity assays for in vitro evaluation of mesoporous silica nanoparticles. Toxicology in Vitro. 2018;52:214-221. https://doi.org/10.1016/j.tiv.2018.06.019.; Diemer F., Stark H., Helfgen E.H., Enkling N., Probstmeier R., Winter J., Kraus D. In vitro cytotoxicity of different dental resin-cements on human cell lines. J Mater Sci Mater Med. 2021;32(1):4. https://doi.org/10.1007/s10856-020-06471-w.; Wang Y., Ma B., Yin A., Zhang B., Luo R., Pan J., Wang Y. Polycaprolactone vascular graft with epigallocatechin gallate embedded sandwiched layer-by-layer functionalization for enhanced antithrombogenicity and anti-inflammation. J Control Release. 2020;320:226-238. https://doi.org/10.1016/j.jconrel.2020.01.043.; Zhou J., Wang M., Wei T., Bai L., Zhao J., Wang K., Feng Y. Endothelial cell-mediated gene delivery for in situ accelerated endothelialization of a vascular graft. ACS Appl Mater Interfaces. 2021;13(14):16097-16105. https://doi.org/10.1021/acsami.1c01869.; Kabirian F., Brouki Milan P., Zamanian A., Heying R., Mozafari M. Nitric oxide-releasing vascular grafts: A therapeutic strategy to promote angiogenic activity and endothelium regeneration. Acta Biomater. 2019;92:82-91. https://doi.org/10.1016/j.actbio.2019.05.002.; Lee S.J., Kim M.E., Nah H., Seok J.M., Jeong M.H., Park K., Kwon I.K., Lee J.S., Park S.A. Vascular endothelial growth factor immobilized on mussel-inspired three-dimensional bilayered scaffold for artificial vascular graft application: In vitro and in vivo evaluations. J Colloid Interface Sci. 2019;537:333-344. https://doi.org/10.1016/j.jcis.2018.11.039.; Daum R., Visser D., Wild C., Kutuzova L., Schneider M., Lorenz G., et al. Fibronectin adsorption on electrospun synthetic vascular grafts attracts endothelial progenitor cells and promotes endothelialization in dynamic in vitro culture. Cells. 2020;9(3):778. https://doi.org/10.3390/cells9030778.; Guan G., Yu C., Xing M., Wu Y., Hu X., Wang H., Wang L. Hydrogel small-diameter vascular graft reinforced with a braided fiber strut with improved mechanical properties. Polymers. 2019;11:810. https://doi.org/10.3390/polym11050810.; Jirofti N., Mohebbi-Kalhori D., Samimi A., Hadjizadeh A., Kazemzadeh G.H. Small-diameter vascular graft using co-electrospun composite PCL/PU nanofibers. Biomed Mater. 2018;13(5):055014. https://doi.org/10.1088/1748-605X/aad4b5.; Fiqrianti I.A., Widiyanti P., Manaf M.A., Savira C.Y., Cahyani N.R., Bella F.R. Poly-L-lactic Acid (PLLA)-chitosan-collagen electrospun tube for vascular graft Application. J Funct Biomater.2018;9(2):32. https://doi.org/10.3390/jfb9020032.; Rosellini E., Barbani N., Lazzeri L., Cascone M.G. Biomimetic and bioactive small diameter tubular scaffolds for vascular tissue engineering. Biomimetics (Basel). 2022;7(4):199. https://doi.org/10.3390/biomimetics7040199.; Jaffe E.A., Nachman R.L., Becker C.G., Minick C.R. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. Clin Invest. 1973; 52: 2745–2756. https://doi.org/10.1172/JCI107470.; Ghasemi M., Turnbull T., Sebastian S., Kempson I. The MTT Assay: utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. Int. J. Mol. Sci. 2021;22:12827. https://doi.org/10.3390/ijms222312827.; Великанова Е.А., Матвеева В.Г., Ханова М.Ю., Антонова Л.В. Влияние напряжения сдвига на свойства колониеформирующих эндотелиальных клеток в сравнении с эндотелиальными клетками коронарных артерий. Комплексные проблемы сердечно-сосудистых заболеваний. 2022; 11(4):90-97. https://doi.org/10.17802/2306-1278-2022-11-4-90-97.; Li W., Zhou J., Xu Y. Study of the in vitro cytotoxicity testing of medical devices. Biomed Rep. 2015;3(5):617-620. https://doi.org/10.3892/br.2015.481.
-
3Academic Journal
Authors: Melkonyan, K.I., Asyakina, A.S., Rusinova, T.V., Solop, E.A., Fomenko, A.A., Kozlova, A.A., Soloviy, D.O.
Source: Biomedical Chemistry: Research and Methods; Vol. 8 No. 3 (2025); e00286 ; Biomedical Chemistry: Research and Methods; Том 8 № 3 (2025); e00286 ; 2618-7531
Subject Terms: tenascin-C, fibroblasts, wound healing, matricellular proteins, collagenogenesis, alarmin, тенасцин-С, фибробласты, заживление ран, матриклеточные белки, коллагеногенез, алармин
File Description: application/pdf; text/html
Relation: http://www.bmc-rm.org/index.php/BMCRM/article/view/286/666; http://www.bmc-rm.org/index.php/BMCRM/article/view/286/667; http://www.bmc-rm.org/index.php/BMCRM/article/view/286/668
Availability: http://www.bmc-rm.org/index.php/BMCRM/article/view/286
-
4Academic Journal
Authors: Фирсова Наталья Викторовна, Научно-исследовательский центр фундаментальных и прикладных проблем биоэкологии и биотехнологии ФГБОУ ВО «Ульяновский государственный педагогический университет им. И.Н. Ульянова», Natalia V. Firsova,
Nauchno-issledovatel'skii tsentr fundamental'nykh i prikladnykh problem bioekologii i biotekhnologii FGBOU VO "Ul'ianovskii gosudarstvennyi pedagogicheskii universitet im. I.N. Ul'ianova", Казанцева Татьяна Николаевна, ФГБОУ ВО «Ульяновский государственный педагогический университет им. И.Н. Ульянова», Tatiana N. Kazantseva, Ulyanovsk State Pedagogical University named after I. N. Ulyanov, Ленгесова Наталья Анатольевна, Natal'ia A. Lengesova, Антонова Елена Ивановна, Elena I. Antonova Source: Fundamental and applied research for key propriety areas of bioecology and biotechnology; 132-135 ; Фундаментальные и прикладные исследования по приоритетным направлениям биоэкологии и биотехнологии; 132-135
Subject Terms: клеточные технологии, фибробласты, DMSO, криоконсервация, размораживание
File Description: text/html
Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-907965-64-5; https://phsreda.com/e-articles/10716/Action10716-138740.pdf; Гринчук Т.М. Влияние криоконсервации на стабильность кариотипа трансформированных фибробластов легкого китайского хомячка in vitro / Т.М. Гринчук, М.А. Шилина // Цитология. – 2021. – T. 63. №1. – С. 63–73. DOI 10.31857/S0041377121010053. EDN VYZZGU; Фибробласты дермы в фокусе современной косметологии: старение и ответ на косметологические процедуры / Л.В. Кирсанова, Е.Р. Аравийская, М.Г. Рыбакова [и др.] // Consilium Medicum. – 2024. – Т. 26. №8. – С. 541–549.; Влияние длительности хранения криоконсервированных культивированных клеток кожи человека на их жизнеспособность / Н.В. Фирсова, В.А. Савельева, Н.А. Ленгесова [и др.] // Фундаментальные и прикладные исследования по приоритетным направлениям биоэкологии и биотехнологии: сборник материалов VI Всероссийской научно-практической конференции с международным участием / гл. ред. Е.И. Антонова. – Чебоксары: Среда, 2023. – С. 160–167. DOI 10.31483/r-106721. EDN BYMDDL; Ekpo M.D., Boafo G.F., Xie J. [et al.]. Strategies in developing dimethyl sulfoxide (DMSO)-free cryopreservation protocols for biotherapeutics // Front. Immunol. – 2022. – 13:1030965.; Gao D. [et al.]. Mitochondrial dysfunction in cryopreserved fibroblasts: Role of antioxidants // Free Radical Biology and Medicine. – 2022. – №180. – P. 1–10.; Guan H., Jia C.Y., Chen B. [et al.]. Influence of different thawing temperature on the morphology and type I collagen metabolism of the human fibroblasts processed at – 10 degrees C in vitro // Zhonghua Shao Shang Za Zhi. – 2005. – №5. – P. 370–373.; Humphrey S., Brown S.M., Cross S.J. Defining skin quality: clinical relevance, terminology, and assessment // Dermatol Surg. – 2021. – Vol. 47. №7. – P. 974–981. DOI 10.1097/dss.0000000000003079. EDN LXKGLG; Naing A.H., Kim C.K. A brief review of applications of antifreeze proteins in cryopreservation and metabolic genetic engineering // Biotech. – 2019. – №9 (9) : 329.; https://phsreda.com/article/138740/discussion_platform
-
5Academic Journal
Source: Journal of Bioinformatics and Genomics, Vol 26, Iss 4 (2024)
-
6Academic Journal
Authors: Natalia Viktorovna Firsova, Viktoriia Alekseevna Saveleva, Natal'ia Anatol'evna Lengesova, Sergei Vladimirovich Sikharulidze, Elena Ivanovna Antonova
Source: Fundamental and applied research for key propriety areas of bioecology and biotechnology; 160-167
Фундаментальные и прикладные исследования по приоритетным направлениям биоэкологии и биотехнологии; 160-167Subject Terms: низкотемпературная консервация, фибробласты, культура клеток кожи
File Description: text/html
-
7Conference
Subject Terms: ФИБРОБЛАСТЫ, КОСТНЫЙ МОЗГ, МАКРОФАГИ, IN VITRO, АМИНОДИГИДРОФТАЛАЗИНДИОН НАТРИЯ
File Description: application/pdf
Access URL: http://elar.urfu.ru/handle/10995/135164
-
8Academic Journal
Source: Интегративная физиология, Vol 5, Iss 1 (2024)
Subject Terms: каналы Piezo1, Physiology, атомно-силовая микроскопия, фибробласты, органотипическая культура ткани, QP1-981, Jedi2
-
9Conference
Contributors: Першина, Александра Геннадьевна
Subject Terms: адгезия, матриксы, скаффолды, магнитные наночастицы, фибробласты, регенерация, стволовые клетки
File Description: application/pdf
Access URL: http://earchive.tpu.ru/handle/11683/76703
-
10Academic Journal
Authors: Фирсова Наталья Викторовна, Научно-исследовательский центр фундаментальных и прикладных проблем биоэкологии и биотехнологии ФГБОУ ВО «Ульяновский государственный педагогический университет им. И.Н. Ульянова», Natalia V. Firsova,
Nauchno-issledovatel'skii tsentr fundamental'nykh i prikladnykh problem bioekologii i biotekhnologii FGBOU VO "Ul'ianovskii gosudarstvennyi pedagogicheskii universitet im. I.N. Ul'ianova", Антонова Елена Ивановна, Elena I. Antonova, Ленгесова Наталья Анатольевна, Natal'ia A. Lengesova, Сихарулидзе Сергей Владимирович, Многопрофильная больница «ВМ-клиник», Sergei V. Sikharulidze, Mnogoprofil'naia bol'nitsa "VM-klinik", Савельева Виктория Алексеевна, Viktoriia A. Saveleva Source: Fundamental and applied research for key propriety areas of bioecology and biotechnology; 109-113 ; Фундаментальные и прикладные исследования по приоритетным направлениям биоэкологии и биотехнологии; 109-113
Subject Terms: фибробласты, меланоциты, ядро, витаминный комплекс, сокультура, ядрышко
File Description: text/html
Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-907830-38-7; https://phsreda.com/e-articles/10590/Action10590-111397.pdf; Schnellbaecher A., Binder D., Bellmaine S., Zimmer A. Vitamins in cell culture media: Stability and stabilization strategies // Biotechnol Bioeng. 2019 Jun; 116 (6):1537–1555. doi:10.1002/bit.26942. Epub 2019 Feb 21. EDN NQCFKY; Palmieri A., Avantaggiato A., Cura F., et al. Effect of biostimulation on oral fibroblast: a pilot study // J Biol Regul Homeost Agents. – 2017. – 31 (4). – P. 139–145.; Ishaque A., Al-Rubeai M. Role of vitamins in determining apoptosis and extent of suppression by bcl-2 during hybridoma cell culture. Apoptosis. 2002 Jun; 7 (3): 231–9. doi:10.1023/a:1015343616059. PMID: 11997667. EDN ERNVWP; Киямова М.Р. Оптимизация протоколов выделения и культивирования клеток различных топографических участков кожи человека / М.Р. Киямова, Е.И. Антонова, Н.В. Фирсова [и др.] // Фундаментальные и прикладные исследования по приоритетным направлениям биоэкологии и биотехнологии: сборник материалов V Всероссийской научно-практической конференции с международным участием (Ульяновск, 20 мая 2022 года) / гл. ред. Е.И. Антонова. – Чебоксары: Среда, 2022. – С. 107–116. – DOI 10.31483/r-102248. – EDN AQNOJW.; Антонова Е.И. Повышение эффективности культивирования сокультуры дермальных фибробластов/меланоцитов за счет внесения кластера витаминных добавок (в аспекте разработки эквивалента кожи) / Е.И. Антонова, Н.В. Фирсова, Н.А. Ленгесова [и др.] // Тенденции развития науки и образования. – 2024. – №105–9. – С. 91–97. – DOI 10.18411/trnio-01-2024-446. – EDN XKXIIW; Диденко Л.В. Морфофункциональная характеристика фибробластов клеточной культуры McCoy при культивировании с препаратами магния / Л.В. Диденко, Т.Г. Боровая, Е.А. Кост [и др.] // РФК. – 2015. – №2. – EDN TQTHUX; Антонова Е.И. Клеточный цикл как критерий оценки биосовместимости фибробластов и скаффолдов в системе in vitro после воздействия УФ-облучения в аспекте создания эквивалента кожи / Е.И. Антонова, Н.В. Фирсова, М.Р. Киямова [и др.] // Международный научно-исследовательский журнал. – 2022. – №9 (123). DOI: https://doi.org/10.23670/IRJ.2022.123.10. EDN PWVYAC; Mahajan A.S., Arikatla V.S., Thyagarajan A., et al. Creatine and nicotinamide prevent oxidant-induced senescence in human fibroblasts // Nutrients. – 2021. – 13 (11). – P. 4102.; Jagoda S.V., Dixon K.M. Protective effects of 1,25 dihydroxyvitamin D3 and its analogs on ultraviolet radiation-induced oxidative stress: a review. Redox Rep. 2020; 25 (1): 11–16. DOI 10.1080/13510002.2020.1731261. EDN BUOTYX; Han D., Liu Y., Li X., Zhang T., Li Z., Du S., Guo M. Effect of beta -alanine and the solvent composition on the solubility of solvate of calcium d-pantothenate containing four molecules of methanol and one molecule of water (D-PC⋅4MeOH⋅1H2O) // The Journal of Chemical Thermodynamics. 106: 36–46.; https://phsreda.com/article/111397/discussion_platform
-
11Academic Journal
Authors: N. V. Shilova, M. E. Minzhenkova, Zh. G. Markova, P. A. Vasiliev, V. Yu. Tabakov, G. N. Matuschenko, Н. В. Шилова, М. Е. Миньженкова, Ж. Г. Маркова, П. А. Васильев, В. Ю. Табаков, Г. Н. Матющенко
Contributors: The study was carried out according to the state assignment of the Ministry of Science and Higher Education of the Russian Federation for the RCMG., Работа выполнена в рамках государственного задания Минобрнауки России для ФГБНУ «МГНЦ» на 2024 г.
Source: Medical Genetics; Том 23, № 8 (2024); 50-57 ; Медицинская генетика; Том 23, № 8 (2024); 50-57 ; 2073-7998
Subject Terms: FISH, tissue-specific somatic chromosomal mosaicism, buccal epithelium, cultured blood lymphocytes, cultured skin fibroblasts, тканеспецифичный соматический хромосомный мозаицизм, буккальный эпителий, культивированные лимфоциты периферической крови, культивированные фибробласты кожи
File Description: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2530/1812; Martínez-Glez V., Tenorio J., Nevado J. et al. A six-attribute classification of genetic mosaicism. Genet Med. 2020; 22(11): 1743– 1757. doi:10.1038/s41436-020-0877-3.; James R.S., Jacobs P.A. Molecular studies of the aetiology of trisomy 8 in spontaneous abortions and the liveborn population. Hum Genet. 1996; 97: 283-286.; Wisniewska M., Mazurek M. Trisomy 8 mosaicism syndrome. J. Appl. Genet. 2002, 43, 115-118.; Robinson W.P., Binkert F., Bernasconi F. et al. Molecular studies of chromosomal mosaicism: relative frequency of chromosome gain or loss and possible role of cell selection. Am J Hum Genet. 1995, 56:444-451.; Karadima G., Bugge M., Nicolaidis P. et al. Origin of nondisjunction in trisomy 8 and trisomy 8 mosaicism. Eur J Hum Genet 1998, 6:432-438.; Baidas S., Chen T-J, Kolev V. et al. Clinical report constitutional trisomy 8 mosaicism due to meiosis II non-disjunction in a phenotypically normal woman with hematologic abnormalities. Am J of Med Genet. 2004; 124A:383-387.; Veitia R.A., Bottani S., Birchler J.A. Cellular reactions to gene dosage imbalance: genomic, transcriptomic and proteomic effects. Trends Genet. 2008, 24:390-397.; Kurtyka Z.E., Krzykwa B., Piatkowska E. et al. Trisomy 8 mosaicism syndrome. Two cases demonstrating variability in phenotype. Clin Pediatr. 1988;27(11):557-564.; Paulsson K., Johansson B. Trisomy 8 as the sole chromosomal aberration in acute myeloid leukemia and myelodysplastic syndromes. Pathol Biol (Paris). 2007; 55: 37-48.; Шилова Н.В., Миньженкова М.Е., Маркова Ж.Г., Юрченко Д.А., Воронина Е.С. Клиническая характеристика и лабораторная диагностика синдрома Паллистера-Киллиана. Учебно-методическое пособие; под. ред. Н.В. Шиловой – М.: - Изд-во Триумф, 2024. - 54 с.; Weise A., Liehr T. Pre- and postnatal diagnostics and research on peripheral blood, bone marrow, chorion, amniocytes, and fibroblasts. In: Liehr, T. (eds) Fluorescence In Situ Hybridization (FISH). Springer Protocols Handbooks. 2017. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52959-1_17; Воробцова И.Е., Васильева З.Ж., Школьник М.И. и др. Применение метода флуоресцентной гибридизации in situ на клетках осадка мочи для диагностики рака мочевого пузыря и его рецидивов. Онкоурология. 2011; 1: 73-78.; Riccardi V.M. Trisomy 8: an international study of 70 patients. Birth Defects. 1977;13:(3C):171-184.; Hale N.E., Keane J.F. Piecing together a picture of trisomy 8 mosaicism syndrome. J Am Osteopath Assoc. 2010; 110(1): 21-23.; Settimo C., Bonanno L., Tresoldi M. et al. Early and innovative rehabilitation in Warkany Syndrome 2 associated with agenesis of the corpus callosum: a case report. Children. 2022; 9: 722. https://doi.org/10.3390/children9050722; Hasle H., Clausen N., Pedersen B., Bendix-Hansen K. Myelodysplastic syndrome in a child with constitutional trisomy 8 mosaicism and normal phenotype. Cancer Genet Cytogenet. 1995; 79: 79-81.; Maserati E., Aprili F., Vinante F. et al. Trisomy 8 in myelodysplasia and acute leukemia is constitutional in 15-20% of cases. Genes Chromosomes Cancer. 2002, 33: 93-97.; Улумбеков Э. Г. Гистология, эмбриология, цитология: учебник для вузов / Под ред. Э. Г. Улумбекова, Ю. А. Челышева. - 3-е изд. - Москва : ГЭОТАР-Медиа, 2012. - 480 с.; Vanneste E., Voet T., Le Caignec C. et al. Chromosome instability is common in human cleavage-stage embryos. Nature Medicin. 2009: 15; 577-583.; McCoy R.C. Mosaicism in preimplantation human embryos: when chromosomal abnormalities are the norm. Trends Genet. 2017; 33(7): 448–463. doi:10.1016/j.tig.2017.04.001.; Campbell I.M., Chad A. Shaw C.A., Stankiewicz P., Lupski J.R. Somatic mosaicism: implications for disease and transmission genetics. Trends Genet. 2015; 31(7): 382-392. doi:10.1016/j.tig.2015.03.013; Youssoufian H., Pyeritz R.E. Mechanisms and consequences of somatic mosaicism in humans. Nat. Rev. Genet. 2002, 3, 748-758.; Vorsanova S.G., Yurov Y.B., Iourov I.Y. Dynamic nature of somatic chromosomal mosaicism, genetic-environmental interactions and therapeutic opportunities in disease and aging. Molecular Cytogenetics.2020; 13:16 https://doi.org/10.1186/s13039-020-00488-0; Ziêtkiewicz E., Wojda A., Witt M. Cytogenetic perspective of ageing and longevity in men and women. J Appl Genet. 2009; 50(3): 261-273.; De S. Somatic mosaicism in healthy human tissues. Trends in Genetics. 2011; 27(6):217-223. doi:10.1016/j.tig.2011.03.002 26. Davidsson J., Veerla S., Johansson B. Constitutional trisomy 8 mosaicism as a model for epigenetic studies of aneuploidy. Epigenetics & Chromatin. 2013; 6: 18 http://www.epigeneticsandchromatin.com/content/6/1/18.
-
12Academic Journal
Contributors: Работа выполнена в рамках гранта РНФ № 23-25-00349, https://rscf.ru/project/23-25-00349.
Source: Medical Immunology (Russia); Том 26, № 4 (2024); 649-656 ; Медицинская иммунология; Том 26, № 4 (2024); 649-656 ; 2313-741X ; 1563-0625
Subject Terms: α-гладкомышечный актин, fibroblasts, conditioned media, antifibrotic activity, collagen, α-smooth actin, фибробласты, кондиционные среды, антифиброгенная активность, коллаген
File Description: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/3029/1958; Bagalad B.S., Mohan Kumar K.P., Puneeth H.K. Myofibroblasts: Master of disguise. J. Oral Maxillofac. Pathol., 2017, Vol. 21, no. 3, pp. 462-463.; Brennan P.N., MacMillan M., Manship T., Moroni F., Glover A., Graham C., Semple S., Morris D.M., Fraser A.R., Pass C., McGowan N.W.A., Turner M.L., Lachlan N., Dillon J.F., Campbell J.D.M., Fallowfield J.A., Forbes S.J. Study protocol: a multicentre, open-label, parallel-group, phase 2, randomised controlled trial of autologous macrophage therapy for liver cirrhosis (MATCH). BMJ Open, 2021, Vol. 11, no. 11, e053190. doi:10.1136/bmjopen-2021-053190.; Chang C.H., Juan Y.H., Hu H.C., Kao K.C., Lee C.S. Reversal of lung fibrosis: an unexpected finding in survivor of acute respiratory distress syndrome. QJM, 2018, Vol. 111, no. 1, pp. 47-48.; Koudelka A., Cechova V., Rojas M., Mitash N., Bondonese A., St Croix C., Ross M.A., Freeman B.A. Fatty acid nitroalkene reversal of established lung fibrosis. Redox Biology, 2022, Vol. 50, 102226. doi:10.1016/j.redox.2021.102226.; Landry N.M., Rattan S.G., Dixon I.M.C. An improved method of maintaining primary murine cardiac fibroblasts in two-dimensional cell culture. Sci. Rep., 2019, no. 9, 12889. doi:10.1038/s41598-019-49285-9.; Machahua C., Vicens-Zygmunt V., Ríos-Martín J., Llatjós R., Escobar-Campuzano I., Molina-Molina M., Montes-Worboys A. Collagen 3D matrices as a model for the study of cell behavior in pulmonary fibrosis. Exp. Lung Res., 2022, Vol. 48, no. 3, pp. 126-136.; Meng X.M., Nikolic-Paterson D.J., Lan H.Y. TGF-β: the master regulator of fibrosis. Nat. Rev. Nephrol., 2016, Vol. 12, no. 6, pp. 325-338.; Mikkelsen L.F., Rubak S. Reversible lung fibrosis in a 6-year-old girl after long term nitrofurantoin treatment. BMC Pulm. Med., 2020, Vol. 20, 313. doi:10.1186/s12890-020-01353-x.; Murray P.J., Allen J.E., Biswas S.K., Fisher E.A., Gilroy D.W., Goerdt S., Gordon S., Hamilton J.A., Ivashkiv L.B., Lawrence T., Locati M., Mantovani A., Martinez F.O., Mege J.L., Mosser D.M., Natoli G., Saeij J.P., Schultze J.L., Shirey K.A., Sica A., Suttles J., Udalova I., van Ginderachter J.A., Vogel S.N., Wynn T.A. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity, 2014, Vol. 41, no. 1, pp. 14-20.; Sapudom J., Karaman S., Mohamed W.K.E., Garcia-Sabaté A., Quartey B.C., Teo J.C.M. 3D in vitro M2 macrophage model to mimic modulation of tissue repair. NPJ Regen. Med., 2021, no. 6, 83. doi:10.1038/s41536-021-00193-5.; Sari E., He C., Margaroli C. Plasticity towards rigidity: a macrophage conundrum in pulmonary fibrosis. Int. J. Mol. Sci., 2022, Vol. 23, no. 19, 11443. doi:10.3390/ijms231911443.; Song E., Ouyang N., Hörbelt M., Antus B., Wang M., Exton M.S. Influence of alternatively and classically activated macrophages on fibrogenic activities of human fibroblasts. Cell. Immunol., 2000, Vol. 204, no. 1, pp. 19-28.; Tarique A.A., Logan J., Thomas E., Holt P.G., Sly P.D., Fantino E. Phenotypic, functional, and plasticity features of classical and alternatively activated human macrophages. Am. J. Respir. Cell Mol. Biol., 2015, Vol. 53, no. 5, pp. 676-688.; Ullm F., Riedl P., Machado de Amorim A., Patzschke A., Weiß R., Hauschildt S., Franke K., Anderegg U., Pompe T. 3D scaffold-based macrophage fibroblast coculture model reveals IL-10 dependence of wound resolution phase. Adv. Biosyst., 2020, Vol. 4, no. 1, e1900220. doi:10.1002/adbi.201900220.; Xue J., Schmidt S.V., Sander J., Draffehn A., Krebs W., Quester I., de Nardo D., Gohel T.D., Emde M., Schmidleithner L., Ganesan H., Nino-Castro A., Mallmann M.R., Labzin L., Theis H., Kraut M., Beyer M., Latz E., Freeman T.C., Ulas T., Schultze J.L. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity, 2014, Vol. 40, no. 2, pp. 274-288.; https://www.mimmun.ru/mimmun/article/view/3029
-
13Academic Journal
Authors: Zakharov, A.S., Nozadze, N.D., Vasilovsky, I.N., Korotkova, N.V., Mzhavanadze, N.D., Suchkov, I.A., Kalinin, R.E.
Source: Biomedical Chemistry: Research and Methods; Vol. 7 No. 1 (2024); e00207 ; Biomedical Chemistry: Research and Methods; Том 7 № 1 (2024); e00207 ; 2618-7531
Subject Terms: cytocompatibility, fibroblasts, hydrogel, peroxynitrite, gelatin, sodium alginate, цитосовместимость, фибробласты, гидрогель, пероксинитрит, желатин, альгинат натрия
File Description: text/html; application/pdf
Relation: http://www.bmc-rm.org/index.php/BMCRM/article/view/207/521; http://www.bmc-rm.org/index.php/BMCRM/article/view/207/522; http://www.bmc-rm.org/index.php/BMCRM/article/view/207/509
Availability: http://www.bmc-rm.org/index.php/BMCRM/article/view/207
-
14Academic Journal
Authors: I. V. Tverdokhlib, Yu. V. Silkina
Source: Morphologia; Том 14 № 4 (2020); 108-114
Morphologia; Vol. 14 No. 4 (2020); 108-114Subject Terms: клеточные субпопуляции, skin, клітинні субпопуляції, шкіра, fibroblasts, фибробласты, кожа, cell subpopulations, histophysiological properties, гістофізіологічні властивості, фібробласти, гистофизиологические свойства
File Description: application/pdf
-
15Academic Journal
Authors: Yu. A. Zakharova, A. V. Ostapchuk, W. W. Wasielewski, O. S. Fedotova, N. A. Shmeleva, Ю. А. Захарова, А. В. Остапчук, В. В. Василевский, О. С. Федотова, Н. А. Шмелева
Contributors: The study was conducted without sponsorship., Исследование проводилось без спонсорской поддержки.
Source: Biological Products. Prevention, Diagnosis, Treatment; Том 23, № 1 (2023): Вопросы разработки новых противовирусных вакцин; 102-110 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 23, № 1 (2023): Вопросы разработки новых противовирусных вакцин; 102-110 ; 2619-1156 ; 2221-996X
Subject Terms: HSV-1, porcine foetal kidney fibroblasts, porcine foetal larynx fibroblasts, Coxsackievirus B5, Herpes simplex virus-1, CVB5, фибробласты почки плода свиньи, фибробласты гортани плода свиньи
File Description: application/pdf
Relation: https://www.biopreparations.ru/jour/article/view/427/622; https://www.biopreparations.ru/jour/article/view/427/628; https://www.biopreparations.ru/jour/article/view/427/642; https://www.biopreparations.ru/jour/article/view/427/656; https://www.biopreparations.ru/jour/article/downloadSuppFile/427/413; https://www.biopreparations.ru/jour/article/downloadSuppFile/427/470; https://www.biopreparations.ru/jour/article/downloadSuppFile/427/630; Ogilvie M. Molecular techniques should not now replace cell culture in diagnostic virology laboratories. Rev Med Virol. 2001;11(6):351–4. https://doi.org/10.1002/rmv.335; Leland DS, Ginocchio CC. Role of cell culture for virus detection in the age of technology. Clin Microbiol Rev. 2007;20(1):49–78. https://doi.org/10.1128/CMR.00002-06; Genzel Y. Designing cell lines for viral vaccine production: where do we stand? Biotechnol J. 2015;10(5):728–40. https://doi.org/10.1002/biot.201400388; Aubrit F, Perugi F, Léon A, Guéhenneux F, Champion-Arnaud P, Lahmar M, Schwamborn K. Cell substrates for the production of viral vaccines. Vaccine. 2015;33(44):5905–12. https://doi.org/10.1016/j.vaccine.2015.06.110; Chen P, Wu X, Su Y, Hao X, Mao Q, Liang Z. Development of a pseudovirus based assay for measuring neutralizing antibodies against Coxsackievirus B5. J Virol Methods. 2017;246:21–6. https://doi.org/10.1016/j.jviromet.2017.04.005; Dolskiy AA, Grishchenko IV, Yudkin DV. Cell cultures for virology: usability, advantages, and prospects. Int J Mol Sci. 2020;21(21):7978. https://doi.org/10.3390/ijms21217978; Hematian A, Sadeghifard N, Mohebi R, Taherikalani M, Nasrolahi A, Amraei M, Ghafourian S. Traditional and modern cell culture in virus diagnosis. Osong Public Health Res Perspect. 2016;7(2):77–82. https://doi.org/10.1016/j.phrp.2015.11.011; Глинских НП, Колесникова ГГ, Устьянцев ВП, Закирова СФ, Власова ЛВ, Станиславская ВК. Штамм диплоидных клеток легкого эмбриона человека ЛЭЧ-4(81), используемый для диагностики вирусных инфекций. Патент СССР № SU 1147748 A1; 1985.; Noort WA, Oerlemans MI, Rozemuller H, Feyen D, Jaksani S, Stecher D, et al. Human versus porcine mesenchymal stromal cells: phenotype, differentiation potential, immunomodulation and cardiac improvement after transplantation. J Cell Mol Med. 2012;16(8):1827–39. https://doi.org/10.1111/j.1582-4934.2011.01455.x; Schweizer R, Waldner M, Oksuz S, Zhang W, Komatsu C, Plock JA, et al. Evaluation of porcine versus human mesenchymal stromal cells from three distinct donor locations for cytotherapy. Front Immunol. 2020;11:826. https://doi.org/10.3389/fimmu.2020.00826; Викулов ГХ. ОРВИ, грипп и герпес: что общего и в чем разница при диагностике и терапии. Взгляд клинического иммунолога и инфекциониста. РМЖ «Медицинское обозрение». 2015;23(17):1032–7.; Алимов АВ, Федотова ОС, Шмелева НА, Бахарев АА, Резайкин АВ, Усольцева ПС и др. Определение чувствительности новых клеточных культур животного происхождения к клиническим изолятам энтеровируса человека Echovirus 11 и Coxsackievirus B5. Медицинский алфавит. 2020;(18):17–9. https://doi.org/10.33667/2078-5631-2020-18-17-19; Глинских НП, Бахарев АА, Устьянцев ПВ, Устьянцев ИВ. Способ получения стабильных клеточных культур. Патент Российской Федерации № 2392318; 2008.; Адамс Р. Методы культуры клеток для биохимиков. М.: Мир; 1983.; Moorhead PS, Nowell PC, Mellman WJ, Battips DM, Hungerford DA. Chromosome preparations of leukocytes cultured from human peripheral blood. Exp Cell Res. 1960;20:613–6. https://doi.org/10.1016/0014-4827(60)90138-5; Husson-van Vliet J, Roussel P. Pipetting errors in viral titrations: a useful approach. J Virol Methods. 1988;22(2–3):183–90. https://doi.org/10.1016/0166-0934(88)90101-2; https://www.biopreparations.ru/jour/article/view/427
-
16Conference
Contributors: Першина, Александра Геннадьевна
Subject Terms: скаффолды, магнитные наночастицы, стволовые клетки, матриксы, фибробласты, регенерация, адгезия
File Description: application/pdf
Relation: Химия и химическая технология в XXI веке : материалы XXIV Международной научно-практической конференции студентов и молодых ученых имени выдающихся химиков Л. П. Кулёва и Н. М. Кижнера, посвященной 85-летию со дня рождения профессора А. В. Кравцова, Томск, 15-19 мая 2023 г. Т. 1; http://earchive.tpu.ru/handle/11683/76703
Availability: http://earchive.tpu.ru/handle/11683/76703
-
17Academic Journal
Authors: Mishchenko, O., Solodovnyk, O., Deineka, V., Oleshko, O.
Source: Морфологія, Vol 14, Iss 1, Pp 42-49 (2020)
Morphologia; Том 14, № 1 (2020); 42-49Subject Terms: імплантат, адгезія клітин, QH301-705.5, остеобласти, гідроксиапатитне покриття, остеоинтеграция, имплантат, остеобласты, фибробласты, адгезия клеток, гидроксиапатитное покрытие, Biology (General), остеоінтеграція, фібробласти, osseointegration, implant, osteoblasts, fibroblasts, cell adhesion, hydroxyapatite coating
File Description: application/pdf
-
18Academic Journal
Authors: Maksim M. Khalisov, Valentina A. Penniyaynen, Svetlana A. Podzorova, Kirill I. Timoshchuk, Alina D. Rosenblit, Boris V. Krylov
Source: Интегративная физиология, Vol 1, Iss 2 (2020)
Subject Terms: конфокальная лазерная сканирующая микроскопия, стресс-фибриллы, колхицин, Physiology, атомно-силовая микроскопия, фибробласты, QP1-981, 3. Good health
Access URL: https://intphysiology.ru/index.php/main/article/download/19/17
https://doaj.org/article/1aa714cc026644829482fe5eb5aedf0f
https://intphysiology.ru/index.php/main/article/download/19/17
https://cyberleninka.ru/article/n/kolhitsin-izmenyaet-strukturu-tsitoskeleta-fibroblastov-kolichestvennoe-issledovanie-adaptivnoy-kletochnoy-reaktsii-metodami-atomno
https://intphysiology.ru/index.php/main/article/view/19
https://cyberleninka.ru/article/n/kolhitsin-izmenyaet-strukturu-tsitoskeleta-fibroblastov-kolichestvennoe-issledovanie-adaptivnoy-kletochnoy-reaktsii-metodami-atomno/pdf -
19Academic Journal
Authors: Wasielewski, V. V., Zakharova, Yu. A., Bakharev, A. A., Fedotova, O. S., Ostapchuk, A. V., Василевский, В. В., Захарова, Ю. А., Бахарев, А. А., Федотова, О. С., Остапчук, А. В.
Subject Terms: REGENERATIVE MEDICINE, BIOMEDICAL CELL PRODUCTS, CELL CULTURES, FIBROBLASTS, РЕГЕНЕРАТИВНАЯ МЕДИЦИНА, БИОМЕДИЦИНСКИЕ КЛЕТОЧНЫЕ ПРОДУКТЫ, КЛЕТОЧНЫЕ КУЛЬТУРЫ, ФИБРОБЛАСТЫ
File Description: application/pdf
Relation: Уральский медицинский журнал. 2023. Т. 22, № 1.; http://elib.usma.ru/handle/usma/11890
Availability: http://elib.usma.ru/handle/usma/11890
-
20Academic Journal
Authors: E. S. Vladimirova, V. P. Nikulina, M. A. Godkov, E. A. Kasholkina, Е. С. Владимирова, В. П. Никулина, М. А. Годков, Е. А. Кашолкина
Source: Russian Sklifosovsky Journal "Emergency Medical Care"; Том 12, № 3 (2023); 428-434 ; Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»; Том 12, № 3 (2023); 428-434 ; 2541-8017 ; 2223-9022
Subject Terms: интерлейкин 17А, immune response, cytokines, fibroblasts, transforming growth factor (TGF-β), interleukin 17A, иммунный ответ, цитокины, фибробласты, трансформирующий ростовой фактор (TGF-β)
File Description: application/pdf
Relation: https://www.jnmp.ru/jour/article/view/1675/1339; https://www.jnmp.ru/jour/article/view/1675/1400; Streitz JM Jr, Shapshay SM. Airway injury after tracheotomy and endotracheal intubation. Surg Clin North Am. 1991;71(6):1211–1230. https://doi.org/10.1016/s0039-6109(16)45586-6 PMID: 1948570; Fernandez-Bussy S, Mahajan B, Folch E, Caviedes I, Guerrero J, Majid A. Tracheostomy Tube Placement: Early and Late Complications. J Bronchology Interv Pulmonol. 2015;22(4):357–364. https://doi.org/10.1097/LBR.0000000000000177 PMID: 26348694; Norwood S, Vallina VL, Short K, Saigusa M, Fernandez LG, McLarty JW. Incidence of tracheal stenosis and other late complications after percutaneous tracheostomy. Ann Surg. 2000;232(2):233–241. https://doi.org/10.1097/00000658-200008000-00014 PMID: 10903603; Kim SS, Khalpey Z, Hsu C, Little AG. Changes in tracheostomyand intubation-related tracheal stenosis: implications for surgery. Ann Thorac Surg. 2017;104(3):964–970. https://doi.org/10.1016/j.athoracsur.2017.03.063 PMID: 28619544; Паршин В.Д., Порханов В.А. Хирургия трахеи с атласом оперативной хирургии. Москва: Альди-Принт; 2010.; Паршин В.Д., Королева И.М., Мищенко М.А., Паршин В.В. Диагностика и лечение приобретенной трахеомаляции у пациентов с рубцовым стенозом трахеи. Хирургия. Журнал им. Н.И. Пирогова. 2016;(8):73–82. https://doi.org/10.17116/hirurgia2016873-82; Mark EJ, Meng F, Kradin RL, Mathisen DJ, Matsubara O. Idiopathic tracheal stenosis: a clinicopathologic study of 63 cases and comparison of the pathology with chondromalacia. Am J Surg Pathol. 2008;32(8):1138– 1143. https://doi.org/10.1097/PAS.0b013e3181648d4a PMID: 18545144; Maldonado F, Loiselle A, Depew ZS, Edell ES, Ekbom DC, Malinchoc M, et al. Idiopathic subglottic stenosis: an evolving therapeutic algorithm. Laryngoscope. 2014;124(2):498-503. https://doi.org/10.1002/lary.24287 PMID: 23818139; Nakagishi Y, Morimoto Y, Fujita M, Ozeki Y, Maehara T, Kikuchi M. Rabbit model of airway stenosis induced by scraping of the tracheal mucosa. Laryngoscope. 2005;115(6):1087–1092. https://doi.org/10.1097/01.MLG.0000163105.86513.6D PMID: 15933527; Eyre D. Collagen of articular cartilage. Arthritis Res. 2002;4(1):30–35. https://doi.org/10.1186/ar380 PMID: 11879535; Божокин М.С., Божкова С.А., Нетылько Г.И. Возможности современных клеточных технологий для восстановления повреждённого суставного хряща (аналитический обзор литературы). Травматология и ортопедия России. 2016;22(3):122–134. https://doi.org/10.21823/2311-2905-2016-22-3-122-134; Божокин М.С., Божкова С.А., Нетылько Г.И., Румакин В.П., Наконечный Д.Г., Чепурненко М.Н. Морфофункциональная характеристика хондрорегенераторного процесса в экспериментальном локальном дефекте поверхности суставного хряща. Международный журнал прикладных и фундаментальных исследований. 2017;(8-2):302–306.; Eyre DR, Weis MA, Wu J-J. Articular cartilage collagen: an irreplaceable framework? Eur Cells Mater. 2006;12:57–63. PMID: 17083085 https://doi.org/10.22203/ecm.v012a07; Krishnan Y, Grodzinsky AJ. Cartilage diseases. Matrix Biol. 2018;71– 72:51–69. https://doi.org/10.1016/j.matbio.2018.05.005 PMID: 29803938; Курганский И.С., Махутов В.Н., Лепехова С.А. Способы лечения и профилактики рубцовых стенозов трахеи. Вестник оториноларингологии. 2016;(1):66–71. https://doi.org/10.17116/otorino201681166-71; Недзьведь М.К., Татур А.А., Леонович С.И., Неровня А.М. Морфологические изменения в трахее при постинтубационном рубцовом стенозе. Медицинский журнал. 2008;(1):43–46.; Sime PJ, O’Reilly KM. Fibrosis of the lung and other tissues: new concepts in pathogenesis and treatment. Clin Immunol. 2001;99(3):308– 319. https://doi.org/10.1006/clim.2001.5008 PMID: 11358425; Fajgenbaum DC, June CH. Cytokine Storm. N Engl J Med. 2020;383(23):2255–2273. https://doi.org/10.1056/NEJMra2026131 PMID: 33264547; Wei P, Huang Z, Gan L, Li Y, Qin C, Liu G. Nintedanib ameliorates tracheal stenosis by activating HDAC2 and suppressing IL-8 and VEGF in rabbit. Am J Transl Res. 2020;12(8):4739–4748. eCollection 2020. PMID: 32913546; Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol. 2017;39(5):517–528. https://doi.org/10.1007/s00281-017-0639-8 PMID: 28555385; Lin JX, Leonard WJ. Fine-Tuning Cytokine Signals. Annu Rev Immunol. 2019;37:295–324. https://doi.org/10.1146/annurev-immunol-042718041447 PMID: 30649989; Oppenheim JJ. The Future of the Cytokine Discipline. Cold Spring Harb Perspect Biol. 2018;10(9):a028498. https://doi.org/10.1101/cshperspect.a028498 PMID: 28847901; Weledji EP. Citocynes and metabolic response to surgery. J Clin Cell Immunol. 2014;5(2). https://doi.org/10.4172/2155-9899.1000197 Available at: https://www.researchgate.net/publication/341265387_Cytokines_and_the_Metabolic_Response_to_Surgery [Accessed 04.10. 2021]; Ильина А.Е., Станислав М.Л., Денисов Л.Н., Насонов Е.Л. Интерлейкин-1 как медиатор воспаления и терапевтическая мишень. Научно-практическая ревматология. 2011;(3):62–71.; Thielen NGM, van der Kraan PM, van Caam APM. TGFβ/BMP Signaling Pathway in Cartilage Homeostasis. Cells. 2019;8(9):969. https://doi.org/10.3390/cells8090969 PMID: 31450621; Blaney Davidson EN, Remst DF, Vitters EL, van Beuningen HM, Blom AB, Goumans MJ, et al. Increase in ALK1/ALK5 ratio as a cause for elevated MMP-13 expression in osteoarthritis in humans and mice. J Immunol. 2009;182(12):7937–7945. https://doi.org/10.4049/jimmunol.0803991 PMID: 19494318; Витковский Ю.А. Влияние интерлейкинов 4 и 10 на систему гемостаза in vitro. Иммунология. 2004;(1):43–46.; Li M, Jia J, Li S, Cui B, Huang J, Guo Z, et al. Exosomes derived from tendon stem cells promote cell proliferation and migration through the TGF β signal pathway. Biochem Biophys Res Commun. 2021;536:88–94. https://doi.org/10.1016/j.bbrc.2020.12.057 PMID: 33370718; Vander Ark A, Cao J, Li X. TGF-β receptors: In and beyond TGFβ signaling. Cell Signal. 2018;52:112–120. https://doi.org/10.1016/j.cellsig.2018.09.002 PMID: 30184463; Ge Y, Huang M, Yao YM. Autophagy and proinflammatory cytokines: Interactions and clinical implications. Cytokine Growth Factor Rev. 2018;43:38–46. https://doi.org/10.1016/j.cytogfr.2018.07.001 PMID: 30031632; Garcia-Rendueles AR, Rodrigues JS, Garcia-Rendueles ME, SuarezFariña M, Perez-Romero S, Barreiro F, et al. Rewiring of the apoptotic TGF-β-SMAD/NFκB pathway through an oncogenic function of p27 in human papillary thyroid cancer. Oncogene. 2017;36(5):652–666. https://doi.org/10.1038/onc.2016.233 PMID: 27452523; Симбирцев А.С., Тотолян А.А. Цитокины в лабораторной диагностике. Инфекционные болезни: Новости. Мнения. Обучение. 2015;2 (11):82–98.; Crecente-Campo J, Borrajo E, Vidal A, Garcia-Fuentes M. New scaffolds encapsulating TGF-β3/BMP-7 combinations driving strong chondrogenic differentiation. Eur J Pharm Biopharm. 2017;114:69–78. https://doi.org/10.1016/j.ejpb.2016.12.021 PMID: 28087378; Kronenberg HM. Developmental regulation of the growth plate. Nature. 2003;423(6937):332–336. https://doi.org/10.1038/nature01657 PMID: 12748651; Huang Z, Wei P, Gan L, Li W, Zeng T, Qin C, et al. Protective effects of different anti-inflammatory drugs on tracheal stenosis following injury and potential mechanisms. Mol Med Rep. 2021;23(5):314. https://doi.org/10.3892/mmr.2021.11953 PMID: 34240225; Greaves NS, Asheroft KJ, Baguneid M, Bayat A. Current understanding of molecular and cellular mechanisms in fibroplasia and angiogenesis during acute wound healing. J Dermatal Sci. 2013;72(3):206–217. https://doi.org/10.1016/j.jdermsci.2013.07.008 PMID: 23958517; Maher TM. Pirfenidone in idiopathic pulmonary fibrosis. Drugs Today (Barc). 2010;46(7):473–482. https://doi.org/10.1358/dot.2010.46.7.1488336 PMID: 20683502; Есаков Ю.С., Дубова Е.А., Жестков К.Г., Щеголев А.И. Морфологические изменения при постинтубационном стенозе трахеи. Хирургия. Журнал им. Н.И. Пирогова. 2010;(2):60–63.; Yanagawa Y, Hiraide S, Iizuka K. Isoform-specific regulation of transforming growth factor-β mRNA expression in macrophages in response to adrenoceptor stimulation. Microbiol Immunol. 2016;60(1):56–63. https://doi.org/10.1111/1348-0421.12344 PMID: 26612065; Li LH, Xu MP, Gan LM, Li Y, Liang YL, Li WT, et al. Effect of low dose erythromycin on the proliferation of granulation tissue after tracheal injury. Zhonghua Yi Xue Za Zhi. 2017;97(10):777–781. (In Chinese) https://doi.org/10.3760/cma.j.issn.0376-2491.2017.10.012 PMID: 28316160; Zhang J, Li Q, Bai C, Han Y, Huang Y. Inhalation of TGF-beta1 antibody: A new method to inhibit the airway stenosis induced by the endobronchial tuberculosis. Med Hypotheses. 2009;73(6):1065–1066. https://doi.org/10.1016/j.mehy.2009.04.037 PMID: 19819641; Lee YC, Hung MH, Liu LY, Chang KT, Chou TY, Wang YC, et al. The roles of transforming growth factor-beta (1) and vascular endothelial growth factor in the tracheal granulation formation. Pulm Pharmacol Ther. 2011;24(1):23–31. https://doi.org/10.1016/j.pupt.2010.10.016 PMID: 21056681; Morikawa M, Derynck R, Miyazono K. TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol. 2016;8(5):a021873. https://doi.org/10.1101/cshperspect.a021873 PMID: 27141051; Derynck R, Budi E. Specificity, versatility, and control of TGF-β family signaling. Sci Signal. 2019;12(570):eaav5183. https://doi.org/10.1126/scisignal.aav5183 PMID: 30808818; Shao T, Song P, Hua H, Zhang H, Sun X, Kong Q, et al. Gamma synuclein is a novel Twist1 target that promotes TGF-β-induced cancer cell migration and invasion. Cell Death Dis. 2018;9(6):625. https://doi.org/10.1038/s41419-018-0657-z PMID: 29795373; Rockey DC, Bell PD, Hill JA. Fibrosis-a common pathway to organ injury and failure. N Engl J Med. 2015;372(12):1138–1149. PMID: 25785971 https://doi.org/10.1056/NEJMra1300575; Shiromizu CM, Jancic CC. Review. gammadelta T Lymphocytes: An Effector Cell in Autoimmunity and Infection. Front Immunol. 2018;9:2389. https://doi.org/10.3389/fimmu.2018.02389 eCollection 2018. PMID: 30386339; Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelialmesenchymal transition of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178–196. https://doi.org/10.1038/nrm3758 PMID: 24556840; Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214(2):199–210. https://doi.org/10.1002/path.2277 PMID: 18161745; Yang J, Weinberg RA. Epitelial-Mesenchymal Transition: at the Crossroads of Development and Tumor Metastasis. Dev Cell. 2002;14(6):818–829. https://doi.org/10.1016/j.devcel.2008.05.009 PMID: 18539112; Xu J, Lamouille S, Derynck R. TGF –induced epithelial to mesenchymal Transition. Сell Res. 2009;19(2):156–172. https://doi.org/10.1038/cr.2009.5 PMID: 19153598; Datta A, Scotton CJ, Chambers RC. Novel therapeutic approaches for pulmonary fibrosis. Br J Phamacol. 2011;163(1):141–172. https://doi.org/10.1111/j.1476-5381.2011.01247 PMID: 21265830; Motz KM, Gelbard A. The role of inflammatory cytokines in the development of idiopathic subglottic stenosis. Transl Cancer Res. 2020;9(3):2102–2107. https://doi.org/10.21037/tcr.2019.12.37 PMID: 35117565; Griffits M, Ojeh N, Livingstone R, Price R, Navsaria H. Survival of Apligraf in acute human wounds. Tissuee Engl. 2004;10(7–8):1180– 1195. https://doi.org/10.1089/ten.2004.10.1180 PMID: 15363174; Zhao J, Shi W, Wang YL, Chen H, Bringas P Jr, Datto MB, et al. Smad3 deficiency attenuates bleomycin-induced pulmonary fibrosis in mice. Am J Physiol Lung Cell Mol Physiol. 2002;282(3):L585–593. https://doi.org/10.1152/ajplung.00151.2001 PMID: 11839555; Roberts AB, Russo A, Felici A, Flanders KC. Smad3: a key player in pathogenetic mechanisms dependent on TGF-beta. Ann N Y Acad Sci. 2003;995:1–10. https://doi.org/10.1111/j.1749-6632.2003.tb03205.x PMID: 12814934; Elmallah RK, Cherian JJ, Jauregui JJ, Pierce TP, Beaver WB, Mont MA. Genetically modified chondrocytes expressing TGF-β1: a revolutionary treatment for articular cartilage damage? Expert Opin Biol Ther. 2015;15(3):455–464. https://doi.org/10.1517/14712598.2015.1009886 PMID: 25645308; Gaffen SL, Jain R, Garg AV, Cua DJ. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol. 2014;14(9):585– 600. https://doi.org/10.1038/nri3707 PMID: 25145755; Zhang Y, Alexander PB, Wang XF. TGF-β Family Signaling in the Control of Cell Proliferation and Survival. Cold Spring Harb Perspect Biol. 2017;9(4):a022145. https://doi.org/10.1101/cshperspect.a022145 PMID: 27920038; Morrison RJ, Katsantonis NG, Motz KM, Hillel AT, Garrett CG, Netterville JL, et al. Pathologic fibroblasts in idiopathic subglottic stenosis amplify local inflammatory signals. Otolaryngol Head Neck Surg. 2019;160(1):107–115. https://doi.org/10.1177/0194599818803584 PMID: 30322354; Hillel AT, Namba D, Ding D, Pandian V, Elisseeff JH, Horton MR. An in situ, in vivo murine model for the study of laryngotracheal stenosis. JAMA Otolaryngol Head Neck Surg. 2014;140(10):961–966. https://doi.org/10.1001/jamaoto.2014.1663 PMID: 25144860; https://www.jnmp.ru/jour/article/view/1675