-
1Academic Journal
Authors: V. V. Shmarin, A. A. Vasilenko, V. V. Zarubina, T. I. Bocharova, E. Yu. Zakharova, В. В. Шмарин, А. А. Василенко, В. В. Зарубина, Т. И. Бочарова, Е. Ю. Захарова
Contributors: The study was carried out according to the state assignment of the Ministry of Science and Higher Education of the Russian Federation for the RCMG., Исследование выполнено в рамках государственного задания Министерства науки и высшего образования РФ для ФГБНУ МГНЦ.
Source: Medical Genetics; Том 24, № 1 (2025); 3-12 ; Медицинская генетика; Том 24, № 1 (2025); 3-12 ; 2073-7998
Subject Terms: генная терапия, lysosomal storage disease, gene therapy, лизосомные болезни накопления, лизосфинголипиды, ферментная заместительная терапия
File Description: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2599/1842; Geberhiwot T., Wasserstein M., Wanninayake S. et al. Consensus clinical management guidelines for acid sphingomyelinase deficiency (Niemann–Pick disease types A, B and A/B). Orphanet J Rare Dis. 2023;18(1):85.; Zampieri S., Filocamo M., Pianta A. et al. SMPD1 Mutation Update: Database and Comprehensive Analysis of Published and Novel Variants: HUMAN MUTATION. Human Mutation. 2016;37(2):139–47.; Hollak C.E.M., De Sonnaville E.S.V., Cassiman D. et al. Acid sphingomyelinase (Asm) deficiency patients in The Netherlands and Belgium: Disease spectrum and natural course in attenuated patients. Molecular Genetics and Metabolism. 2012;107(3):526–33.; Wasserstein M.P., Desnick R.J., Schuchman E.H. et al. The Natural History of Type B Niemann-Pick Disease: Results From a 10-Year Longitudinal Study. Pediatrics. 2004;114(6):e672–7.; McGovern M.M., Aron A., Brodie S.E. et al. Natural history of Type A Niemann-Pick disease: Possible endpoints for therapeutic trials. Neurology. 2006;66(2):228–32.; Wasserstein M.P., Aron A., Brodie S.E. et al. Acid sphingomyelinase deficiency: prevalence and characterization of an intermediate phenotype of Niemann-Pick disease. J Pediatr. 2006;149(4):554–9.; McGovern M.M., Dionisi-Vici C., Giugliani R. et al. Consensus recommendation for a diagnostic guideline for acid sphingomyelinase deficiency. Genetics in Medicine. 2017;19(9):967–74.; Cassiman D., Packman S., Bembi B. et al. Cause of death in patients with chronic visceral and chronic neurovisceral acid sphingomyelinase deficiency (Niemann-Pick disease type B and B variant): Literature review and report of new cases. Mol Genet Metab. 2016;118(3):206–13.; Wasserstein M., Godbold J., McGovern M.M. Skeletal manifestations in pediatric and adult patients with Niemann Pick disease type B. J Inherit Metab Dis. 2013;36(1):123–7.; McGovern M.M., Wasserstein M.P., Giugliani R. et al. A prospective, cross-sectional survey study of the natural history of Niemann-Pick disease type B. Pediatrics. 2008;122(2):e341-349.; Thurberg B.L., Wasserstein M.P., Schiano T. et al. Liver and skin histopathology in adults with acid sphingomyelinase deficiency (Niemann-Pick disease type B). Am J Surg Pathol. 2012;36(8):1234–46.; Mendelson D.S., Wasserstein M.P., Desnick R.J. et al. Type B Niemann-Pick disease: findings at chest radiography, thin-section CT, and pulmonary function testing. Radiology. 2006;238(1):339–45.; Pavlů‐Pereira H., Asfaw B., Poupčtova H. et al. Acid sphingomyelinase deficiency. Phenotype variability with prevalence of intermediate phenotype in a series of twenty‐five Czech and Slovak patients. A multi‐approach study. J of Inher Metab Disea. 2005;28(2):203–27.; Quinn P.J. Sphingolipid symmetry governs membrane lipid raft structure. Biochimica et Biophysica Acta (BBA) – Biomembranes. 2014;1838(7):1922–30.; Podbielska M., Ariga T., Pokryszko-Dragan A. Sphingolipid Players in Multiple Sclerosis: Their Influence on the Initiation and Course of the Disease. IJMS. 2022;23(10):5330.; Kirkegaard T., Roth A.G., Petersen N.H.T. et al. Hsp70 stabilizes lysosomes and reverts Niemann–Pick disease-associated lysosomal pathology. Nature. 2010;463(7280):549–53.; Schuchman E.H., Desnick R.J. Types A and B Niemann-Pick disease. Molecular Genetics and Metabolism. 2017;120(1–2):27–33.; Buccinna B., Piccinini M., Prinetti A. et al. Alterations of myelinspecific proteins and sphingolipids characterize the brains of acid sphingomyelinase‐deficient mice, an animal model of Niemann–Pick disease type A. Journal of Neurochemistry. 2009;109(1):105–15.; Kinnunen P. Sphingomyelinase Activity of LDL A Link between Atherosclerosis, Ceramide, and Apoptosis? Trends in Cardiovascular Medicine. 2002;12(1):37–42.; Charruyer A., Grazide S., Bezombes C. et al. UV-C Light Induces Raft-associated Acid Sphingomyelinase and JNK Activation and Translocation Independently on a Nuclear Signal. Journal of Biological Chemistry. 2005;280(19):19196–204.; Kornhuber J., Muller C.P., Becker K.A. et al. The ceramide system as a novel antidepressant target. Trends in Pharmacological Sciences. 2014;35(6):293–304.; Da Veiga Pereira L., Desnick R.J., Adler D.A. et al.Regional assignment of the human acid sphingomyelinase gene (SMPD1) by PCR analysis of somatic cell hybrids and in situ hybridization to 11p15.1→p15.4. Genomics. 1991;9(2):229–34.; Mihaylova V., Hantke J., Sinigerska I. et al. Highly variable neural involvement in sphingomyelinase-deficient Niemann-Pick disease caused by an ancestral Gypsy mutation. Brain. 2006;130(4):1050–61.; Simonaro C.M., Desnick R.J., McGovern M.M. et al. The Demographics and Distribution of Type B Niemann-Pick Disease: Novel Mutations Lead to New Genotype/Phenotype Correlations. The American Journal of Human Genetics. 2002;71(6):1413–9.; Ferlinz K., Hurwitz R., Vielhaber G. et al. Occurrence of two molecular forms of human acid sphingomyelinase. Biochemical Journal. 1994;301(3):855–62.; McGovern M.M., Pohl-Worgall T., Deckelbaum R.J. et al. Lipid abnormalities in children with types A and B Niemann Pick disease. J Pediatr. 2004;145(1):77–81.; Wang R., Qin Z., Huang L. et al. SMPD1 expression profile and mutation landscape help decipher genotype–phenotype association and precision diagnosis for acid sphingomyelinase deficiency. Hereditas. 2023;160(1):11.; Dardis A., Zampieri S., Filocamo M. et al. Functionalin vitro characterization of 14SMPD1 mutations identified in Italian patients affected by Niemann Pick Type B disease. Hum Mutat. 2005;26(2):164–164.; Pittis M.G., Ricci V., Guerci V.I. et al. Acid sphingomyelinase: Identification of nine novel mutations among Italian Niemann Pick type B patients and characterization of in vivo functional in-frame start codon: MUTATIONS IN BRIEF. Hum Mutat. 2004;24(2):186–7.; Jones I., He X., Katouzian F., Darroch P.I., Schuchman E.H. Characterization of common SMPD1 mutations causing types A and B Niemann-Pick disease and generation of mutation-specific mouse models. Mol Genet Metab. 2008;95(3):152–62.; Simonaro C.M., Park J.H., Eliyahu E. et al. Imprinting at the SMPD1 Locus: Implications for Acid Sphingomyelinase–Deficient Niemann-Pick Disease. The American Journal of Human Genetics. 2006;78(5):865–70.; Oliva P., Schwarz M., Mechtler T.P. et al. Importance to include differential diagnostics for acid sphingomyelinase deficiency (ASMD) in patients suspected to have to Gaucher disease. Molecular Genetics and Metabolism. 2023;139(1):107563.; Piraud M., Pettazzoni M., Lavoie P. et al. Contribution of tandem mass spectrometry to the diagnosis of lysosomal storage disorders. J of Inher Metab Disea. 2018;41(3):457–77.; Kuchar L., Sikora J., Gulinello M.E. et al. Quantitation of plasmatic lysosphingomyelin and lysosphingomyelin-509 for differential screening of Niemann-Pick A/B and C diseases. Anal Biochem. 2017; 525: 73-77.; Voorink-Moret M., Goorden S.M.I., Van Kuilenburg A.B.P. et al. Rapid screening for lipid storage disorders using biochemical markers. Expert center data and review of the literature. Molecular Genetics and Metabolism. 2018;123(2):76–84.; Breilyn M.S., Zhang W., Yu C., Wasserstein M.P. Plasma lyso-sphingomyelin levels are positively associated with clinical severity in acid sphingomyelinase deficiency. Mol Genet Metab Rep. 2021;28:100780.; Diaz G.A., Jones S.A., Scarpa M. et al. One-year results of a clinical trial of olipudase alfa enzyme replacement therapy in pediatric patients with acid sphingomyelinase deficiency. Genet Med. 2021;23(8):1543–50.; Wasserstein M., Lachmann R., Hollak C. et al. A randomized, placebo-controlled clinical trial evaluating olipudase alfa enzyme replacement therapy for chronic acid sphingomyelinase deficiency (ASMD) in adults: One-year results. Genetics in Medicine. 2022;24(7):1425–36.; Hollak C.E., van Weely S., van Oers M.H., Aerts J.M. Marked elevation of plasma chitotriosidase activity. A novel hallmark of Gaucher disease. J Clin Invest. 1994;93(3):1288–92.; Boot R.G., Renkema G.H., Verhoek M. et al. The human chitotriosidase gene. Nature of inherited enzyme deficiency. J Biol Chem. 1998;273(40):25680–5.; Porter F.D., Scherrer D.E., Lanier M.H. et al. Cholesterol oxidation products are sensitive and specific blood-based biomarkers for Niemann-Pick C1 disease. Sci Transl Med. 2010;2(56):56ra81.; Romanello M., Zampieri S., Bortolotti N. et al. Comprehensive Evaluation of Plasma 7-Ketocholesterol and Cholestan-3β,5α,6β-Triol in an Italian Cohort of Patients Affected by Niemann-Pick Disease due to NPC1 and SMPD1 Mutations. Clin Chim Acta. 2016;455:39–45.; Di Rocco M., Vici C.D., Burlina A. et al. Screening for lysosomal diseases in a selected pediatric population: the case of Gaucher disease and acid sphingomyelinase deficiency. Orphanet J Rare Dis. 2023;18(1):197.; Hickey R.E, Baker J. Newborn screening for acid sphingomyelinase deficiency in Illinois: A single center’s experience. J of Inher Metab Disea. J Inherit Metab Dis. 2024;47(6):1363-1370.; McGovern M.M., Wasserstein M.P., Kirmse B. et al. Novel first-dose adverse drug reactions during a phase I trial of olipudase alfa (recombinant human acid sphingomyelinase) in adults with Niemann–Pick disease type B (acid sphingomyelinase deficiency). Genetics in Medicine. 2016;18(1):34–40.; Wasserstein M.P., Jones S.A., Soran H. et al. Successful within-patient dose escalation of olipudase alfa in acid sphingomyelinase deficiency. Mol Genet Metab. 2015;116(1–2):88–97.; O’Neill R.S., Belousova N., Malouf M.A. Pulmonary Type B Niemann-Pick Disease Successfully Treated with Lung Transplantation. Case Reports in Transplantation. 2019;2019:1–5.; Mannem H., Kilbourne S., Weder M. Lung transplantation in a patient with Niemann–Pick disease. The Journal of Heart and Lung Transplantation. 2019;38(1):100–1.; Uyan Z.S., Karadağ B., Ersu R. et al. Early pulmonary involvement in Niemann‐Pick type B disease: Lung lavage is not useful. Pediatric Pulmonology. 2005;40(2):169–72.; Nicholson A.G., Wells A.U., Hooper J. et al. Successful Treatment of Endogenous Lipoid Pneumonia due to Niemann–Pick Type B Disease with Whole-Lung Lavage. Am J Respir Crit Care Med. 2002;165(1):128–31.; Jin H.K., Carter J.E., Huntley G.W., Schuchman E.H. Intracerebral transplantation of mesenchymal stem cells into acid sphingomyelinase-deficient mice delays the onset of neurological abnormalities and extends their life span. J Clin Invest. 2002;109(9):1183–91.; Barbon C.M., Ziegler R.J., Li C. et al. AAV8-mediated hepatic expression of acid sphingomyelinase corrects the metabolic defect in the visceral organs of a mouse model of Niemann-Pick disease. Mol Ther. 2005;12(3):431–40.; Miranda S.R., Erlich S., Friedrich V.L. et al. Hematopoietic stem cell gene therapy leads to marked visceral organ improvements and a delayed onset of neurological abnormalities in the acid sphingomyelinase deficient mouse model of Niemann-Pick disease. Gene Ther. 2000;7(20):1768–76.; Samaranch L., Perez-Canamas A., Soto-Huelin B. et al. Adeno-associated viral vector serotype 9–based gene therapy for Niemann-Pick disease type A. Sci Transl Med. 2019;11(506):eaat3738.; Beretta G., Shala A.L. Impact of Heat Shock Proteins in Neurodegeneration: Possible Therapeutical Targets. Annals of Neurosciences. 2022;29(1):71–82.
-
2Academic Journal
Authors: E. D. Belousova, S. V. Mikhaуlova, E. Yu. Zakharova, Е. Д. Белоусова, С. В. Михайлова, Е. Ю. Захарова
Source: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 68, № 1 (2023); 30-38 ; Российский вестник перинатологии и педиатрии; Том 68, № 1 (2023); 30-38 ; 2500-2228 ; 1027-4065
Subject Terms: интервью, neuronal ceroid lipofuscinosis, type 2, patient’s routing, diagnostics, enzyme replacement therapy, interviews, нейрональный цероидный липофусциноз, тип 2, путь пациента, диагностика, ферментная заместительная терапия
File Description: application/pdf
Relation: https://www.ped-perinatology.ru/jour/article/view/1773/1339; Михайлова С.В., Захарова Е.Ю., Петрухин А.С. Нейрометаболические заболевания у детей и подростков: диагностика и подходы к лечению (2-е изд., перераб. и доп.). М.: Литтерра, 2017; 233–251.; Руденская Г.Е., Захарова Е.Ю. Наследственные нейрометаболические болезни юношеского и взрослого возраста. М.: ГЕОТАР-Медиа, 2018; 160–170.; Mole S.E., Schulz A., Badoe E., Berkovic S.F., de Los Reyes E.C., Dulz S. et al. Guidelines on the diagnosis, clinical assessments, treatment and management for CLN2 disease patients. Orphanet J Rare Dis 2021; 16(1): 185. DOI:10.1186/s13023–021–01813–5; Specchio N., Ferretti A., Trivisano M., Pietrafusa N., Pepi C., Calabrese C. et al. Neuronal Ceroid Lipofuscinosis: Potential for Targeted Therapy. Drugs 2021; 81(1): 101–123. DOI:10.1007/s40265–020–01440–7. PMID: 33242182; Mole S.E., Anderson G., Band H.A., Berkovic S.F., Cooper J.D., Kleine Holthaus S.M. et al. Clinical challenges and future therapeutic approaches for neuronal ceroid lipofuscinosis. Lancet Neurol 2019; 18(1): 107–116. DOI:10.1016/S1474; Сушко В.А., Спасенников Б.А. Социология медицины: вопросы методологии. Бюллетень Национального научноисследовательского института общественного здоровья имени Н.А. Семашко. 2021; 2: 90–99; Steinfeld R., Heim P., von Gregory H., Meyer K., Ullrich K., Goebel H.H. et al. Late infantile neuronal ceroid lipofuscinosis: quantitative description of the clinical course in patients with CLN2 mutations. Am J Med Genet 2002; 112(4): 347–354. DOI:10.1002/ajmg.10660. PMID: 12376936; Schulz A., Ajayi T., Specchio N., de Los Reyes E., Gissen P., Ballon D. et al.; CLN2 Study Group. Study of Intraventricular Cerliponase Alfa for CLN2 Disease. N Engl J Med 2018; 378(20): 1898–1907. DOI:10.1056/NEJMoa1712649
-
3Academic Journal
Authors: Dmitry V. Ivanov, Anna I. Ostrun, Vladimir M. Kenis, Tatiana V. Markova, Ekaterina Yu. Zakharova, Д. В. Иванов, А. И. Острун, В. М. Кенис, Т. В. Маркова, Е. Ю. Захарова
Source: Current Pediatrics; Том 20, № 6s (2021); 602-610 ; Вопросы современной педиатрии; Том 20, № 6s (2021); 602-610 ; 1682-5535 ; 1682-5527
Subject Terms: клинический случай, Maroteaux–Lamy syndrome, early diagnosis, enzyme replacement therapy, galsulfase, clinical case, синдром Марото–Лами, ранняя диагностика, ферментная заместительная терапия, галсульфаза
File Description: application/pdf
Relation: https://vsp.spr-journal.ru/jour/article/view/2776/1108; Garrido E, Cormand B, Hopwood JJ, et al. Maroteaux-Lamy syndrome: functional characterization of pathogenic mutations and polymorphisms in the arylsulfatase B gene. Mol Genet Metab. 2008;94(3):305–312. doi:10.1016/j.ymgme.2008.02.012; Bhattacharyya S, Tobacman JK. Arylsulfatase B regulates colonic epithelial cell migration by effects on MMP9 expression and RhoA activation. Clin Exp Metastasis. 2009;26(6):535–545. doi:10.1007/s10585-009-9253-z; Valayannopoulos V, Nicely H, Harmatz P, Turbeville S. Mucopolysaccharidosis VI. Orphanet J Rare Dis. 2010;5:5. doi:10.1186/1750-1172-5-5; Giugliani R. The mucopolysaccharidoses. In: Lysosomal storage siseases: a practical guide. Mehta AB, Winchester B, eds. Hoboken, NJ: Wiley-Blackwell; 2013. pp. 94–100.; Wood T, Bodamer OA, Burin MG, et al. Expert recommendations for the laboratory diagnosis of MPS VI. Mol Genet Metab. 2012; 106(1):73–82. doi:10.1016/j.ymgme.2012.02.005; Vairo F, Federhen A, Baldo G, et al. Diagnostic and treatment strategies in mucopolysaccharidosis VI. Appl Clin Genet. 2015; 8:245–255. doi:10.2147/TACG.S68650; Fernandez-Marmiesse A, Morey M, Pineda M, et al. Assessment of a targeted resequencing assay as a support tool in the diagnosis of lysosomal storage disorders. Orphanet J Rare Dis. 2014;9:59. doi:10.1186/1750-1172-9-59; Hopwood JJ, Bate G, Kirkpatrick P. Galsulfase. Nat Rev Drug Discov. 2006;5(2):101–102. doi:10.1038/nrd1962; Giugliani R, Herber S, Lapagesse L, et al. Therapy for mucopolysaccharidosis VI: (Maroteaux-Lamy syndrome) present status and prospects. Pediatr Endocrinol Rev. 2014;12(Suppl 1): 152–158.; World Health Organization. Standards: Length/height-for-age. Available online: https://www.who.int/tools/child-growth-standards/standards/length-height-for-age. Accessed on 01.12.2021.; Audroin C, Lejeune F, Gaudelus J, et al. Alder’s anomaly in mucopolysaccharidosis type VI. Cytological, cytochemical and ultrastructural study. Nouv Rev Fr Hematol. 1985; 27(3):183–188.; Krishnagiri C, Ajanahalli RR, Kashyap S, et al. Abnormal granulation of blood granulocytes in mucopolysaccharidosis VI-a case report. Ann Diagn Pathol. 2013;17(1):137–139. doi:10.1016/j.anndiagpath.2011.07.009; Piva E, Pelloso M, Ciubotaru D, et al. The role of automated analyzers in detecting abnormal granulation of leucocytes in lysosomal storage diseases: Maroteaux-Lamy disease. Am J Hematol. 2013;88(6):527. doi:10.1002/ajh.23377; Harmatz P, Shediac R. Mucopolysaccharidosis VI: pathophysiology, diagnosis and treatment. Front Biosci (Landmark Ed). 2017;22:385–406. doi:10.2741/4490; Мукополисахаридоз VI типа у детей: клинические рекомендации / Союз педиатров России. — М.; 2016. Доступно по: https://legalacts.ru/doc/klinicheskie-rekomendatsii-mukopolisakharid. Ссылка активна на 25.11.2021.; Воинова В.Ю., Семячкина А.Н., Воскобоева Е.Ю. и др. Мукополисахаридоз VI типа (синдром Марото-Лами): клинические проявления, диагностика и лечение // Российский вестник перинатологии и педиатрии. — 2014. — Т. 59. — № 4 (прил.). — C. 2–23.; Swiedler SJ, Beck M, Bajbouj M, et al. Threshold effect of urinary glycosaminoglycans and the walk test as indicators of disease progression in a survey of subjects with Mucopolysaccharidosis VI (Maroteaux-Lamy syndrome). Am J Med Genet A. 2005;134A(2): 144–150. doi:10.1002/ajmg.a.30579; Jurecka A, Zakharova E, Cimbalistiene L, et al. Muco polysaccharidosis type VI in Russia, Kazakhstan, and Central and Eastern Europe. Pediatr Int. 2014;56(4):520–525.; Harmatz P, Giugliani R, Schwartz I, et al. Enzyme replacement therapy for mucopolysaccharidosis VI: a phase 3, randomized, double-blind, placebo-controlled, multinational study of recombinant human N-acetylgalactosamine 4-sulfatase (recombinant human arylsulfatase B or rhASB) and follow-on, open-label extension study. J Pediatr. 2006;148(4):533–539. doi:10.1016/j.jpeds.2005.12.014; Harmatz P, Giugliani R, Schwartz IV, et al. Long-term follow-up of endurance and safety outcomes during enzyme replacement therapy for mucopolysaccharidosis VI: Final results of three clinical studies of recombinant human N-acetylgalactosamine 4-sulfatase. Mol Genet Metab. 2008;94(4):469–475. doi:10.1016/j.ymgme.2008.04.001; Giugliani R, Lampe C, Guffon N, et al. Natural history and galsulfase treatment in mucopolysaccharidosis VI (MPS VI, Maroteaux-Lamy syndrome) — 10-year follow-up of patients who previously participated in an MPS VI Survey Study. Am J Med Genet A. 2014;164A(8):1953–1964.; Harmatz P, Hendriksz CJ, Lampe C, et al. The effect of galsulfase enzyme replacement therapy on the growth of patients with mucopolysaccharidosis VI (Maroteaux-Lamy syndrome). Mol Genet Metab. 2017;122(1–2):107–112.; Horovitz DD, Magalhaes TS, Acosta A, et al. Enzyme replacement therapy with galsulfase in 34 children younger than five years of age with MPS VI. Mol Genet Metab. 2013;109(1):62–69. doi:10.1016/j.ymgme.2013.02.014; McGill JJ, Inwood AC, Coman DJ, et al. Enzyme replacement therapy for mucopolysaccharidosis VI from 8 weeks of age--a sibling control study. Clin Genet. 2010;77(5):492–498. doi:10.1111/j.1399-0004.2009.01324.x; Horovitz DDG, Acosta AX, de Rosso Giuliani L, Ribeiro EM. Mucopolysaccharidosis type VI on enzyme replacement therapy since infancy: Six years follow-up of four children. Mol Genet Metab Rep. 2015;5:19–25. doi:10.1016/j.ymgmr.2015.09.002; Scarpa M, Barone R, Fiumara A, et al. Mucopolysaccharidosis VI: the Italian experience. Eur J Pediatr. 2009;168(10): 1203–1206. doi:10.1007/s00431-008-0910-z; Pitz S, Ogun O, Arash L, et al. Does enzyme replacement therapy influence the ocular changes in type VI mucopolysaccharidosis? Graefes Arch Clin Exp Ophthalmol. 2009;247(7):975–980.
-
4Academic Journal
Authors: A. T. van der Ploeg, M. Ую Kruijshaar, A. Toscano, P. Laforet, C. Angelini, R. H. Lachmann, S. I. Pascual Pascual, M. Roberts, K. Rosler, T. Stulnig, P. A. van Doorn, P.Y. K. Van den Bergh, J. Vissing, B. Schoser
Source: Нервно-мышечные болезни, Vol 8, Iss 4, Pp 19-34 (2019)
Subject Terms: взрослые пациенты, алглюкозидаза альфа, ферментная заместительная терапия, руководство, болезнь помпе, рекомендации по лечению, Neurology. Diseases of the nervous system, RC346-429
File Description: electronic resource
-
5Academic Journal
Authors: Hontsariuk, D. O., Hrystych, T. M., Кuzyk, F. V.
Source: Bukovinian Medical Herald; Vol. 23 No. 1 (89) (2019); 106-111 ; Буковинский медицинский вестник; Том 23 № 1 (89) (2019); 106-111 ; Буковинський медичний вісник; Том 23 № 1 (89) (2019); 106-111 ; 2413-0737 ; 1684-7903
Subject Terms: хронічний панкреатит, ішемічна хвороба серця, ферментна замісна терапія, інгібітори протонної помпи, гепатопротектори, вазодилататори, хронический панкреатит, ишемическая болезнь сердца, ферментная заместительная терапия, ингибиторы протонной помпы, гепатопротекторы, вазодилататоры, chronic pancreatitis, ischemic heart disease, enzyme replacement therapy, proton pump inhibitors, hepatoprotectors, vasodilators
File Description: application/pdf
-
6Academic Journal
Authors: Hontsariuk, D. O., Hrystych, T. M., Кuzyk, F. V.
Source: Bukovinian Medical Herald; Том 23, № 1 (89) (2019); 106-111
Буковинский медицинский вестник; Том 23, № 1 (89) (2019); 106-111
Буковинський медичний вісник; Том 23, № 1 (89) (2019); 106-111Subject Terms: chronic pancreatitis, ischemic heart disease, enzyme replacement therapy, proton pump inhibitors, hepatoprotectors, vasodilators, хронический панкреатит, ишемическая болезнь сердца, ферментная заместительная терапия, ингибиторы протонной помпы, гепатопротекторы, вазодилататоры, 3. Good health, хронічний панкреатит, ішемічна хвороба серця, ферментна замісна терапія, інгібітори протонної помпи, гепатопротектори, вазодилататори
File Description: application/pdf
-
7Academic Journal
Authors: Ekaterina Yu. Zakharova, Elena Yu. Voskoboeva, Alla N. Semyachkina, Nato D. Vashakmadze, Amina I. Gamzatova, Svetlana V. Mikhailova, Sergey I. Kutsev, Е. Ю. Захарова, Е. Ю. Воскобоева, А. Н. Семячкина, Н. Д. Вашакмадзе, А. И. Гамзатова, С. В. Михайлова, С. И. Куцев
Source: Pediatric pharmacology; Том 15, № 4 (2018); 324-332 ; Педиатрическая фармакология; Том 15, № 4 (2018); 324-332 ; 2500-3089 ; 1727-5776
Subject Terms: трансплантация гемопоэтических стволовых клеток, mucopolysaccharidosis type II, enzyme replacement therapy, gene therapy, hematopoietic stem cell transplantation, мукополисахаридоз II типа, ферментная заместительная терапия, генотерапия
File Description: application/pdf
Relation: https://www.pedpharma.ru/jour/article/view/1653/1022; Harmatz P, Muenzer J, Burton BK, et al. Update on phase 1/2 clinical trials for MPS I and MPS II using ZFN-mediated in vivo genome editing. Mol Genet Metab. 2018;123(2):S59–S60. doi:10.1016/j.ymgme.2017.12.143.; Neufeld EF, Muenzer J. The mucopolysaccharidoses. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The metabolic and molecular bases of inherited disease. 8th ed. New York, USA: McGraw-Hill; 2001. pp. 3421–3452.; Scarpa M. Mucopolysaccharidosis type II. In: Pagon RA, Adam MP, Ardinger HH, et al, editors. GeneReviews [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2018 [cited 2018 Aug 12]. Available from: http://www.ncbi.nlm.nih.gov/books/ NBK1274.; Nelson J, Crowhurst J, Carey B, Greed L. Incidence of the mucopolysaccharidoses in Western Australia. Am J Med Genet A. 2003;123A(3):310–313. doi:10.1002/ajmg.a.20314.; Baehner F, Schmiedeskamp C, Krummenauer F, et al. Cumulative incidence rates of the mucopolysaccharidoses in Germany. J Inherit Metab Dis. 2005;28(6):1011–1017. doi:10.1007/s10545-005- 0112-z.; Осипова Л.А., Кузенкова Л.М., Намазова-Баранова Л.С., и др. Ней ронопатические мукополисахаридозы: патогенез и будущее терапевтических подходов // Вопросы современной педиатрии. — 2015. — Т.14. — №5 — С. 539–547. [Оsipova LA, Kuzenkova LM, Namazova-Baranova LS, et al. Neuronopathic types of mucopolysaccharidoses: pathogenesis and emerging treatments. Voprosy sovremennoi pediatrii — Current Pediatrics. 2015;14(5):539–547. (In Russ).] doi:10.15690/vsp.v14i5.1436.; Muenzer J, Beck M, Giugliani R, et al. Idursulfase treatment of Hunter syndrome in children younger than 6 years: results from the Hunter Outcome Survey. Genet Med. 2011;13(2):102–109. doi:10.1097/GIM.0b013e318206786f.; Muenzer J, Gucsavas-Calikoglu M, McCandless SE, et al. A phase I/II clinical trial of enzyme replacement therapy in mucopolysaccharidosis II (Hunter syndrome). Mol Genet Metab. 2007;90(3):329–337. doi:10.1016/j.ymgme.2006.09.001.; Muenzer J, Wraith JE, Beck M, et al. A phase II/III clinical study of enzyme replacement therapy with idursulfase in mucopolysaccharidosis II (Hunter syndrome). Genet Med. 2006;8(8):465–473. doi:10.109701.gim.0000232477.37660.fb.; Tylki-Szymanska A, Jurecka A, Zuber Z, et al. Enzyme replacement therapy for mucopolysaccharidosis II from 3 months of age: a 3-year follow-up. Acta Paediatr. 2012;101(1):e42–e47. doi:10.1111/j.1651-2227.2011.02385.x.; Miebach E. Management of infusion-related reactions to enzyme replacement therapy in a cohort of patients with mucopolysaccharidosis disorders. Int J Clin Pharmacol Ther. 2009;47 Suppl 1:S100– S106.; Barbier AJ, Bielefeld B, Whiteman DA, et al. The relationship between anti-idursulfase antibody status and safety and efficacy outcomes in attenuated mucopolysaccharidosis II patients aged 5 years and older treated with intravenous idursulfase. Mol Genet Metab. 2013;110(3):303–310. doi:10.1016/j.ymgme.2013.08.002.; Muenzer J, Jones SA, Tylki-Szymanska A, et al. Ten years of the Hunter Outcome Survey (HOS): insights, achievements, and lessons learned from a global patient registry. Orphanet J Rare Dis. 2017;12(1):82. doi:10.1186/s13023-017-0635-z.; Kim C, Seo J, Chung Y, et al. Comparative study of idursulfase beta and idursulfase in vitro and in vivo. J Hum Genet. 2017;62(2):167– 174. doi:10.1038/jhg.2016.133.; Chung YK, Sohn YB, Sohn JM, et al. A biochemical and physiochemical comparison of two recombinant enzymes used for enzyme replacement therapies of Hunter syndrome. Glycoconj J. 2014;31(4):309–315. doi:10.1007/s10719-014-9523-0.; Sohn YB, Cho SY, Lee J, et al. Safety and efficacy of enzyme replacement therapy with idursulfase beta in children aged younger than 6 years with Hunter syndrome. Mol Genet Metab. 2015;114(2):156–160. doi:10.1016/j.ymgme.2014.08.009.; Sohn YB, Cho SY, Park SW, et al. Phase I/II clinical trial of enzyme replacement therapy with idursulfase beta in patients with mucopolysaccharidosis II (Hunter Syndrome). Orphanet J Rare Dis. 2013;8:42. doi:10.1186/1750-1172-8-42.; Jurecka A, Malinova V, Tylki-Szymanska A. Effect of rapid cessation of enzyme replacement therapy: a report of 5 more cases. Mol Genet Metab. 2014;111(2):212–213. doi:10.1016/j. ymgme.2013.08.019.; Anbu AT, Mercer J, Wraith JE. Effect of discontinuing of laronidase in a patient with mucopolysaccharidosis type I. J Inherit Metab Dis. 2006;29(1):230–231. doi:10.1007/s10545-006-0237-8.; Wegrzyn G, Tylki-Szymanska A, Liberek A, et al. Rapid deterioration of a patient with mucopolysaccharidosis type I during interruption of enzyme replacement therapy. Am J Med Genet A. 2007;143A(16):1925–1927. doi:10.1002/ajmg.a.31831.; Vogler C, Levy B, Grubb JH, et al. Overcoming the bloodbrain barrier with high-dose enzyme replacement therapy in murine mucopolysaccharidosis VII. Proc Natl Acad Sci U S A. 2005;102(41):14777–14782. doi:10.1073/ pnas.0506892102.; Grubb JH, Vogler C, Sly WS. New strategies for enzyme replacement therapy for lysosomal storage diseases. Rejuvenation Res. 2010;13(2–3):229–236. doi:10.1089/rej.2009.0920.; Muenzer J, Hendriksz CJ, Fan Z, et al. A phase I/ II study of intrathecal idursulfase-IT in children with severe mucopolysaccharidosis II. Genet Med. 2016;18(1):73–81. doi:10.1038/gim.2015.36.; Dickson PI, Hanson S, McEntee MF, et al. Early versus late treatment of spinal cord compression with long-term intrathecal enzyme replacement therapy in canine mucopolysaccharidosis type I. Mol Genet Metab. 2010;101(2–3):115–122. doi:10.1016/j. ymgme.2010.06.020.; Giugliani R, Dalla Corte A, Poswar F, et al. Intrathecal/ Intracerebroventricular enzyme replacement therapy for the mucopolysaccharidoses: efficacy, safety, and prospects. Expert Opin Orphan Drugs. 2018;6(7):403–411. doi:10.1080/21678707.2018.1487838.; Boado RJ, Ka-Wai Hui E, Zhiqiang Lu J, Pardridge WM. Insulin receptor antibody-iduronate 2-sulfatase fusion protein: pharmacokinetics, anti-drug antibody, and safety pharmacology in Rhesus monkeys. Biotechnol Bioeng. 2014;111(11):2317–2325. doi:10.1002/bit.25289.; Karkan D, Pfeifer C, Vitalis TZ, et al. A unique carrier for delivery of therapeutic compounds beyond the blood-brain barrier. PLoS One. 2008;3(6):e2469. doi:10.1371/journal.pone.0002469.; Motas S, Haurigot V, Garcia M, et al. CNS-directed gene therapy for the treatment of neurologic and somatic mucopolysaccharidosis type II (Hunter Syndrome). JCI Insight. 2016;1(9):e86696. doi:10.1172/jci.insight.86696.; Wraith JE, Scarpa M, Beck M, , et al. Mucopolysaccharidosis type II (Hunter syndrome): a clinical review and recommendations for treatment in the era of enzyme replacement therapy. Eur J Pediatr. 2008;167(3):267–277. doi:10.1007/s00431-007-0635-4.; Scarpa M, Almassy Z, Beck M, et al. Mucopolysaccharidosis type II: European recommendations for the diagnosis and multidisciplinary management of a rare disease. Orphanet J Rare Dis. 2011;6:72–77. doi:10.1186/1750-1172-6-72.; Bradley LA, Haddow HR, Palomaki GE. Treatment of mucopolysaccharidosis type II (Hunter syndrome): results from a systematic evidence review. Genet Med. 2017;19(11):1187–1201. doi:10.1038/gim.2017.30.; Okumiya T, Kroos MA, Vliet LV, et al. Chemical chaperones improve transport and enhance stability of mutant alphaglucosidases in glycogen storage disease type II. Mol Genet Metab. 2007;90(1):49–57. doi:10.1016/j.ymgme.2006.09.010.; Hoshina H, Shimada Y, Higuchi T, et al. Chaperone effect of sulfated disaccharide from heparin on mutant iduronate-2- sulfatase in mucopolysaccharidosis type II. Mol Genet Metab. 2018;123(2):118–122. doi:10.1016/j.ymgme.2017.12.428.; Gosh A, Miller W, Orchard PJ, et al. Enzyme replacement therapy prior to hematopoietic stem cell transplantation in mucopolysaccharidosis type I: 10 year combined experience of 2 centers. Mol Genet Metab. 2016;117(3):373–377. doi:10.1016/j.ymgme.2016.01.011.; Vellodi A, Young E, Cooper A, et al. Long-term follow-up following bone marrow transplantation for Hunter disease. J Inherit Metab Dis. 1999;22(5):638–648.; Barth AL, de Magalhães TS, Reis AB, et al. Early hematopoietic stem cell transplantation in a patient with severe mucopolysaccharidosis II: A 7 years follow-up. Mol Genet Metab Rep. 2017;12:62–68. doi:10.1016/j.ymgmr.2017.05.010.; Guffon N, Bertrand Y, Forest I, et al. Bone marrow transplantation in children with Hunter syndrome: outcome after 7 to 17 years. J Pediatr. 2009;154(5):733–737. doi:10.1016/j.jpeds.2008.11.041.; Wang J, Luan Z, Jiang H, et al. Allogeneic hematopoietic stem cell transplantation in 34 pediatric cases of mucopolysaccharidosis — a 10-year report from China children transplant group. Biol Blood Marrow Transplant. 2016;22(11):2104–2108. doi:10.1016/j. bbmt.2016.08.015.; Kubaski F, Yabe H, Suzuki Y, et al. Hematopoietic stem cell transplantation for patients with mucopolysaccharidosis II. Biol Blood Marrow Transplant. 2017;23(10):1795–1803. doi:10.1016/j. bbmt.2017.06.020.; Tanaka A, Okuyama T, Suzuki Y, et al. Long-term efficacy of hematopoietic stem cell transplantation on brain involvement in patients with mucopolysaccharidosis type II: a nationwide survey in Japan. Mol Genet Metab. 2012;107(3):513–520. doi:10.1016/j. ymgme.2012.09.004.; Friso A, Tomanin R, Salvalaio M, Scarpa M. Genistein reduces glycosaminoglycan levels in a mouse model of mucopolysaccharidosis type II. Br J Pharmacol. 2010;159(5):1082–1091. doi:10.1111/j.1476-5381.2009.00565.x.; de Ruijter J, Valstar MJ, Narajczyk M, et al. Genistein in Sanfilippo disease: a randomized controlled crossover trial. Ann Neurol. 2012;71(1):110–120. doi:10.1002/ana.22643.; Marucha J, Tylki-Szymańska A, Jakóbkiewicz-Banecka J, et al. Improvement in the range of joint motion in seven patients with mucopolysaccharidosis type II during experimental gene expression-targeted isoflavone therapy (GET IT). Am J Med Genet A. 2011;155A(9):2257–2262. doi:10.1002/ajmg.a.34146.; Di Francesco C, Cracco C, Tomanin R, et al. In vitro correction of iduronate-2-sulfatase deficiency by adenovirus-mediated gene transfer. Gene Ther. 1997;4(5):442–448. doi:10.1038/ sj.gt.3300411.; Hong Y, Yu SS, Kim JM, et al. Construction of a high efficiency retroviral vector for gene therapy of Hunter’s Syndrome. J Gene Med. 2003;5(1):18–29. doi:10.1002/jgm.316.; Jung SC, Park ES, Choi EN, et al. Characterization of a novel mucopolysaccharidosis type II mouse model and recombinant AAV2/8 vector-mediated gene therapy. Mol Cells. 2010;30(1):13– 18. doi:10.1007/s10059-010-0083-2.; Hinderer C, Katz N, Louboutin JP, et al. Delivery of an adenoassociated virus vector into cerebrospinal fluid attenuates central nervous system disease in mucopolysaccharidosis type II mice. Hum Gene Ther. 2016;27(11):906–915. doi:10.1089/hum.2016.101.; Yadak R, Torres-Torronteras J, Bogaerts E, et al. OP45–3024: Efficient lentiviral vector-mediated hematopoietic stem cell gene therapy in MNGIE mice. Eur J Paediatr Neurol. 2015;19 Suppl 1:S15. doi:10.1016/s1090-3798(15)30046-5.; McIntyre C, Roberts ALD, Ranieri E, et al. Lentiviral-mediated gene therapy for murine mucopolysaccharidosis type IIIA. Mol Genet Metab. 2008;93(4):411–418. doi:10.1016/j.ymgme.2007.11.008.; Christianson HC, Svensson KJ, van Kuppevelt TH, et al. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc Natl Acad Sci U S A. 2013;110(43):17380–17385. doi:10.1073/pnas.1304266110.; Gaj T, Gersbach CA, Barbas CF 3rd. ZFN, TALEN, and CRISPR/ Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397–405. doi:10.1016/j.tibtech.2013.04.004.; Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–676. doi:10.1016/j. cell.2006.07.024.; Perez EE, Wang J, Miller JC, et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol. 2008;26(7):808–816. doi:10.1038/ nbt1410.; Tebas P, Stein D, Tang WW, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. 2014;370(10):901–910. doi:10.1056/NEJMoa1300662.; Im W, Moon J, Kim M. Applications of CRISPR/Cas9 for gene editing in hereditary movement disorders. J Mov Disord. 2016;9(3):136– 143. doi:10.14802/jmd.16029.; Xie F, Ye L, Chang JC, et al. Seamless gene correction of betathalassemia mutations in patient specific iPSCs using CRISPR/ Cas9 and piggybac. Genome Res. 2014;24(9):1526–1533. doi:10.1101/gr.173427.114.; Bolukbasi MF, Gupta A, Wolfe SA. Creating and evaluating accurate CRISPR-Cas9 scalpels for genomic surgery. Nat Methods. 2016;13(1):41–50. doi:10.1038/nmeth.3684.; Ashton LJ, Brooks DA, McCourt PA, et al. Immunoquantification and enzyme kinetics of alpha-L-iduronidase in cultured fibroblasts from normal control and mucopolysaccharidosis type I patients. Am J Hum Genet. 1992;50(4):787–794.; Long GL, Winfield S, Adolph KW, et al. Structure and organization of the human metaxin gene (MTX) and pseudogene. Genomics. 1996;33:177–184. doi:10.1006/geno.1996.0181.; Armstrong LC, Komiya T, Bergman BE, et al. Metaxin is a component of a preprotein import complex in the outer membrane of the mammalian mitochondrion. J Biol Chem. 1997;272(10): 6510–6518. doi:10.1074/jbc.272.10.6510.; Lacorazza HD, Flax JD, Snyder EY, Jendoubi M. Expression of human beta-hexosaminidase alpha-subunit gene (the gene defect of Tay-Sachs disease) in mouse brains upon engraftment of transduced progenitor cells. Nat Med. 1996;2(4):424–429. doi:10.1038/nm0496-424.; Martino S, Emiliani C, Tancini B, et al. Absence of metabolic crosscorrection in Tay-Sachs cells: implications for gene therapy. J Biol Chem. 2002;277(23):20177–20184. doi:10.1074/jbc.M106164200.; Matsuoka K, Tamura T, Tsuji D, et al. Therapeutic potential of intracerebroventricular replacement of modified human β-hexosaminidase b for GM2 gangliosidosis. Mol Ther. 2011;19(6): 1017–1024. doi:10.1038/mt.2011.27.; Cachón-González MB, Wang SZ, Ziegler R, et al. Reversibility of neuropathology in Tay-Sachs-related diseases. Hum Mol Genet. 2014;23(3):730–748. doi:10.1093/hmg/ddt459.; https://www.pedpharma.ru/jour/article/view/1653
-
8Academic Journal
Authors: Tuy Nga Brignol, J. Andoni Urtizberea
Source: Neuromuscular Diseases; Том 5, № 1 (2015); 19-24 ; Нервно-мышечные болезни; Том 5, № 1 (2015); 19-24 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2015-5-1
Subject Terms: птоз, glycogenosis type II, lysosomal storage disease, infantile-onset Pompe disease, late-onset Pompe disease, α-glucosidase, enzyme replacement therapy, extraocular motility disorder, ophthalmopathy, ptosism strabismus, myopia, гликогеноз II типа, лизосомальные болезни накопления, инфантильная форма болезни Помпе, болезнь Помпе с поздним дебютом, α-глюкозидаза, ферментная заместительная терапия, экстраокулярные двигательные расстройства, офтальмопатия
File Description: application/pdf
Relation: https://nmb.abvpress.ru/jour/article/view/106/100; Smith R.S., Reinecke R.D. Electron microscopy of ocular muscle in type II glycogenosis (Pompe's disease). Am J Ophthalmol 1972;73(6):965–70.; Libert J., Martin J.J., Ceuterick C. et al. Ocular ultrastructural study in a fetus with type II glycogenosis. Br J Ophthalmol 1977; 61(7):476–82.; Goebel H.H., Kohlschütter A., Pilz H. Ultrastructural observations on the retina in type II glycogenosis (Pompe's disease). Ophthalmologica 1978;176(2):61–8.; Barnes D., Hughes R.A., Spencer G.T. Adult-onset acid maltase deficiency with prominent bulbar involvement and ptosis. J R Soc Med 1993;86(1):50.; De Wilde F., D'Haens M., Smet H. et al. Surgical treatment of myogenic blepharoptosis. Bull Soc Belge Ophtalmol 1995;255: 139–46.; Groen W.B., Leen W.G., Vos A.M. et al. Ptosis as a feature of late-onset glycogenosis type II. Neurology 2006;67(12):2261–2.; Ravaglia S., Repetto A., De Filippi P. et al. Ptosis as a feature of late-onset glycogenosis type II. Neurology 2007;69(1):116.; Yanovitch T.L., Banugaria S.G., Proia A.D. et al. Clinical and histologic ocular findings in Pompe disease. J Pediatr Ophthalmol Strabismus 2010;47(1):34–40.; Slingerland N.W., Polling J.R., van Gelder C.M. et al. Ptosis, extraocular motility disorder, and myopia as features of pompe disease. Orbit 2011;30(2):111–3.; Chien Y.H., Lee N.C., Tsai Y.J. et al. Prominent vacuolation of the eyelid levator muscle in an early-treated child with infantileonset Pompe disease. Muscle Nerve 2014;50(2):301–2.; Ravaglia S., Bini P., Garaghani K.S. et al. Ptosis in Pompe disease: common genetic background in infantile and adult series. J Neuroophthalmol 2010;30(4):389–90.; Prakalapakorn S.G., Proia A.D., Yanovitch T.L. et al. Ocular and histologic findings in a series of children with infantile Pompe disease treated with enzyme replacement therapy. J Pediatr Ophthalmol Strabismus 2014;51(6):355–62.; Anagnostou E., Kemanetzoglou E., Papadimas G. Extraocular muscle function in adult-onset Pompe disease tested by saccadic eye movements. Neuromuscul Disord 2014; 24(12):1073–8.; Yanovitch T.L., Casey R., Banugaria S.G. et al. Improvement of bilateral ptosis on higher dose enzyme replacement therapy in Pompe disease. J Neuroophthalmol 2010;30(2): 165–6.; Toussaint D., Danis P. Eye histopathology study of a case of generalized glycogenosis (Pompe disease). Bull Soc Belge Ophtalmol 1964;137:313–25.; Pokorny K.S., Ritch R., Friedman A.H. et al. Ultrastructure of the eye in fetal type II glycogenosis (Pompe's disease). Invest Ophthalmol Vis Sci 1982;22(1):25–31.; van der Walt J.D., Swash M., Leake J. et al. The pattern of involvement of adult-onset acid maltase deficiency at autopsy. Muscle Nerve 1987;10(3):272–81.; Toussaint D., Danis P. Ocular histopathology in generalized glycogenosis (Pompe disease). Arch Ophthalmol 1965;73:342–9.; Kishnani P.S., Steiner R.D., Bali D. et al. Pompe disease diagnosis and management guideline. Genet Med 2006;8(5):267–88.; https://nmb.abvpress.ru/jour/article/view/106
-
9Academic Journal
Authors: Постнов, Антон
File Description: text/html
-
10Academic Journal
Source: Атмосфера. Новости кардиологии.
File Description: text/html
-
11Academic Journal
Authors: van der Ploeg, A. T., Kruijshaar, M. E., Toscano, A., Laforêt, P., Angelini, C., Lachmann, R. H., Pascual Pascual, S. I., Roberts, M., Rösler, K., Stulnig, T., van Doorn, P. A., Van den Bergh, P. Y. K., Vissing, J., Schoser, B., Bembi, Bruno, Broomfield, Alexander, Boentert, Matthias, Desnuelle, Claude, Findling, Oliver, Hahn, Andreas, Díaz-Manera, Jordi, Hundsberger, Thomas, Kornblum, Cornelia, Labarthé, Franҫois, Laforet, Pascal, Mengel, Karl-Eugen, Mongini, Tiziana, Muller-Felber, Wolfgang, Parenti, Giancarlo, Pijnappel, W. Pim, Preisler, Nicolai, Sacconi, Sabrina, Talim, Beril, Tardieu, Marine, van der Beek, Nadine A. M. E, Wenninger, Stephan
Contributors: UCL - SSS/IONS/NEUR - Clinical Neuroscience, UCL - (SLuc) Service de neurologie
Source: Нервно-мышечные болезни, Vol 8, Iss 4, Pp 19-34 (2019)
European Journal of Neurology, Vol. 24, no. 6, p. 768-779; e29-e31 (2017)
Neuromuscular Diseases, Vol. 8, no. 4, p. 19-34 (2018)Subject Terms: Adult, 0301 basic medicine, alglucosidase alfa, Consensus, алглюкозидаза альфа, adult patients, EMC MM-01-54-01, болезнь помпе, 7. Clean energy, Drug Administration Schedule, 03 medical and health sciences, enzyme replacement therapy, guidelines, Pompe disease, treatment recommendations, Europe, Glycogen Storage Disease Type II, Humans, Practice Guidelines as Topic, Enzyme Replacement Therapy, Quality of Life, Neurology, Neurology (clinical), 0302 clinical medicine, Journal Article, взрослые пациенты, RC346-429, Adult patients, Alglucosidase alfa, Enzyme replacement therapy, Guidelines, Treatment recommendations, 3. Good health, рекомендации по лечению, ферментная заместительная терапия, 13. Climate action, руководство, Neurology. Diseases of the nervous system
File Description: application/pdf
Linked Full TextAccess URL: https://nmb.abvpress.ru/jour/article/download/301/221
https://pubmed.ncbi.nlm.nih.gov/28477382
https://doaj.org/article/ce2d7bf9e8664d6a848167c86ae07198
https://repub.eur.nl/pub/117305
https://nmb.abvpress.ru/jour/article/view/301
https://nmb.abvpress.ru/jour/article/download/301/221
https://repub.eur.nl/pub/117305/REPUB_117305-OA.pdf
https://eprints.ncl.ac.uk/263993
http://www.ncbi.nlm.nih.gov/pubmed/28477382
https://onlinelibrary.wiley.com/resolve/doi?DOI=10.1111%2Fene.13285
https://boris.unibe.ch/108201/
https://www.ncbi.nlm.nih.gov/pubmed/28477382
https://pubmed.ncbi.nlm.nih.gov/28477382/
https://hdl.handle.net/2078.1/199104
https://hdl.handle.net/2078.1/220120
https://hdl.handle.net/2318/1666057
https://doi.org/10.1111/ene.13285
http://www.wiley.com/bw/journal.asp?ref=1351-5101&site=1