Εμφανίζονται 1 - 20 Αποτελέσματα από 45 για την αναζήτηση '"фармакокинетические параметры"', χρόνος αναζήτησης: 0,80δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: Pharmacokinetics and Pharmacodynamics; № 2 (2025); 36-50 ; Фармакокинетика и Фармакодинамика; № 2 (2025); 36-50 ; 2686-8830 ; 2587-7836

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pharmacokinetica.ru/jour/article/view/458/404; Решение № 85 «Об утверждении правил проведения исследований биоэквивалентности лекарственных препаратов в рамках Евразийского экономического союза» от 03.11.2016.; Shah VP, Yacobi A, Barr WH, et al. Evaluation of orally administered highly variable drugs and drug formulations. Pharm Res. 1996 Nov;13(11):1590-4. doi:10.1023/a:1016468018478.; Василюк В. Б., Верведа А. Б., Фарапонова М. В., Сыраева Г. И. Оценка влияния демографических и антропометрических показателей на вариабельность фармакокинетических параметров. Фармакокинетика и фармакодинамика. 2024;(1):32-44. doi:10.37489/2587-7836-2024-1-32-44. EDN: BDNQTT.; Торнуев Ю.В., Непомнящих Д.Л., Никитюк Д.Б., и др. Диагностические возможности неинвазивной биоимпедансометрии. Фундаментальные исследования. 2014;(10-4):782-788.; Forkman FJ. Coefficients of Variation – an Approximate F-Test. Licentiate thesis. 2005.; Дискриминантный анализ [интернет]. Доступ по: https://www.statmethods.ru/statisticsmetody/diskriminantnyj-analiz/ Ссылка активна на 12.05.2025.; Основы фармакокинетики / И.И. Мирошниченко. — Москва : ГЭОТАР-МЕД, 2002 (ООО Момент). — 185. ISBN 5-9231-0211-0 (в обл.).; Zhang Y, Huo M, Zhou J, Xie S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Programs Biomed. 2010 Sep;99(3):306-14. doi:10.1016/j.cmpb.2010.01.007.; Davit BM, Conner DP, Fabian-Fritsch B, et al. Highly variable drugs: observations from bioequivalence data submitted to the FDA for new generic drug applications. AAPS J. 2008;10(1):148-56. doi:10.1208/s12248-008-9015-x.; https://www.pharmacokinetica.ru/jour/article/view/458

  2. 2
    Academic Journal

    Πηγή: Doklady of the National Academy of Sciences of Belarus; Том 69, № 2 (2025); 117-128 ; Доклады Национальной академии наук Беларуси; Том 69, № 2 (2025); 117-128 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2025-69-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/1243/1244; Non-steroidal CYP17A1 Inhibitors: Discovery and Assessment / T. Wrobel, F. S. Jorgensen, A. V. Pandey [et al.] // Journal of Medicinal Chemistry. – 2023. – Vol. 66, N 10. – P. 6542–6566. https://doi.org/10.1021/acs.jmedchem.3c00442; Prospective computational design and in vitro bio-analytical tests of new chemical entities as potential selective CYP17A1 lyase inhibitors / N. J. Gumede, W. Nxumalo, K. Bisetty [et al.] // Bioorganic Chemistry. – 2020. – Vol. 94. – Art. 103462. https://doi.org/10.1016/j.bioorg.2019.103462; Рак предстательной железы: лечение и диагностика // Республиканский научно-практический центр онкологии и медицинской радиологии имени Н. Н. Александрова. – URL: https://omr.by/lechenie-opukholej/urologicheskie-opukholi/rak-predstatelnoj-zhelezy (дата обращения: 11.06.2024).; Bird, I. M. The hunt for a selective 17,20 lyase inhibitors: learning lessons from nature / I. M. Bird, D. H. Abbott // Journal of Steroid Biochemistry and Molecular Biology. – 2016. – Vol. 163. – P. 136–146. https://doi.org/10.1016/j.jsbmb.2016.04.021; Promising tools in prostate cancer research: selective non-steroidal cytochrome P450 17A1 inhibitors / S. Bonomo, C. H. Hansen, E. M. Petrunak [et al.] // Scientific Reports. – 2016. – Vol. 6. – Art. 29468. https://doi.org/10.1038/srep29468; Structural and functional evaluation of clinically relevant inhibitors of steroidogenic cytochrome P450 17A1 / E. M. Petrunak, S. A. Rogers, J. Aubé, E. E. Scott // Drug Metabolism and Disposition. – 2017. – Vol. 45, N 6. – P. 635–645. https://doi.org/10.1124/dmd.117.075317; Диченко, Я. В. Компьютерное моделирование строения и реакционной способности молекул / Я. В. Диченко. – Минск, 2023. – 139 с.; Pharmacophore modeling and its applications / R. Tyagi, A. Singh, K. Chaudhary, M. Yadav // Bioinformatics. – 2022. – Vol. 1. – P. 269–289. https://doi.org/10.1016/B978-0-323-89775-4.00009-2; C-(17,20)-lyase inhibitors. Part 2: design, synthesis and structure-activity relationships of (2-naphthylmethyl)-1Himidazoles as novel C-(17,20)-lyase inhibitors / N. Matsunaga, T. Kaku, A. Ojida [et al.] // Bioorganic and Medicinal Chemistry. – 2004. – Vol. 12, N 16. – P. 4313–4336. https://doi.org/10.1016/j.bmc.2004.06.016; 17,20-Lyase inhibitors. Part 4: Design, synthesis and structure-activity relationships of naphthylmethylimidazole derivatives as novel 17,20-lyase inhibitors / T. Kaku, N. Matsunaga, A. Ojida [et al.] // Bioorganic and Medicinal Chemistry. – 2011. – Vol. 19, N 5. – P. 1751–1770. https://doi.org/10.1016/j.bmc.2011.01.017; Pharmacophore model-based virtual screening workflow for discovery of inhibitors targeting Plasmodium falciparum Hsp90 / O. Mafethe, T. Ntseane, T. H. Dongola [et al.] // ACS Omega. – 2023. – Vol. 8, N 41. – P. 38220–38232. https://doi.org/10.1021/acsomega.3c04494; Pharmacophore modeling and 3D QSAR analysis of isothiazolidinedione derivatives as PTP1B inhibitors / G. S. Deora, P. Joshi, V. Rathore [et al.] // Medicinal Chemistry Research. – 2012. – Vol. 22. – P. 3478–3484. https://doi.org/10.1007/s00044-012-0349-7; 3D-QSAR pharmacophore modeling and in silico screening of phospholipase A2α inhibitors / S. V. Jain, M. Ghate, K. Bhadoriya [et al.] // Medicinal Chemistry Research. – 2012. – Vol. 22. – P. 3096–3108. https://doi.org/10.1007/s00044-012-0316-3; ADMETlab 3.0. – URL: https://admetlab3.scbdd.com (date of access: 17.06.2024).; Slow-, tight-binding inhibition of CYP17A1 by abiraterone redefines its kinetic selectivity and dosing regimen / E. Cheong, P. C. Nair, R. W. Y. Neo [et al.] // Journal of Pharmacology and Experimental Therapeutics. – 2020. – Vol. 374, N 3. – P. 438–451. https://doi.org/10.1124/jpet.120.265868; https://doklady.belnauka.by/jour/article/view/1243

  3. 3
    Academic Journal

    Πηγή: Pharmacokinetics and Pharmacodynamics; № 1 (2024); 32-44 ; Фармакокинетика и Фармакодинамика; № 1 (2024); 32-44 ; 2686-8830 ; 2587-7836

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pharmacokinetica.ru/jour/article/view/409/367; Shah VP, Yacobi A, Barr WH, et al. Evaluation of orally administered highly variable drugs and drug formulations. Pharm Res. 1996 Nov;13(11):1590-4. doi:10.1023/a:1016468018478. PMID: 8956322.; Davit BM, Conner DP, Fabian-Fritsch B, et al. Highly variable drugs: observations from bioequivalence data submitted to the FDA for new generic drug applications. AAPS J. 2008;10(1):148-56. doi:10.1208/s12248-008-9015-x.; Forkman FJ. Coefficients of Variation – an Approximate F-Test. Licentiate thesis. 2005. 63 p.; Общий дискриминантный анализ [интернет]. Интеллектуальный Портал Знаний. [доступ 19.10.2023]. Доступ по ссылке: http://statistica.ru/textbook/obshchiy-diskriminantnyy-analiz/; Мирошниченко И.И. Основы фармакокинетики. — М.: ГЭОТАР-МЕД; 2002. 192 с.; Miroshnichenko II. Osnovy farmakokinetiki. Moscow: GEHOTAR-MED; 2002. (In Russ.); Zhang Y, Huo M, Zhou J, Xie S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Programs Biomed. 2010 Sep;99(3):306-14. doi:10.1016/j.cmpb.2010.01.007.; https://www.pharmacokinetica.ru/jour/article/view/409

  4. 4
    Academic Journal

    Συνεισφορές: The study was performed without external funding, Работа выполнена без спонсорской поддержки

    Πηγή: Safety and Risk of Pharmacotherapy; Том 11, № 4 (2023); 390-408 ; Безопасность и риск фармакотерапии; Том 11, № 4 (2023); 390-408 ; 2619-1164 ; 2312-7821

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.risksafety.ru/jour/article/view/380/956; https://www.risksafety.ru/jour/article/view/380/959; https://www.risksafety.ru/jour/article/view/380/963; https://www.risksafety.ru/jour/article/view/380/975; https://www.risksafety.ru/jour/article/downloadSuppFile/380/369; https://www.risksafety.ru/jour/article/downloadSuppFile/380/370; https://www.risksafety.ru/jour/article/downloadSuppFile/380/441; Tsaioun K, Kates SA, eds. ADMET for Medicinal Chemists: A Practical Guide. New York: Wiley; 2011.; Дурнев АД. Лекарственная токсикология занимает важнейшее место в структуре доклинических исследований. Ведомости Научного центра экспертизы средств медицинского применения. Регуляторные исследования и экспертиза лекарственных средств. 2023;13(1):8–13.; Boroujerdi M. Pharmacokinetics and Toxicokinetics. New York: CRC Press; 2015.; Shaker B, Ahmad S, Lee J, Jung C, Na D. In silico methods and tools for drug discovery. Comput Biol Med. 2021;137:104851. https://doi.org/10.1016/j.compbiomed.2021.104851; Chang Y, Hawkins BA, Du JJ, Groundwater PW, Hibbs DE, Lai F. A guide to in silico drug design. Pharmaceutics. 2023;15(1):49. https://doi.org/10.3390/pharmaceutics15010049; Sammut C, Webb GI, eds. Encyclopedia of machine learning. New York: Springer; 2011.; Devillers J, Balaban AT, eds. Topological indices and related descriptors in QSAR and QSPR. New York: CRC Press; 2000.; Васильев ПМ, Спасов АА. Языки фрагментарного кодирования структуры соединений для компьютерного прогноза биологической активности. Российский химический журнал (Журнал Российского химического общества им. Д.И. Менделеева). 2006;50(2):108–27.; Engel T, Gasteiger J, eds. Chemoinformatics: Basic Concepts and Methods. Weinheim: Wiley-VCH; 2018.; Wang L, Ding J, Pan L, Cao D, Jiang H, Ding X. Quantum chemical descriptors in quantitative structure–activity relationship models and their applications. Chemometr Intell Lab Syst. 2021;217:104384. https://doi.org/10.1016/j.chemolab.2021.104384; Batool M, Ahmad B, Choi S. A structure-based drug discovery paradigm. Int J Mol Sci. 2019;20(11):2783. https://doi.org/10.3390/ijms20112783; Kar S, Leszczynski J. Open access in silico tools to predict the ADMET profiling of drug candidates. Expert Opin Drug Discov. 2020;15(12):1473–87. https://doi.org/10.1080/17460441.2020.1798926; Fahrmeir L, Kneib T, Lang S, Marx BD. Regression: models, methods and applications. New York: Springer; 2021.; Gramatica P. Principles of QSAR modeling: comments and suggestions from personal experience. Int J Quant Struct Prop Relatsh. 2020;5(3):61–97. https://doi.org/10.4018/IJQSPR.20200701.oa1; Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12(85):2825–30.; Poroikov VV, Filimonov DA, Borodina YV, Lagunin AA, Kos A. Robustness of biological activity spectra predicting by computer program pass for noncongeneric sets of chemical compounds. J Med Chem. 2000;40(6):1349–55. https://doi.org/10.1021/ci000383k; Zhang Z. Introduction to machine learning: K-nearest neighbors. Ann Trans Med. 2016;4(11):218–24. https://doi.org/10.21037/atm.2016.03.37; Cristianini N, Shawe-Taylor J. An introduction to support vector machines and other kernel-based learning methods. Cambridge: Cambridge University Press; 2000.; Genuer R, Poggi J-M. Random forests with R (Use R!). New York: Springer; 2020.; Jang IS, Ghazoui Z, Ahsen ME, Vogel R, Neto EC, Norman T, et al. Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen. Nat Commun. 2019;10(1):2674. https://doi.org/10.1038/s41467-019-09799-2; Aggarwal CC. Neural networks and deep learning: a textbook. New York: Springer; 2018.; Han S-H, Kim KW, Kim S, Youn YC. Artificial neural network: understanding the basic concepts without mathematics. Dement Neurocogn Disord. 2018;17(3):83–9. https://doi.org/10.12779/dnd.2018.17.3.83; Che J, Chen L, Guo ZH, Wang S, Aorigele С. Drug target group prediction with multiple drug networks. Comb Chem High Throughput Screen. 2020;23(4):274–84. https://doi.org/10.2174/1386207322666190702103927; Pinzi L, Rastelli G. Molecular docking: shifting paradigms in drug discovery. Int J Mol Sci. 2019;20(18):4331. https://doi.org/10.3390/ijms20184331; Wang Z, Sun H, Yao X, Li D, Xu L, Li Y, et al. Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power. Phys Chem Chem Phys. 2016;18(18):12964–75. https://doi.org/10.1039/c6cp01555g; Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–61. https://doi.org/10.1002/jcc.21334; Dickson CJ, Velez-Vega C, Duca JS. Revealing molecular determinants of hERG blocker and activator binding. J Chem Inf Model. 2020;60(1):192–203. https://doi.org/10.1021/acs.jcim.9b00773; Plewczynski D, Łaźniewski M, Augustyniak R, Ginalski K. Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database. J Comput Chem. 2011;32(4):742–55. https://doi.org/10.1002/jcc.21643; Joshi T, Sharma P, Joshi T, Pundir H, Mathpal S, Chandra S. Structure-based screening of novel lichen compounds against SARS Coronavirus main protease (Mpro) as potentials inhibitors of COVID-19. Mol Divers. 2021;25(3):1665–77. https://doi.org/10.1007/s11030-020-10118-x; Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46(1-3):3–26. https://doi.org/10.1016/s0169-409x(00)00129-0; Oprea TI. Property distribution of drug-related chemical databases. J Comput Aided Mol Des. 2000;14(3):251–64. https://doi.org/10.1023/a:1008130001697; Veber DF, Johnson SR, Cheng H-Y, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45(12):2615–23. https://doi.org/10.1021/jm020017n; Ghose AK, Viswanadhan VN, Wendoloski JJ. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem. 1999;1(1):55–68. https://doi.org/10.1021/cc9800071; Pardridge WM. CNS drug design based on principles of blood-brain barrier transport. J Neurochem. 1998;70(5):1781–92. https://doi.org/10.1046/j.1471-4159.1998.70051781.x; Bickerton GR, Paolini Gaia V, Besnard J, Muresan S, Hopkins AL. Quantifying the chemical beauty of drugs. Nat Chem. 2012;4(2):90–8. https://doi.org/10.1038/nchem.1243; Ahlberg E, Carlsson L, Boyer S. Computational derivation of structural alerts from large toxicology data sets. J Chem Inf Model. 2014;54(10):2945–52. https://doi.org/10.1021/ci500314a; Daina A, Michielin O, Zoeteb V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717. https://doi.org/10.1038/srep42717; O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: an open chemical toolbox. J Cheminform. 2011;3(1):33. https://doi.org/10.1186/1758-2946-3-33; Banerjee P, Eckert AO, Schrey AK, Preissner R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018;46(W1):W257–63. https://doi.org/10.1093/nar/gky318; Pires DEV, Blundell TL, Ascher DB. pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem. 2015;58:4066–72. https://doi.org/10.1021/acs.jmedchem.5b00104; Dong J, Wang N-N, Yao Z-J, Zhang L, Cheng Y, Ouyang D, et al. ADMETlab: a platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. J Cheminform. 2018;10(1):29. https://doi.org/10.1186/s13321-018-0283-x; Yang H, Lou C, Sun L, Li J, Cai Y, Wang Z, et al. admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics. 2019;35(6):1067–69. https://doi.org/10.1093/bioinformatics/bty707; Lunghini F, Marcou G, Azam P, Horvath D, Patoux R, Van Miert E, et al. Consensus models to predict oral rat acute toxicity and validation on a dataset coming from the industrial context. SAR QSAR Environ Res. 2019;30(12):879–97. https://doi.org/10.1080/1062936X.2019.1672089; Ruggiu F, Marcou G, Varnek A, Horvath D. ISIDA property-labelled fragment descriptors. Mol Inform. 2010;29(12):855–68. https://doi.org/10.1002/minf.201000099; Sosnin S, Karlov D, Tetko IV, Fedorov MV. Comparative study of multitask toxicity modeling on a broad chemical space. J Chem Inf Model. 2018;59(3):1062–72. https://doi.org/10.1021/acs.jcim.8b00685; Tice RR, Bassan A, Amberg A, Anger LT, Beal MA, Bellion P, et al. In silico approaches in carcinogenicity hazard assessment: current status and future needs. Comput Toxicol. 2021;20:100191. https://doi.org/10.1016/j.comtox.2021.100191; Zhong M, Nie X, Yan A, Yuan Q. Carcinogenicity prediction of noncongeneric chemicals by a support vector machine. Chem Res Toxicol. 2013;26(5):741–9. https://doi.org/10.1021/tx4000182; Sushko I, Novotarskyi S, Körner R, Pandey AK, Kovalishyn VV, Prokopenko VV, et al. Applicability domain for in silico models to achieve accuracy of experimental measurements. J Chemom. 2010;24(3–4):202–8. https://doi.org/10.1002/cem.1296; Xu C, Cheng F, Chen L, Du Z, Li W, Liu G, et al. In silico prediction of chemical Ames mutagenicity. J Chem Inf Model. 2012;52(11):2840–7. https://doi.org/10.1021/ci300400a; Patlewicz G, Jeliazkova N, Safford RJ, Worth AP, Aleksiev B. An evaluation of the implementation of the Cramer classification scheme in the Toxtree software. SAR QSAR Environ Res. 2008;19(5–6):495–524. https://doi.org/10.1080/10629360802083871; Стрелкова ЮН. Понятия «генотоксичность» и «мутагенность». В кн. Advances in Science and Technology. Сборник статей XXVI международной научно-практической конференции. М.: Актуальность.РФ; 2020. Ч. I. С. 37–8.; Baderna D, Van Overmeire I, Lavado GJ, Gadaleta D, Mertens B. In silico Methods for chromosome damage. In: In silico methods for predicting drug toxicity. New York: Springer US; 2022. P. 185–200. https://doi.org/10.1007/978-1-0716-1960-5_8; Kusko R, Hong H. Machine learning and deep learning promote computational toxicology for risk assessment of chemicals. In: Machine learning and deep learning in computational toxicology. Cham: Springer International Publishing; 2023. P. 1–17. https://doi.org/10.1007/978-3-031-20730-3; Baderna D, Gadaleta D, Lostaglio E, Selvestrel G, Raitano G, Golbamaki A, et al. New in silico models to predict in vitro micronucleus induction as marker of genotoxicity. J Hazard Mater. 2020;385:121638. https://doi.org/10.1016/j.jhazmat.2019.121638; Ferrari T, Cattaneo D, Gini G, Bakhtyari NG, Manganaro A, Benfenati E. Automatic knowledge extraction from chemical structures: the case of mutagenicity prediction. SAR QSAR Environ Res. 2013;24(5):365–83. https://doi.org/10.1080/1062936x.2013.773376; Combarnous Y, Diep Nguyen TM. Comparative overview of the mechanisms of action of hormones and endocrine disruptor compounds. Toxics. 2019;7(1):5–14. https://doi.org/10.3390/toxics7010005; La Merrill MA, Vandenberg LN, Smith MT, Goodson W, Browne P, Patisaul HB, et al. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat Rev Endocrinol. 2020;16(1):45–57. https://doi.org/10.1038/s41574-019-0273-8; Ruiz P, Sack A, Wampole M, Bobst S, Vracko M. Integration of in silico methods and computational systems biology to explore endocrine-disrupting chemical binding with nuclear hormone receptors. Chemosphere. 2021;178:99–109. https://doi.org/10.1016/j.chemosphere.2017.03.026; Matsuzaka Y, Uesawa Y. Molecular image-based prediction models of nuclear receptor agonists and antagonists using the deepsnap-deep learning approach with the Tox21 10K library. Molecules. 2020;25(12):2764. https://doi.org/10.3390/MOLECULES25122764; Collins SP, Barton-Maclaren TS. Novel machine learning models to predict endocrine disruption activity for high-throughput chemical screening. Front Toxicol. 2022;4:1–13. https://doi.org/10.3389/ftox.2022.981928; Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 2019;47(D1):D1102–D1109. https://doi.org/10.1093/nar/gky1033; Halle W, Halder M, Worth A, Genschow E. The registry of cytotoxicity: toxicity testing in cell cultures to predict acute toxicity (LD50) and to reduce testing in animals. Altern Lab Anim. 2003;31(2):89–198. https://doi.org/10.1177/026119290303100204; Petrescu AM, Paunescu V, Ilia G. The antiviral activity and cytotoxicity of 15 natural phenolic compounds with previously demonstrated antifungal activity. J Environ Sci Health B. 2019;54(6):498–504. https://doi.org/10.1080/03601234.2019.1574176; Chuipu C, Guo P, Zhou Y, Zhou J, Wang Q, Zhang F, et al. Deep learning-based prediction of drug-induced cardiotoxicity. J Chem Inf Model. 2019;59(3):1073–84. https://doi.org/10.1021/acs.jcim.8b00769; He S, Ye T, Wang R, Zhang C, Zhang X, Sun G, et al. An in s ilico model for predicting drug-induced hepatotoxicity. Int J Mol Sci. 2019;20(8):1897. https://doi.org/10.3390/ijms20081897; Ye H, Nelson LJ, Moral MGD, Martínez-Naves E, Cubero FJ. Dissecting the molecular pathophysiology of drug-induced liver injury. World J Gastroenterol. 2018;24(13):1373–85. https://doi.org/10.3748/wjg.v24.i13.1373; García-Cañaveras JC, Jiménez N, Gómez-Lechón MJ, Castell JV, Donato MT, Lahoz A. LC-MS untargeted metabolomic analysis of drug-induced hepatotoxicity in HepG2 cells. Electrophoresis. 2015;36(18):2294–302. https://doi.org/10.1002/elps.201500095; Kim E, Nam H. Prediction models for drug-induced hepatotoxicity by using weighted molecular fingerprints. BMC Bioinformatics. 2017;18(Suppl 7):25–34. https://doi.org/10.1186/s12859-017-1638-4; Turabekova M, Rasulev B, Theodore M, Jackman J, Leszczynska D, Leszczynski J. Immunotoxicity of nanoparticles: a computational study suggests that CNTs and C60 fullerenes might be recognized as pathogens by Toll-like receptors. Nanoscale. 2014;6(7):3488–95. https://doi.org/10.1039/C3NR05772K; Roos C. Intestinal absorption of drugs: the impact of regional permeability, nanoparticles, and absorption-modifying excipients. Uppsala: Acta Universitatis Upsaliensis; 2018.; Venkatraman V. FP-ADMET: a compendium of fingerprint-based ADMET prediction models. J Cheminform. 2021;13(1):75–86. https://doi.org/10.1186/s13321-021-00557-5; Wang N-N, Huang C, Dong J, Yao Z-J, Zhu M-F, Deng Z-K, et al. Predicting human intestinal absorption with modified random forest approach: a comprehensive evaluation of molecular representation, unbalanced data, and applicability domain issues. RSC Adv. 2017;7(31):19007–18. https://doi.org/10.1039/C6RA28442F; Kumar R, Sharma A, Siddiqui MH, Tiwari RK. Prediction of human intestinal absorption of compounds using artificial intelligence techniques. Curr Drug Discov Technol. 2017;14(4):244–54. https://doi.org/10.2174/1570163814666170404160911; Миронов АН, ред. Руководство по проведению доклинических исследований лекарственных средств. Ч. 2. М.: Гриф и К; 2012.; Fagerholm U, Hellberg S, Spjuth O. Advances in predictions of oral bioavailability of candidate drugs in man with new machine learning methodology. Molecules. 2021;26(9):2572–82. https://doi.org/10.3390/molecules26092572; Ye Z, Yang Y, Li X, Cao D, Ouyang D. An integrated transfer learning and multitask learning approach for pharmacokinetic parameter prediction. Mol Pharm. 2019;16(2):533–41. https://doi.org/10.1021/acs.molpharmaceut.8b00816; Currie GM. Pharmacology, part 2: Introduction to pharmacokinetics. J Nucl Med Technol. 2018;46(3):221–30. https://doi.org/10.2967/jnmt.117.199638; Murad N, Pasikanti KK, Madej BD, Minnich A, McComas JM, Crouch S, et al. Predicting volume of distribution in humans: performance of in silico methods for a large set of structurally diverse clinical compounds. Drug Metab Dispos. 2021;49(2):169–78. https://doi.org/10.1124/dmd.120.000202; Lombardo F, Bentzien J, Berellini G, Muegge I. In silico models of human PK parameters. Prediction of volume of distribution using an extensive data set and a reduced number of parameters. J Pharm Sci. 2021;110(1):500–9. https://doi.org/10.1016/j.xphs.2020.08.023; Kosugi Y, Hosea N. Direct comparison of total clearance prediction: computational machine learning model versus bottom-up approach using in vitro assay. Mol Pharm. 2020;17(7):2299–309. https://doi.org/10.1021/acs.molpharmaceut.9b01294; Wang Y, Liu H, Fan Y, Chen X, Yang Y, Zhu L, et al. In silico prediction of human intravenous pharmacokinetic parameters with improved accuracy. J Chem Inf Model. 2019;59(9):3968–80. https://doi.org/10.1021/acs.jcim.9b00300; Chen J, Yang H, Zhu L, Wu Z, Li W, Tang Y, et al. In silico prediction of human renal clearance of compounds using quantitative structure-pharmacokinetic relationship models. Chem Res Toxicol. 2020;33(2):640–50. https://doi.org/10.1021/acs.chemrestox.9b00447; Watanabe R, Ohashi R, Esaki T, Kawashima H, Natsume-Kitatani Y, Nagao C, et al. Development of an in silico prediction system of human renal excretion and clearance from chemical structure information incorporating fraction unbound in plasma as a descriptor. Sci Rep. 2019;9(1):18782– 92. https://doi.org/10.1038/s41598-019-55325-1; Dawson DE, Ingle BL, Phillips KA, Nichols JW, Wambaugh JF, Tornero-Velez R. Designing QSARs for parameters of high-throughput toxicokinetic models using open-source descriptors. Environ Sci Technol. 2021;55(9):6505–17. https://doi.org/10.1021/acs.est.0c06117; Feinberg EN, Joshi E, Pande VS, Cheng AC. Improvement in ADMET prediction with multitask deep featurization. J Med Chem. 2020;63(16):8835–48. https://dx.doi.org/10.1021/acs.jmedchem.9b02187; Vassiliev PM, Spasov AA, Kosolapov VA, Kucheryavenko AF, Gurova NA, Anisimova VA. Consensus drug design using IT Microcosm. In: Gorb L, Kuz’min V, Muratov E, eds. Application of computational techniques in pharmacy and medicine; challenges and advances in computational chemistry and physics. Vol. 17. Springer, Dordrecht; 2014. P. 369–431. https://doi.org/10.1007/978-94-017-9257-8_12; Вао//doi.org/10.19163/1994-9480-2020-1(73)-31-33; Васильев ПМ, Спасов АА, Кочетков АН, Бабков ДА, Литвинов РА. Консенсусный прогноз in silico канцерогенной опасности мультитаргетных RAGE-ингибиторов. Волгоградский научно-медицинский журнал. 2020;(1):55–7.; Васильев ПМ, Спасов АА, Кочетков АН, Перфильев МА, Королева АР, Голубева АВ и др. Консенсусная оценка in silico общей безопасности мультитаргетных RAGE-ингибиторов. Волгоградский научно-медицинский журнал. 2020;(2):47–51.; Васильев ПМ, Спасов АА, Кочетков АН, Перфильев МА, Королева АР, Голубева АВ и др. Консенсусный прогноз in silico фармакокинетической предпочтительности мультитаргетных RAGE-ингибиторов. Вестник Волгоградского государственного медицинского университета. 2020;(2):100–4. https://doi.org/10.19163/1994-9480-2020-2(74)-100-104; Tomasulo P. ChemIDplus — super source for chemical and drug information. Med Ref Serv. 2002;21(1):53–9. https://doi.org/10.1300/j115v21n01_04; IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Vol. 1–131. Lyon: IARC; 1972–2023.; Mendez D, Gaulton A, Bento AP, Chambers J, De Veij M, Felix E, et al. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res. 2019;47(D1):D930–40. https://doi.org/10.1093/nar/gky1075; Karthikeyan BS, Ravichandran J, Aparna SR, Samal A. DEDuCT 2.0: An updated knowledgebase and an exploration of the current regulations and guidelines from the perspective of endocrine disrupting chemicals. Chemosphere. 2021;267:128898. https://doi.org/10.1016/j.chemosphere.2020.128898; Wang Z, Yang H, Wu Z, Wang T, Li W, Tang Y, et al. In silico prediction of blood–brain barrier permeability of compounds by machine learning and resampling methods. Chem Med Chem. 2018;13(20):2189–201. https://doi.org/10.1002/cmdc.201800533; Колмогоров АН. О представлении непрерывных функций нескольких переменных в виде суперпозиции непрерывных функций одного переменного. Доклады АН СССР. 1958;114(5):953–6.; Shen J, Cheng F, Xu Y, Li W, Tang Y. Estimation of ADME properties with substructure pattern recognition. J Chem Inf Model. 2010;50(6):1034–41. https://doi.org/10.1021/ci100104j; Hilbe JM. Statistica 7: an overview. Am Stat. 2007;61(1): 91–4.; Li H, Ung CY, Yap CW, Xue Y, Li ZR, Cao ZW, et al. Prediction of genotoxicity of chemical compounds by statistical learning methods. Chem Res Toxicol. 2005;18(6):1071–80. https://doi.org/10.1021/tx049652h; Yan A, Wang Z, Cai Z. Prediction of human intestinal absorption by GA feature selection and support vector machine regression. Int J Mol Sci. 2008;9(10):1961–76. https://doi.org/10.3390/ijms9101961; https://www.risksafety.ru/jour/article/view/380

  5. 5
    Academic Journal

    Συνεισφορές: This study was carried out with no external funding., Исследование проводилось без спонсорской поддержки.

    Πηγή: Biological Products. Prevention, Diagnosis, Treatment; Том 23, № 2 (2023): От традиционных биологических к высокотехнологичным лекарственным препаратам: вопросы разработки и применения; 173-180 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 23, № 2 (2023): От традиционных биологических к высокотехнологичным лекарственным препаратам: вопросы разработки и применения; 173-180 ; 2619-1156 ; 2221-996X

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/434/671; https://www.biopreparations.ru/jour/article/view/434/673; https://www.biopreparations.ru/jour/article/view/434/680; https://www.biopreparations.ru/jour/article/view/434/697; https://www.biopreparations.ru/jour/article/downloadSuppFile/434/463; https://www.biopreparations.ru/jour/article/downloadSuppFile/434/464; https://www.biopreparations.ru/jour/article/downloadSuppFile/434/682; Kenakin TP. A Pharmacology Primer: Theory, Applications, and Methods. 2nd ed. Vol. XVIII. Burlington, MA; London: Academic Press; 2006.; Leader B, Baca QJ, Golan DE. Protein therapeutics: a summary and pharmacological classifi cation. Nat Rev Drug Discov. 2008;7(1):21–39. https://doi.org/10.1038/nrd2399; Ryman JT, Meibohm B. Pharmacokinetics of monoclonal antibodies. CPT Pharmacometrics Syst Pharmacol. 2017;6(9):576–88. https://doi.org/10.1002/psp4.12224; Breedveld FC. Therapeutic monoclonal antibodies. Lancet. 2000;355(9205):735–40. https://doi.org/10.1016/s0140-6736(00)01034-5; Weiner LM, Surana R, Wang S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol. 2010;10(5):317–27. https://doi.org/10.1038/nri2744; Geng X, Kong X, Hu H, Chen J, Yang F, Liang H, et al. Research and development of therapeutic mAbs: an analysis based on pipeline projects. Hum Vaccin Immunother. 2015;11(12):2769–76. https://doi.org/10.1080/21645515.2015.1074362; Kinder M, Greenplate AR, Strohl WR, Jordan RE, Brezski RJ. An Fc engineering approach that modulates antibody-dependent cytokine release without altering cell-killing functions. MAbs. 2015;7(3):494–504. https://doi.org/10.1080/19420862.2015.1022692; An Z, Forrest G, Moore R, Cukan M, Haytko P, Huang L, et al. IgG2m4, an engineered antibody isotype with reduced Fc function. MAbs. 2009;1(6):572–9. https://doi.org/10.4161/mabs.1.6.10185; Strohl WR. Current progress in innovative engineered antibodies. Protein Cell. 2018;9(1):86–120. https://doi.org/10.1007/s13238-017-0457-8; Castelli MS, McGonigle P, Hornby PJ. The pharmacology and therapeutic applications of monoclonal antibodies. Pharmacol Res Perspect. 2019;7(6):e00535. https://doi.org/10.1002/prp2.535; Pardridge WM. Blood-brain barrier drug delivery of IgG fusion proteins with a transferrin receptor monoclonal antibody. Expert Opin Drug Deliv. 2015;12(2):207–22. https://doi.org/10.1517/17425247.2014.952627; Cooper PR, Ciambrone GJ, Kliwinski CM, Maze E, Johnson L, Li Q, et al. Effl ux of monoclonal antibodies from rat brain by neonatal Fc receptor, FcRn. Brain Res. 2013;1534:13–21. https://doi.org/10.1016/j.brainres.2013.08.035; Karaoglu Hanzatian D, Schwartz A, Gizatullin F, Erickson J, Deng K, Villanueva R, et al. Brain uptake of multivalent and multi-specifi c DVD-Ig proteins after systemic administration. MAbs. 2018;10(5):765–77. https://doi.org/10.1080%2F19420862.2018.1465159; Wang W, Soriano B, Chen Q. Glycan profi ling of proteins using lectin binding by surface plasmon resonance. Anal Biochem. 2017;538:53–63. https://doi.org/10.1016/j.ab.2017.09.014; Hinke SA, Cieniewicz AM, Kirchner T, D’Aquino K, Nanjunda R, Aligo J, et al. Unique pharmacology of a novel allosteric agonist/sensitizer insulin receptor monoclonal antibody. Mol Metab. 2018;10:87–99. https://doi.org/10.1016/j.molmet.2018.01.014; Kang JC, Poovassery JS, Bansal P, You S, Manjarres IM, Ober RJ, Ward ES. Engineering multivalent antibodies to target heregulin-induced HER3 signaling in breast cancer cells. MAbs. 2014;6(2):340–53. https://doi.org/10.4161/mabs.27658; Ovacik M, Lin K. Tutorial on monoclonal antibody pharmacokinetics and its considerations in early development. Clin Transl Sci. 2018;11(6):540–52. https://doi.org/10.1111/cts.12567; Köhler G, Milstein C. Derivation of specifi c antibody-producing tissue culture and tumor lines by cell fusion. Eur J Immunol. 1976;6(7):511–9. https://doi.org/10.1002/eji.1830060713; Levene AP, Singh G, Palmieri C. Therapeutic monoclonal antibodies in oncology. J R Soc Med. 2005;98(4):146–52. https://doi.org/10.1177/014107680509800403; Yamashita M, Katakura Y, Shirahata S. Recent advances in the generation of human monoclonal antibody. Cytotechnology. 2007;55(2–3):55–60. https://doi.org/10.1007/s10616-007-9072-5; Sedykh SE, Prinz VV, Buneva VN, Nevinsky GA. Bispecific antibodies: design, therapy, perspectives. Drug Des Devel Ther. 2018;12:195–208. https://doi.org/10.2147/DDDT.S151282; Sau S, Alsaab HO, Kashaw SK, Tatiparti K, Iyer AK. Advances in antibody–drug conjugates: a new era of targeted cancer therapy. Drug Discov Today. 2017;22(10):1547–56. https://doi.org/10.1016/j.drudis.2017.05.011; Keizer RJ, Huitema AD, Schellens JH, Beijnen JH. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010;49(8):493–507. https://doi.org/10.2165/11531280-000000000-00000; Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol. 2007;7(9):715–25. https://doi.org/10.1038/nri2155; Suzuki T, Ishii-Watabe A, Tada M, Kobayashi T, Kanayusu-Toyoda T, Kawanishi T, Yamaguchi T. Importance of neonatal FcR in regulating the serum half-life of therapeutic proteins containing the Fc domain of human IgG1: a comparative study of the affi nity of monoclonal antibodies and Fc-fusion proteins to human neonatal FcR. J Immunol. 2010;184(4):1968–76. https://doi.org/10.4049/jimmunol.0903296; Dirks NL, Meibohm B. Population pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010;49(10):633–59. https://doi.org/10.2165/11535960-000000000-00000; Kelly RL, Yu Y, Sun T, Caffry I, Lynaugh H, Brown M, et al. Target-independent variable region mediated effects on antibody clearance can be FcRn independent. MAbs. 2016;8(7):1269–75. https://doi.org/10.1080/19420862.2016.1208330; Datta-Mannan A, Lu J, Witcher DR, Leung D, Tang Y, Wroblewski VJ. The interplay of non-specifi c binding, target-mediated clearance and FcRn interactions on the pharmacokinetics of humanized antibodies. MAbs. 2015;7(6):1084–93. https://doi.org/10.1080/19420862.2015.1075109; Chiu HH, Tsai IL, Lu YS, Lin CH, Kuo CH. Development of an LC-MS/MS method with protein G purifi cation strategy for quantifying bevacizumab in human plasma. Anal Bioanal Chem. 2017;409(28):6583–93. https://doi.org/10.1007/s00216-017-0607-0; Irie K, Okada A, Yamasaki Y, Kokan C, Hata A, Kaji R, et al. An LC-MS/MS method for absolute quantification of nivolumab in human plasma: application to clinical therapeutic drug monitoring. Ther Drug Monit. 2018;40(6):716–24. https://doi.org/10.1097/ftd.0000000000000558; Chiu HH, Liao HW, Shao YY, Lu YS, Lin CH, Tsai IL, et al. Development of a general method for quantifying IgG-based therapeutic monoclonal antibodies in human plasma using protein G purifi cation coupled with a two internal standard calibration strategy using LC-MS/MS. Anal Chim Acta. 2018;1019:93–102. https://doi.org/10.1016/j.aca.2018.02.040; Willeman T, Jourdil JF, Gautier-Veyret E, Bonaz B, Stanke-Labesque F. A multiplex liquid chromatography tandem mass spectrometry method for the quantifi cation of seven therapeutic monoclonal antibodies: application for adalimumab therapeutic drug monitoring in patients with Crohn’s disease. Anal Chim Acta. 2019;1067:63–70. https://doi.org/10.1016/j.aca.2019.03.033; Iwamoto N, Takanashi M, Shimada T, Sasaki J, Hamada A. Comparison of bevacizumab quantifi cation results in plasma of non-small cell lung cancer patients using bioanalytical techniques between LC-MS/MS, ELISA, and microfl uidic-based immunoassay. AAPS J. 2019;21(6):101. https://doi.org/10.1208/s12248-019-0369-z; https://www.biopreparations.ru/jour/article/view/434

  6. 6
    Academic Journal

    Συνεισφορές: The pharmacokinetics study of 99mTc–Zoledronic acid was carried out within the framework of an agreement between the State Research Center — Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency and Pharm-Sintez, CJSC. The biodistribution study of 68Ga–DOTA-PSMA and 68Ga–NODAGA-PSMA was carried out with the financial support of the Ministry of Education and Science of the Russian Federation (State Contract No. 14.N08.11.0165)., Изучение фармакокинетики препарата «Золедроновая кислота, 99mTc» было выполнено в рамках договора между ФГБУ «ГНЦ ФМБЦ им. А.И. Бурназяна» ФМБА России и ЗАО «Фарм-Синтез». Исследование биораспределения «68Ga DOTAPSMA» и «68Ga NODAGA-PSMA» было выполнено при финансовой поддержке Министерства образования и науки Российской Федерации — Государственный контракт № 14.N08.11.0165.

    Πηγή: Regulatory Research and Medicine Evaluation; Том 12, № 4 (2022); 395-403 ; Регуляторные исследования и экспертиза лекарственных средств; Том 12, № 4 (2022); 395-403 ; 3034-3453 ; 3034-3062

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.vedomostincesmp.ru/jour/article/view/504/885; https://www.vedomostincesmp.ru/jour/article/downloadSuppFile/504/312; Zhao Y, Zhong L, Yi H. A review on the mechanism of iodide metabolic dysfunction in differentiated thyroid cancer. Mol Cell Endocrinol. 2019;479:71–7. https://doi.org/10.1016/j.mce.2018.09.002; Winter M, Coleman R, Kendall J, Palmieri C, Twelves C, Howell S, et al. A phase IB and randomised phase IIA trial of CApecitabine plus Radium-223 (Xofigo™) in breast cancer patients with BONe metastases: CARBON trial results. J Bone Oncol. 2022;35:100442. https://doi.org/10.1016/j.jbo.2022.100442; Аншелес АА, Прус ЮА, Сергиенко ИВ. Раннее выявление нарушений перфузии миокарда у пациентов онкологического профиля, находящихся на полихимиотерапии. Атеросклероз и дислипидемии. 2020;(3):60–8. https://doi.org/10.34687/2219-8202.JAD.2020.03.0007; Parker JA, Coleman RE, Grady E, Royal HD, Siegel BA, Stabin MG, et al. SNM practice guideline for lung scintigraphy 4.0. J Nucl Med Technol. 2012;40(1):57–65. https://doi.org/10.2967/jnmt.111.101386; Кодина ГЕ, Малышева АО, Клементьева ОЕ, Таратоненкова НА, Лямцева ЕА, Жукова МВ и др. «Синорен, 188Re» — потенциальный радиофармацевтический лекарственный препарат для радиосиновектомии. Радиация и риск. 2018;27(4):76–86. https://doi.org/10.21870/0131-3878-2018-27-4-76-86; Schneider F, Maurer C, Friedberg RC. International Organization for Standardization (ISO) 15189. Ann Lab Med. 2017;37(5):365–70. https://doi.org/10.3343/alm.2017.37.5.365; Ezzellea J, Rodriguez-Chavezc IR, Darden JM, Stirewalta M, Kunwar N, Hitchcock R, et al. Guidelines on good clinical laboratory practice: bridging operations between research and clinical research laboratories. J Pharm Biomed Anal. 2008;46(1):18–29. https://doi.org/10.1016/j.jpba.2007.10.010; Чехонин ВП, Григорьев МЭ, Жирков ЮА, Лебедев ДВ. Простатический специфический мембранный антиген и его роль в диагностике рака предстательной железы. Вопросы медицинской химии. 2002;48(1):31–43.; Baccala A, Sercia L, Li J, Heston W, Zhou M. Expression of prostate-specific membrane antigen in tumor-associated neovasculature of renal neoplasms. Urology. 2007;70(2):385–90. https://doi.org/10.1016/j.urology.2007.03.025; Al-Ahmadie HA, Olgac S, Gregor PD, Tickoo SK, Fine SW, Kondagunta GV, et al. Expression of prostate-specific membrane antigen in renal cortical tumors. Mod Pathol. 2008;21(6):727–32. https://doi.org/10.1038/modpathol.2008.42; Chang SS, Reuter VE, Heston WD, Gaudin PB. Metastatic renal cell carcinoma neovasculature expresses prostate-specific membrane antigen. Urology. 2001;57(4):801–5. https://doi.org/10.1016/s0090-4295(00)01094-3; Klementyeva OE, Larenkov AA, Krasnoperova AS, Zhukova MV. Preclinical studies of 68 Ga-labeled PSMA-inhibitors as molecular imaging biomarker for renal cancer. European Association of Nuclear Medicine (EANM-2018). Eur J Nucl Med Mol Imaging. 2018;45(Suppl 1):S626–7. https://doi.org/10.1007/s00259-018-4148-3; https://www.vedomostincesmp.ru/jour/article/view/504

  7. 7
    Academic Journal

    Συνεισφορές: The study reported in this publication was carried out as part of a publicly funded research project No. 056-00005-21-00 and was supported by the Scientific Centre for Expert Evaluation of Medicinal Products (R&D public accounting No. 121022400082-4)., Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00005-21-00 на проведение прикладных научных исследований (номер государственного учета НИР 121022400082-4).

    Πηγή: Safety and Risk of Pharmacotherapy; Том 9, № 4 (2021); 209-215 ; Безопасность и риск фармакотерапии; Том 9, № 4 (2021); 209-215 ; 2619-1164 ; 2312-7821 ; 10.30895/2312-7821-2021-9-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.risksafety.ru/jour/article/view/243/405; https://www.risksafety.ru/jour/article/downloadSuppFile/243/217; Kellum JA, Prowle JR. Paradigms of acute kidney injury in the intensive care setting. Nat Rev Nephrol. 2018;14(4):217–30. https://doi.org/10.1038/nrneph.2017.184; Демченкова ЕЮ, Городецкая ГИ, Мазеркина ИА, Журавлева МВ, Казаков АС, Городецкий МВ и др. Актуальные вопросы выявления и мониторинга нежелательных реакций при применении цефалоспориновых антибиотиков. Безопасность и риск фармакотерапии. 2021;9(1):34–42. https://doi.org/10.30895/2312-7821-2021-9-1-34-42; Awdishu L, Mehta RL. The 6R’s of drug induced nephrotoxicity. BMC Nephrol. 2017;18(1):124. https://doi.org/10.1186/s12882-017-0536-3; Pazhayattil GS, Shirali AC. Drug-induced impairment of renal function. Int J Nephrol Renovasc Dis. 2014;7:457–68. https://doi.org/10.2147/ijnrd.s39747; Журавлева МВ, Кукес ВГ, Прокофьев АБ, Сереброва СЮ, Городецкая ГИ, Бердникова НГ. Рациональное применение НПВП — баланс эффективности и безопасности (обзор литературы). Международный журнал прикладных и фундаментальных исследований. 2016;(6–4):687–96.; Тарловская ЕИ, Михайлова ЮВ. Хроническая сердечная недостаточность и частота приема нестероидных противовоспалительных средств: возможные риски по данным локального регистра. Российский кардиологический журнал. 2020;25(1):59–64. https://doi.org/10.15829/1560-4071-2020-1-3677; Harirforoosh S, Asghar W, Jamali F. Adverse effects of nonsteroidal antiinflammatory drugs: an update of gastrointestinal, cardiovascular and renal complications. J Pharm Pharm Sci. 2013;16(5):821–47. https://doi.org/10.18433/j3vw2f; Bomback AS, Markowitz GS. Increased prevalence of acute interstitial nephritis: more disease or simply more detection? Nephrol Dial Transplant. 2013;28(1):16–8. https://doi.org/10.1093/ndt/gfs318; Khalil MAM, Khalil MSUD, Khamis SSA, Alam S, Daiwajna RG, Rajput AS, et al. Pros and cons of aspirin prophylaxis for prevention of cardiovascular events in kidney transplantation and review of evidence. Adv Prev Med. 2019;2019:6139253. https://doi.org/10.1155/2019/6139253; Qu B, He Y, Wu L, Lu H, Wu H, Li M. Is there a cardiovascular protective effect of aspirin in chronic kidney disease patients? A systematic review and meta-analysis. Int Urol Nephrol. 2020;52(2):315–24. https://doi.org/10.1007/s11255-019-02350-8; Рафальский ВВ, Крикова АВ, Павлюченкова НА. Низкодозовый аспирин: разнообразие лекарственных форм. Кардиоваскулярная терапия и профилактика. 2017;16(4):68–75. https://doi.org/10.15829/1728-8800-2017-4-68-75; Халиков РМ, Маликова АШ, Бадретдинова РБ. Воздействие молекул ацетилсалициловой кислоты на ферментативную активность циклооксигеназы. Инновационная наука. 2016;(4–5):68–70.; Мазеркина ИА, Евтеев ВА, Прокофьев АБ, Муслимова ОВ, Демченкова ЕЮ. Экспериментальные модели клеточных линий для скрининга нефротоксичности. Ведомости Научного центра экспертизы средств медицинского применения. 2021;11(3):160–6. https://doi.org/10.30895/1991-2919-2021-11-160-166; Дударева ЛА, Батюшин ММ. Хронический тубулоинтерстициальный нефрит, индуцированный приемом нестероидных противовоспалительных препаратов: эпидемиологические особенности и возможности ранней диагностики. Нефрология. 2013;17(5):22–6.; Nderitu P, Doos L, Jones PW, Davies SJ, Kadam UT. Non-steroidal anti-inflammatory drugs and chronic kidney disease progression: a systematic review. Fam Pract. 2013;30(3):247–55. https://doi.org/10.1093/fampra/cms086; Needs CJ, Brooks PM. Clinical pharmacokinetics of the salicylates. Clin Pharmacokinet. 1985;10(2):164–77. https://doi.org/10.2165/00003088-198510020-00004; Benedek IH, Joshi AS, Pieniaszek HJ, King SY, Kornhauser DM. Variability in the pharmacokinetics and pharmacodynamics of low dose aspirin in healthy male volunteers. J Clin Pharmacol. 1995;35(12):1181–6. https://doi.org/10.1002/j.1552-4604.1995.tb04044.x; Dei Cas M, Rizzo J, Scavone M, Femia E, Podda GM, Bossi E, et al. In-vitro and in-vivo metabolism of different aspirin formulations studied by a validated liquid chromatography tandem mass spectrometry method. Sci Rep. 2021;11(1):10370. https://doi.org/10.1038/s41598-021-89671-w; Zamoner W, Prado IRS, Balbi AL, Ponce D. Vancomycin dosing, monitoring and toxicity: critical review of the clinical practice. Clin Exp Pharmacol Physiol. 2019;46(4):292–301. https://doi.org/10.1111/1440-1681.13066; https://www.risksafety.ru/jour/article/view/243

  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
    Academic Journal

    Πηγή: Pharmacokinetics and Pharmacodynamics; № 3 (2018); 48-56 ; Фармакокинетика и Фармакодинамика; № 3 (2018); 48-56 ; 2686-8830 ; 2587-7836

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pharmacokinetica.ru/jour/article/view/70/70; Бойко С.С., Жердев В.П., Гудашева Т.А., и др. Фармакокинетика нового потенциального дипептидного ноотропного препарата ГВС-111 и его метаболитов в мозге крыс // Химико-фармацевтический журнал. - 2001. - № 9. - С.11-13. DOI:10.1023/A:1014082406443; Gudasheva TA, Boyko SS, Ostrovskaya RU, et al. Identification of a novel endogenous memory facilitating cyclic dipeptide cyclo-prolylglycine in rat brain. FEBS Letters. 1996; 391:149- 152. DOI:10.1016/0014-5793(96)00722-3; Гудашева Т.А., Островская Р.У., Трофимов С.С., и др. Новый эндогенный дипептид циклопролилглицин подобен пирацетаму по селективности мнемотропного эффекта // Бюллетень экспериментальной биологии и медицины. - 1999. - Т. 128. - № 10 - С.411-413.; Гудашева Т.А., Константинопольский М.А., Островская Р.У., и др. Анксиолитическая активность эндогенного ноотропного пептида циклопролилглицина в тесте приподнятого крестообразного лабиринта // Бюллетень экспериментальной биологии и медицины. - 2001. - Т.131. - № 5 - С.464- 466.; Колясникова К.Н., Гудашева Т.А., Назарова Г.А., и др. Сходство цикло-пролилглицина с пирацетамом по антигипоксическому и нейропротекторному эффектам // Экспериментальная и клиническая фармакология. - 2012. - Т. 75. - № 9 - С.3-6.; Гудашева Т.А., Колясникова К.Н., Антипова Т.А., и др. Нейропептид циклопролилглицин увеличивает содержание мозгового нейротрофического фактора в нейрональных клетках // Доклады академии наук. - 2016. - Т. 469. - №4 - С.492- 495. DOI:10.7868/S0869565216220254; Руководство по проведению доклинических исследований лекарственных средств. / Под ред. Миронова А.Н. Часть первая. -М.: Гриф и К.; 2012. с. 944.; Национальный стандарт Российской федерации, ГОСТ Р. 53434 - (2009).; Malavolta L., Cabra FR. Peptides: Important tools for the treatment of central nervous system disorders. Neuropeptides. 2011 ;45(5):309- 316. DOI:10.1016/j.npep.2011.03.001; Diao L., Meibohm B. Pharmacokinetics and pharmacokinetic-pharmacodynamic correlations of therapeutic peptides. Clinical Pharmacokinetics. 2013;52(10):855- 868. DOI:10.1007/s40262-013-0079-0; Zolotarev YuA, Dadayan AK, Bocharov EV, et al. New development in the tritium labelling of peptides and proteins using solid catalytic isotopic exchange with spillover-tritium. Amino Acids. 2003; 24(3): 325- 333. DOI:10.1007/s00726-002-0404-7; Золотарев Ю.А., Дадаян А.К., Долотов О.В., и др. Равномерно меченные тритием пептиды в исследованиях по их биодеградации in vivo и in vitro // Биоорганическая химия. - 2006. - Т. 32. - №2 - С.183-191.; Zolotarev YuA, Dadayan AK, Kozik VS, et al. Solid-state isotope exchange with spillover hydrogen in organic compounds. Chem. Rev. 2010;110(9):5425- 5446. DOI:10.1021/cr100053w; Zolotarev YuA, Dadayan AK, Borisov YuA, et al. New development in the solid-state isotope exchange with spillover hydrogen in organic compounds. J. Phys. Chem. C. 2013; 117(33):16878- 16884. DOI:10.1021/jp4015299; Коротков С.А. Экспериментальное изучение фармакокинетики и биотрансформации нового дипептидного ноотропа ноопепта. Дис. канд. биол. наук. - М.; 2003. Доступно по: http:// medical-diss.com/medicina/eksperimentalnoe-izuchenie-farmakokinetiki-i-biotransformatsii-novogo-dipeptidnogo-nootropa-noopepta; Раскин С.Ю., Колыванов Г.Б., Литвин А.А., и др. Фармакокинетика дипептидного анксиолитика ГБ-115 после перорального введения у различных видов животных и человека // Фармакокинетика и фармакодинамика. - 2017. - №3. - С.20- 25.; Шевченко Р.В., Литвин А.А., Колыванов Г.Б., и др. Особенности фармакокинетики оригинального нейролептика дилепта у животных и человека // Экспериментальная и клиническая фармакология. - 2014. - Т77. - №7. - С.23- 26. DOI: https:// doi.org/10.30906/0869-2092-2014-77-7-23-26; https://www.pharmacokinetica.ru/jour/article/view/70

  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20