-
1Academic Journal
Authors: Алена Владимировна Ведерникова, Юрий Иванович Ровда, Василий Витальевич Дадонов, Наталья Николаевна Миняйлова, Ольга Валерьевна Шмакова, Татьяна Сергеевна Хоботкова, Наталья Степановна Черных, Александра Николаевна Деменова, Анна Андреевна Лобыкина
Source: Мать и дитя в Кузбассе, Vol 26, Iss 3, Pp 17-22 (2025)
Subject Terms: антибиотикорезистентность, макроорганизм, фармакокинетика, метаболизм, лекарственные взаимодействия, p-гликопротеин, цитохром p450, Pediatrics, RJ1-570, Gynecology and obstetrics, RG1-991
File Description: electronic resource
-
2Academic Journal
-
3Academic Journal
Source: Эндодонтия Today, Vol 21, Iss 4, Pp 281-286 (2024)
-
4Academic Journal
Authors: A. V. Vlasova, E. E. Yakushina, I. R. Gaziev, O. I. Simonova, U. V. Lukash, D. A. Sychev, А. В. Власова, Е. Е. Якушина, И. Р. Газиев, О. И. Симонова, У. В. Лукаш, Д. А. Сычев
Contributors: The authors express their gratitude to the Sunflower Charitable Foundation for conducting the genetic research, Авторы выражают благодарность Благотворительному фонду «Подсолнух» за проведение генетических исследований
Source: Pharmacogenetics and Pharmacogenomics; № 2 (2025); 40-45 ; Фармакогенетика и фармакогеномика; № 2 (2025); 40-45 ; 2686-8849 ; 2588-0527
Subject Terms: модулятор CFTR, ivacaftor, tezacaftor, elexacaftor, drug interactions, pharmacokinetics, CFTR modulator, ивакафтор, тезакафтор, элексакафтор, лекарственные взаимодействия, фармакокинетика
File Description: application/pdf
Relation: https://www.pharmacogenetics-pharmacogenomics.ru/jour/article/view/332/289; O’Sullivan BP, Freedman SD. Cystic fibrosis. Lancet [Internet]. 2009;373(9678):1891-904.; Purkayastha D, Agtarap K, Wong K, et al. Drug-drug interactions with CFTR modulator therapy in cystic fibrosis: Focus on Trikafta®/Kaftrio®. J Cyst Fibros. 2023 May;22(3):478-483. doi:10.1016/j.jcf.2023.01.005.; Müller F, Fromm MF. Transporter-mediated drug-drug interactions. Pharmacogenomics. 2011 Jul;12(7):1017-37. doi:10.2217/pgs.11.44.; Darwish MH, Farah RA, Farhat GN, et al. Association of CYP3A4/5 genotypes and expression with the survival of patients with neuroblastoma. Mol Med Rep. 2015 Feb;11(2):1462-8. doi:10.3892/mmr.2014.2835.; Kameyama Y, Yamashita K, Kobayashi K, et al. Functional characterization of SLCO1B1 (OATP-C) variants, SLCO1B1*5, SLCO1B1*15 and SLCO1B1*15+C1007G, by using transient expression systems of HeLa and HEK293 cells. Pharmacogenet Genomics. 2005 Jul;15(7):513-22. doi:10.1097/01.fpc.0000170913.73780.5f.; Singkham N, Avihingsanon A, Thammajaruk N, et al. Influence of CYP3A5 and SLCO1B1 polymorphisms on atazanavir/r concentrations in Thai HIV-infected patients. Pharmacogenomics. 2019 May;20(7):517-527. doi:10.2217/pgs-2018-0196.
-
5Academic Journal
Authors: S. V. Seleznev, A. V. Shchulkin, P. Yu. Mylnikov, N. V. Enenkov, С. В. Селезнёв, А. В. Щулькин, П. Ю. Мыльников, Н. В. Ененков
Source: Pharmacokinetics and Pharmacodynamics; № 2 (2025); 27-35 ; Фармакокинетика и Фармакодинамика; № 2 (2025); 27-35 ; 2686-8830 ; 2587-7836
Subject Terms: терапевтический лекарственный мониторинг, metoprolol tartrate, pharmacokinetics, therapeutic drug monitoring, метопролола тартрат, фармакокинетика
File Description: application/pdf
Relation: https://www.pharmacokinetica.ru/jour/article/view/457/403; Morris J, Awosika AO, Dunham A. Metoprolol. In: StatPearls. Treasure Island (FL): StatPearls Publishing; February 29, 2024.; Mancia G, Kreutz R, Brunström M, et al. 2023 ESH Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Hypertension: Endorsed by the International Society of Hypertension (ISH) and the European Renal Association (ERA) [published correction appears in J Hypertens. 2024 Jan 1; 42(1):194. doi:10.1097/HJH.0000000000003621.]. J Hypertens. 2023;41(12):1874-2071. doi:10.1097/HJH.0000000000003480.; Чазова И.Е., Жернакова Ю.В. Диагностика и лечение артериальной гипертонии. Системные гипертензии. 2019;16(1):6-31. doi:10.26442/2075082X.2019.1.190179.; Минушкина Л.О., Сидоренко Б.А. Метопролол в лечении артериальной гипертензии. Кардиология. 2003;43(11):102-105.; Prakash A, Markham A. Metoprolol: a review of its use in chronic heart failure. Drugs. 2000 Sep;60(3):647-78. doi:10.2165/00003495-200060030-00011.; Hjalmarson A, Herlitz J, Holmberg S, et al. The Göteborg metoprolol trial. Effects on mortality and morbidity in acute myocardial infarction. Circulation. 1983 Jun;67(6 Pt 2):I26-32.; Intravenous beta-blockade during acute myocardial infarction. Lancet. 1986 Jul 12;2(8498):79-80.; Sleight P. Use of beta adrenoceptor blockade during and after acute myocardial infarction. Annu Rev Med. 1986;37:415-25. doi:10.1146/annurev.me.37.020186.002215.; Lücker P, Moore G, Wieselgren I, et al. Pharmacokinetic and pharmacodynamic comparison of metoprolol CR/ZOK once daily with conventional tablets once daily and in divided doses. J Clin Pharmacol. 1990 Feb;30(S2):S17-27. doi:10.1002/j.1552-4604.1990.tb03491.x.; Regårdh CG, Johnsson G. Clinical pharmacokinetics of metoprolol. Clin Pharmacokinet. 1980 Nov-Dec;5(6):557-69. doi:10.2165/00003088-198005060-00004.; Terra SG, Pauly DF, Lee CR, et al. beta-Adrenergic receptor polymorphisms and responses during titration of metoprolol controlled release/extended release in heart failure. Clin Pharmacol Ther. 2005 Mar;77(3):127-37. doi:10.1016/j.clpt.2004.10.006.; Белоусов Ю.Б., Леонова М.В., Манешина О.А. Метопролол тартрат и сукцинат: от различий в составе соли к клинической эффективности. Российский кардиологический журнал. 2007;(3):81-85.; Laverdière J, Meloche M, Provost S, et al. Pharmacogenomic markers of metoprolol and α-OH-metoprolol concentrations: a genome-wide association study. Pharmacogenomics. 2023 Jun;24(8):441-448. doi:10.2217/pgs-2023-0067.; Brogden RN, Heel RC, Speight TM, Avery GS. Metoprolol: a review of its pharmacological properties and therapeutic efficacy in hypertension and angina pectoris. Drugs. 1977 Nov;14(5):321-48. doi:10.2165/00003495-197714050-00001.; Tarfiei MA, Tabrizi AB, Jouyban A. Trace extraction of metoprolol from plasma, urine and EBC samples using modified magnetic nanoparticles followed by spectrofluorimetric determination for drug monitoring purposes. Curr Pharm Anal. 2020;16(7):844-855. doi:10.2174/1573412915666190328212231.; Houshyar J, Hashemzadeh N, Khoubnasabjafari M, et al. A crosssectional study on metoprolol concentrations in various biological samples and their inter-correlations. BMC Pharmacol Toxicol. 2024 Aug 8;25(1):45. doi:10.1186/s40360-024-00773-3.; Avataneo V, De Nicolò A, Rabbia F, et al. Therapeutic drug monitoringguided definition of adherence profiles in resistant hypertension and identification of predictors of poor adherence. Br J Clin Pharmacol. 2018 Nov;84(11):2535-2543. doi:10.1111/bcp.13706.; Seleznev S, Shchulkin A, Mylnikov P, et al. Therapeutic Drug Monitoring in Arterial Hypertension. J Pers Med. 2023 May 11;13(5):815. doi:10.3390/jpm13050815.; Sutherland JJ, Morrison RD, McNaughton CD, et al. Assessment of Patient Medication Adherence, Medical Record Accuracy, and Medication Blood Concentrations for Prescription and Over-the-Counter Medications. JAMA Netw Open. 2018 Nov 2;1(7):e184196. doi:10.1001/jamanetworkopen.2018.4196.; Ates HC, Roberts JA, Lipman J, et al. On-Site Therapeutic Drug Monitoring. Trends Biotechnol. 2020 Nov;38(11):1262-1277. doi:10.1016/j.tibtech.2020.03.001.; Groenland EH, van Kleef MEAM, Bots ML, et al. Plasma Trough Concentrations of Antihypertensive Drugs for the Assessment of Treatment Adherence: A Meta-Analysis. Hypertension. 2021 Jan;77(1):85-93. doi:10.1161/HYPERTENSIONAHA.120.16061.; Rathore SS, Curtis JP, Wang Y, et al. Association of serum digoxin concentration and outcomes in patients with heart failure. JAMA. 2003 Feb 19;289(7):871-8. doi:10.1001/jama.289.7.871.; Sandberg A, Abrahamsson B, Svenheden A, et al. Steady-state bioavailability and day-to-day variability of a multiple-unit (CR/ZOK) and a single-unit (OROS) delivery system of metoprolol after once-daily dosing. Pharm Res. 1993 Jan;10(1):28-34. doi:10.1023/a:1018960626925; https://www.pharmacokinetica.ru/jour/article/view/457
-
6Academic Journal
Authors: Юрий Иванович Ровда, Ольга Валерьевна Шмакова, Наталья Степановна Черных, Анна Андреевна Лобыкина
Source: Мать и дитя в Кузбассе, Vol 26, Iss 3, Pp 17-22 (2025)
Subject Terms: антибиотикорезистентность, макроорганизм, фармакокинетика, метаболизм, лекарственные взаимодействия, p-гликопротеин, цитохром p450, Pediatrics, RJ1-570, Gynecology and obstetrics, RG1-991
-
7Academic Journal
Authors: Ведерникова, Алена Владимировна, Ровда, Юрий Иванович, Дадонов, Василий Витальевич, Миняйлова, Наталья Николаевна, Шмакова, Ольга Валерьевна, Хоботкова, Татьяна Сергеевна, Черных, Наталья Степановна, Деменова, Александра Николаевна, Лобыкина, Анна Андреевна
Source: Mother and Baby in Kuzbass; № 3 (2025): сентябрь; 17-22 ; Мать и Дитя в Кузбассе; № 3 (2025): сентябрь; 17-22 ; 2542-0968 ; 1991-010X
Subject Terms: antibiotic resistance, macroorganism, pharmacokinetics, metabolism, drug interactions, P-glycoprotein, cytochrome P450, антибиотикорезистентность, макроорганизм, фармакокинетика, метаболизм, лекарственные взаимодействия, P-гликопротеин, цитохром P450
File Description: application/pdf; text/html
Relation: http://mednauki.ru/index.php/MD/article/view/1284/2189; http://mednauki.ru/index.php/MD/article/view/1284/2227; http://mednauki.ru/index.php/MD/article/view/1284
Availability: http://mednauki.ru/index.php/MD/article/view/1284
-
8Academic Journal
Authors: N. N. Eremenko, Н. Н. Еременко
Contributors: This study was conducted by the Scientific Centre for Expert Evaluation of Medicinal Products as part of the applied research funded under State Assignment No. 056-00001-25-00 (R&D Registry No. 124022300127-0), Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 0056-00001-25-00 на проведение прикладных научных исследований (номер государственного учета НИР 124022300127-0)
Source: Safety and Risk of Pharmacotherapy; Том 13, № 1 (2025); 86-93 ; Безопасность и риск фармакотерапии; Том 13, № 1 (2025); 86-93 ; 2619-1164 ; 2312-7821 ; 10.30895/2312-7821-2025-13-1
Subject Terms: фармакокинетика, bioequivalence, food effect, fasted state, fed state, oral medicinal product, absorption, drug safety, regulatory guidance, pharmacokinetics, биоэквивалентность, влияние пищи, состояние натощак, состояние после приема пищи, препарат для приема внутрь, абсорбция, безопасность лекарственных препаратов, нормативное руководство
File Description: application/pdf
Relation: https://www.risksafety.ru/jour/article/view/470/1359; https://www.risksafety.ru/jour/article/downloadSuppFile/470/578; https://www.risksafety.ru/jour/article/downloadSuppFile/470/579; https://www.risksafety.ru/jour/article/downloadSuppFile/470/618; https://www.risksafety.ru/jour/article/downloadSuppFile/470/626; https://www.risksafety.ru/jour/article/downloadSuppFile/470/627; https://www.risksafety.ru/jour/article/downloadSuppFile/470/628; https://www.risksafety.ru/jour/article/downloadSuppFile/470/630; https://www.risksafety.ru/jour/article/downloadSuppFile/470/633; https://www.risksafety.ru/jour/article/downloadSuppFile/470/634; https://www.risksafety.ru/jour/article/downloadSuppFile/470/649; Cheng L, Wong H. Food effects on oral drug absorption: Application of physiologically-based pharmacokinetic modeling as a predictive tool. Pharmaceutics. 2020;12(7):672. https://doi.org/10.3390/PHARMACEUTICS12070672; Sharma S, Kogan C, Varma M, Prasad B. Analysis of the interplay of physiological response to food intake and drug properties in food-drug interactions. Drug Metab Pharmacokinet. 2023;53:100518. https://doi.org/10.1016/j.dmpk.2023.100518; Benet LZ. Solubility-permeability interplay in facilitating the prediction of drug disposition routes, extent of absorption, food effects, brain penetration and drug induced liver injury potential. J Pharm Sci. 2023;112(9):2326–31. https://doi.org/10.1016/j.xphs.2023.07.006; Zou P, Vaidyanathan J, Tran D, Raines C, Chatterjee P, Madabushi R, Seo SK. Predicting food effects on oral extended-release drug products: A retrospective evaluation. AAPS J. 2023;25(3):33. https://doi.org/10.1208/s12248-023-00804-7; Sahu GK, Gupta C. Exploration of solubilization strategies: Enhancing bioavailability for low solubility drugs. International Journal of Newgen Research in Pharmacy & Healthcare. 2023;1(2):96–115. https://doi.org/10.61554/ijnrph.v1i2.2023.50; Bocci G, Oprea TI, Benet LZ. State of the art and uses for the Biopharmaceutics Drug Disposition Classification System (BDDCS): New additions, revisions, and citation references. AAPS J. 2022;24(2):37. https://doi.org/10.1208/s12248-022-00687-0; DeHaven WI, Conner D. The effects of food on drug bioavailability and bioequivalence. In: Yu LX, Li BV, eds. FDA bioequivalence standards. New York: Springer; 2014. https://doi.org/10.1007/978-1-4939-1252-0_4; O’Shea JP, Holm R, O’Driscoll C, Griffin BT. Food for thought: Formulating away the food effect — a PEARRL review. J Pharm Pharmacol. 2019;71(4):510–35. https://doi.org/10.1111/JPHP.12957; Gupta KR, Dakhole MR, Jinnawar KS, Umekar MJ. Strategies for improving hydrophobic drugs solubility and bioavailability. Int J Pharm Chem Anal. 2023;10(3):164–74. https://doi.org/10.18231/j.ijpca.2023.029; Wang Z, Bhugra C, Chen S. Formulation approaches to improve oral bioavailability of drugs. In: Hu M, Li X, eds. Oral bioavailability and drug delivery: From basics to advanced concepts and applications. Wiley; 2023. https://doi.org/10.1002/9781119660699.ch28; Bhalani DV, Nutan B, Kumar A, Singh Chandel AK. Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics. Biomedicines. 2022;10(9):2055. https://doi.org/10.3390/biomedicines10092055; Mukeri IH, Reddy MS. Approaches to improve bioavailability and oral absorption of low water-soluble drug by self-emulsifying drug delivery system. GSC Biol Pharm Sci. 2023;22(1):215–29. https://doi.org/10.30574/gscbps.2023.22.1.0034; Kutner A. Recent advances in drug substance development — prodrug strategies for enhancing the bioavailability and potency of antiviral nucleosides. J Med Sci. 2023;93(3):e878. https://doi.org/10.20883/medical.e878; Dash JR, Pattnaik G, Samal HB, Pradhan G, Baral CPK, Behera B, et al. Novel approaches for the enhancement of bioavailability of drugs: An updated review. Curr Drug Discov Technol. 2024:e15701638311058. https://doi.org/10.2174/0115701638311058240806100555; Rocha B, de Morais LA, Viana MC, Carneiro G. Promising strategies for improving oral bioavailability of poor water-soluble drugs. Expert Opin Drug Discov. 2023;18(6):615–27. https://doi.org/10.1080/17460441.2023.2211801; Abbasi A, Hashemi M, Kafil HS, Abbasi Astamal M, Lahouty M, Ghorbani Tajani A, et al. A critical review on the bioavailability promotion of the food bioactive compounds: Nano lipid carriers perspective. Pharm Sci. 2024;30(2):282–303. https://doi.org/10.34172/ps.2024.11; Fernandes EAF, van Oudtshoorn J, Tam A, González LCA, Aurela EG, Potthast H, et al. The bioequivalence study design recommendations for immediate-release solid oral dosage forms in the international pharmaceutical regulators programme participating regulators and organisations: Differences and commonalities. J Pharm Pharm Sci. 2024;27:12398. https://doi.org/10.3389/jpps.2024.12398; Marroum PJ, Nuthalapati S, Parikh A, Shebley M, Hoffman D, Zha J. Industry perspective on standardizing food-effect studies for new drug development. Clin Pharmacokinet. 2018;57(8):901–9. https://doi.org/10.1007/S40262-018-0630-0; https://www.risksafety.ru/jour/article/view/470
-
9Academic Journal
Authors: I. I. Yaichkov, M. K. Korsakov, N. N. Volkhin, V. E. Zaykova, O. E. Lasaraynz, И. И. Яичков, М. К. Корсаков, Н. Н. Вольхин, В. Е. Зайкова, О. Э. Лазарянц
Contributors: The article was prepared within the framework of the State assignment of the Yaroslavl State Pedagogical University named after K. D. Ushinsky for 2024 from the Ministry of Education of the Russian Federation on the topic "Development of a new drug for the treatment of neurodegenerative diseases based on a monoamine oxidase inhibitor" (registry entry number 720000Ф.99.1.БН62АА12000)., Статья подготовлена в рамках государственного задания Ярославского государственного педагогического университета им. К. Д. Ушинского на 2024 год от Минпросвещения РФ по теме «Разработка нового лекарственного средства для лечения нейродегенеративных заболеваний на основе ингибитора моноаминоксидазы» (номер реестровой записи 720000Ф.99.1.БН62АА12000).
Source: Drug development & registration; Принято в печать ; Разработка и регистрация лекарственных средств; Принято в печать ; 2658-5049 ; 2305-2066
Subject Terms: крысы, HPLC-MS/MS, validation, pharmacokinetics, excretion, urine, feces, rats, ВЭЖХ-МС/МС, валидация, фармакокинетика, экскреция, моча, фекалии
File Description: application/pdf
Relation: https://www.pharmjournal.ru/jour/article/view/2054/1387; https://www.pharmjournal.ru/jour/article/downloadSuppFile/2054/2766; Korsakov M. K., Fedorov V. N., Smirnov N. A., Shetnev A. A., Leonova O. V., Volkhin N. N., Andreyev A. I. Screening of anti-inflammatory activity of 4.5-dihydroisoxazol-5-carboxamide (PAR-2 inhibitors) based on formaldehyde oedema model among white lab rats. Research Results in Pharmacology. 2023;9(4):105–111. DOI:10.18413/rrpharmacology.9.10061.; Khokhlov A. L., Yaichkov I. I., Alexeev M. A., Korsakov M. K., Shetnev A. A., Ivanovskiy S. A., Volkhin N. N., Petukhov S. S., Vasilyeva E. A. Identification and synthesis of metabolites of the new 4.5-dihydroisoxazol-5-carboxamide derivate. Research Results in Pharmacology. 2024;10(2):83–95. DOI:10.18413/rrpharmacology.10.482.; Yaichkov I. I., Korsakov M. K., Volkhin N. N., Petukhov S. S., Tyushina A. N., Zaykova V. E., Lasaraynz O. E. Pharmacokinetic study of a new 4,5-dihydroisoxazole-5-carboxamide derivative in rats. Drug development & registration. 2024;13(4):238–250. (In Russ.) DOI:10.33380/2305-2066-2024-13-4-1876.; Letertre M. P. M., Munjoma N., Wolfer K., Pechlivanis A., McDonald J. A. K.,. Hardwick R. N, Cherrington N. J., Coen M., Nicholson J. K., Hoyles L., Swann J. R., Wilson I. D. A Two-Way Interaction between Methotrexate and the Gut Microbiota of Male Sprague−Dawley Rats. Journal of Proteome Research. 2020;19(8):3326−3339. DOI:10.1021/acs.jproteome.0c00230.; Šturm S., Škibin A., Pogačnik M., Cerkvenik-Flajs V. Determination of free and total bisphenol A in the urine and feces of orally and subcutaneously dosed sheep by high-performance liquid chromatography with fluorescence detection. Journal of Environmental Science and Health, Part B. 2020;55(7):655–668. DOI:10.1080/03601234.2020.1759329.; Ma C., Li D., Dang R., Gu Y., Li A., Zhao Y., Qi F., Liu J. Metabolism, pharmacokinetics, and bioavailability of yuanhuacine in rat using LC-MS. Biomedical Chromatography. 2023;37(2):e5540. DOI:10.1002/bmc.5540.; Qiu J., Zhu M., Wang Y., Chen B., Bai R., Chen F., Li Y., Zhou Y., Zhang L. Pharmacokinetic and excretion study of eight active constituents in rat by LC-MS/MS after oral administration of the Toddalia asiatica extract. Analytical Biochemistry. 2022;640:114407. DOI:10.1016/j.ab.2021.114407.; Song C. H., Kim K., Kang E., Jeong B., Lee M.-S., Jung J., Kim T. H., Shin S., Shin B. S. Determination of pharmacokinetics and tissue distribution of a novel lutetium-labeled PSMA-targeted ligand, 177 Lu-DOTA-PSMA-GUL, in rats by using LC–MS/MS. Scientific Reports. 2022;12(1):15452. DOI:10.1038/s41598-022-19700-9.; https://www.pharmjournal.ru/jour/article/view/2054
-
10Academic Journal
Authors: O. D. Gurieva, M. I. Savelyeva, T. T. Valiev, S. R. Varfolomeeva, M. V. Ilyin, О. Д. Гурьева, М. И. Савельева, Т. Т. Валиев, С. Р. Варфоломеева, М. В. Ильин
Contributors: The work was financially supported by the Ministry of Health of Russia. The subject of the state assignment «New pharmacogenetic markers of safety of pharmacotherapy of some socially significant diseases» (EGISU NIOCTR № 1022050400012-9)., Работа выполнена при финансовой поддержке Минздрава России. Тематика государственного задания «Новые фармакогенетические маркеры безопасности фармакотерапии некоторых социально значимых заболеваний» (ЕГИСУ НИОКТР № 1022050400012-9).
Source: Pharmacokinetics and Pharmacodynamics; № 4 (2024); 29-38 ; Фармакокинетика и Фармакодинамика; № 4 (2024); 29-38 ; 2686-8830 ; 2587-7836
Subject Terms: дети, polymorphisms of ABCB1 and SLCO1B1 genes, methotrexate, pharmacokinetics, acute lymphoblastic leukemia, children, полиморфизмы генов ABCB1 и SLCO1B1, метотрексат, фармакокинетика, острый лимфобластный лейкоз
File Description: application/pdf
Relation: https://www.pharmacokinetica.ru/jour/article/view/436/388; Шервашидзе М.А., Валиев Т.Т., Тупицын Н.Н. Перспективы оценки минимальной остаточной болезни в постиндукционном периоде при В-линейном остром лимфобластном лейкозе у детей. Российский журнал детской гематологии и онкологии. 2020;7(2):15-22.; Shervashidze MA, Valiev TT, Tupitsyn NN. Prospects for evaluation of the minimal residual disease in the post-induction period in pediatric B-precursor acute lymphoblastic leukemia. Russian Journal of Pediatric Hematology аnd Oncology. 2020;7(2):15-22. (In Russ.)]. doi:10.21682/2311-1267-2020-7-2-15-22.; Барях Е.А., Валиев Т.Т., Яцков К.В., и соавт. Интенсивная терапия лимфомы Беркитта: описание двух клинических случаев. Гематология и трансфузиология. 2007;52(1):41-43.; Baryakh EA, Yatskov KV, Valiev ТТ, et al. Intensiva care for Burkitts lymphoma: two case reports. Hematology and transfusiology. 2007;52(1):41-43. (In Russ.).; Валиев Т.Т., Шервашидзе М.А., Белышева Т.С. Оценка токсичности терапии острого лимфобластного лейкоза по протоколу ALL IC-bfM 2002. Онкогематология 2022;17(3):137-59.; Valiev TT, Shervashidze MA, Belysheva TS. Toxicity assessment of acute lymphoblastic leukemia treatment protocol ALL IC-bfM 2002. Onkogematologiya = Oncohematology. 2022;17(3):137-59. (In Russ.). doi:10.17650/1818-8346-2022-17-3-137-159.; Коркина Ю.С. Оценка эффективности и токсичности терапии острого лимфобластного лейкоза у детей по протоколу ALL IC-BFM 2009: Дис. . канд. мед. наук. – Москва; 2023.; Korkina YuS. Evaluation of the effectiveness and toxicity of therapy for acute lymphoblastic leukemia in children according to the ALL IC-BFM 2009 protocol. [dissertation] Moscow; 2023. (In Russ.). Доступно по: https://www.dissercat.com/content/otsenka-effektivnosti-i-toksichnosti-terapii-ostrogo-limfoblastnogoleikoza-u-detei-po-proto?ysclid=m3m6gcbnxi143584346. Ссылка активна на 25.10.2024.; Pui CH, Sandlund JT, Pei D, et al. Improved outcome for children with acute lymphoblastic leukemia: results of Total Therapy Study XIIIB at St Jude Children's Research Hospital. Blood. 2004 Nov 1;104(9):2690-6. doi:10.1182/blood-2004-04-1616.; Lopez-Lopez E, Autry RJ, Smith C, et al. Pharmacogenomics of intracellular methotrexate polyglutamates in patients' leukemia cells in vivo. J Clin Invest. 2020 Dec 1;130(12):6600-6615. doi:10.1172/JCI140797.; Mei L, Ontiveros EP, Griffiths EA, et al. Pharmacogenetics predictive of response and toxicity in acute lymphoblastic leukemia therapy. Blood Rev. 2015 Jul;29(4):243-9. doi:10.1016/j.blre.2015.01.001.; Schulte RR, Choi L, Utreja N, et al. Effect of SLCO1B1 Polymorphisms on High-Dose Methotrexate Clearance in Children and Young Adults With Leukemia and Lymphoblastic Lymphoma. Clin Transl Sci. 2021 Jan;14(1): 343-353. doi:10.1111/cts.12879.; Maamari D, El-Khoury H, Saifi O, et al. Implementation of Pharmacogenetics to Individualize Treatment Regimens for Children with Acute Lymphoblastic Leukemia. Pharmgenomics Pers Med. 2020 Aug 12;13:295-317. doi:10.2147/PGPM.S239602.; Radtke S, Zolk O, Renner B, et al. Germline genetic variations in methotrexate candidate genes are associated with pharmacokinetics, toxicity, and outcome in childhood acute lymphoblastic leukemia. Blood. 2013 Jun 27;121(26):5145-53. doi:10.1182/blood-2013-01-480335.; Zgheib NK, Akra-Ismail M, Aridi C, et al. Genetic polymorphisms in candidate genes predict increased toxicity with methotrexate therapy in Lebanese children with acute lymphoblastic leukemia. Pharmacogenet Genomics. 2014 Aug;24(8):387-96. doi:10.1097/FPC.0000000000000069.; Lopez-Lopez E, Martin-Guerrero I, Ballesteros J, Garcia-Orad A. A systematic review and meta-analysis of MTHFR polymorphisms in methotrexate toxicity prediction in pediatric acute lymphoblastic leukemia. Pharmacogenomics J. 2013 Dec;13(6):498-506. doi:10.1038/tpj.2012.44.; Treviño LR, Shimasaki N, Yang W, et al. Germline genetic variation in an organic anion transporter polypeptide associated with methotrexate pharmacokinetics and clinical effects. J Clin Oncol. 2009 Dec 10;27(35):5972-8. doi:10.1200/JCO.2008.20.4156.; Razali RH, Noorizhab MNF, Jamari H, et al. Association of ABCC2 with levels and toxicity of methotrexate in Malaysian Childhood Acute Lymphoblastic Leukemia (ALL). Pediatr Hematol Oncol. 2020 Apr;37(3): 185-197. doi:10.1080/08880018.2019.1705949.; Gregers J, Gréen H, Christensen IJ, et al. Polymorphisms in the ABCB1 gene and effect on outcome and toxicity in childhood acute lymphoblastic leukemia. Pharmacogenomics J. 2015 Aug;15(4):372-9. doi:10.1038/tpj.2014.81.; Cheng Y, Chen MH, Zhuang Q, et al. Genetic factors involved in delayed methotrexate elimination in children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2021 May;68(5):e28858. doi:10.1002/pbc.28858.; Song Z, Hu Y, Liu S, et al. The Role of Genetic Polymorphisms in High-Dose Methotrexate Toxicity and Response in Hematological Malignancies: A Systematic Review and Meta-Analysis. Front Pharmacol. 2021 Oct 21;12:757464. doi:10.3389/fphar.2021.757464.; Maagdenberg H, Oosterom N, Zanen J, et al. Genetic variants associated with methotrexate-induced mucositis in cancer treatment: A systematic review and meta-analysis. Crit Rev Oncol Hematol. 2021 May;161:103312. doi:10.1016/j.critrevonc.2021.103312.; Yang L, Hu X, Xu L. Impact of methylenetetrahydrofolate reductase (MTHFR) polymorphisms on methotrexate-induced toxicities in acute lymphoblastic leukemia: a meta-analysis. Tumour Biol. 2012 Oct;33(5): 1445-54. doi:10.1007/s13277-012-0395-2.; Liu SG, Gao C, Zhang RD, et al. Polymorphisms in methotrexate transporters and their relationship to plasma methotrexate levels, toxicity of high-dose methotrexate, and outcome of pediatric acute lymphoblastic leukemia. Oncotarget. 2017 Jun 6;8(23):37761-37772. doi:10.18632/oncotarget.17781.; Yang FF, Xue TL, Gao C, et al. Effects of SLCO1B1 on elimination and toxicities of high-dose methotrexate in pediatric acute lymphoblastic leukemia. Pharmacogenomics. 2022 Oct;23(15):821-834. doi:10.2217/pgs-2022-0098.; Hao Q, Song Y, Fang Q, et al. Effects of genetic polymorphisms on methotrexate levels and toxicity in Chinese patients with acute lymphoblastic leukemia. Blood Sci. 2022 Nov 11;5(1):32-38. doi:10.1097/BS9.0000000000000142.; Ramsey LB, Panetta JC, Smith C, et al. Genome-wide study of methotrexate clearance replicates SLCO1B1. Blood. 2013 Feb 7;121(6):898-904. doi:10.1182/blood-2012-08-452839.; den Hoed MA, Lopez-Lopez E, te Winkel ML, et al. Genetic and metabolic determinants of methotrexate-induced mucositis in pediatric acute lymphoblastic leukemia. Pharmacogenomics J. 2015 Jun;15(3):248-54. doi:10.1038/tpj.2014.63.; https://www.pharmacokinetica.ru/jour/article/view/436
-
11Academic Journal
Authors: Guţu, I.A., Bacinschi, N.G., Bachinsky, N., Caracaş, A., Cernelev, V.
Source: Sănătate Publică, Economie şi Management în Medicină 102 (5) 126-132
Subject Terms: glucocorticoizi, глюкокортикоиды, farmacocinetica, naştere prematură, preterm birth, boli autoimune, sarcina, fertilitate, Fertility, аутоиммунные заболевания, Фертильность, Pharmacokinetics, autoimmune diseases, pregnancy, фармакокинетика, Glucocorticoids, преждевременные роды, беременность
File Description: application/pdf
Access URL: https://ibn.idsi.md/vizualizare_articol/215784
-
12Academic Journal
Authors: Svyatova, G., Berezina, G., Pashimov, M., Mussagaliyeva, A., Murtazaliyeva, A., Danyarova, L., Rakisheva, A., Nurzhanova, M.
Source: Наука и здравоохранение. :49-58
Subject Terms: GWAS analysis, фармакокинетикасы, SNP, GWAS-анализ. Равновесие Харди-Вайнберга, GWAS талдауы, Hardy-Weinberg equilibrium, 3. Good health, ингибиторы SGLT2, SGLT2 ингибиторлары, фармакогенетика, Харди-Вайнберг тепе-теңдігі, фармакокинетика, pharmacokinetics, SGLT2 inhibitors, pharmacogenetics
-
13Academic Journal
Authors: Lakeev, A. P., Abdrashitova, N. Yu., Bryushinina, O. S., Frelikh, G. A., Tsuran, D. V., Zyuzkova, Yu. G., Udut, Vladimir V.
Source: Pharm Chem J
Pharmaceutical chemistry journal. 2023. Vol. 57, № 1. P. 116-122Subject Terms: высокоэффективная жидкостная хроматография с масс-спектрометрией, венлафаксин, плазма крови человека, Structure of Chemical Compounds, Methods of Analysis and Process Control, фармакокинетика, осельтамивир, 3. Good health
File Description: application/pdf
Linked Full TextAccess URL: https://pubmed.ncbi.nlm.nih.gov/37152765
https://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001017039 -
14Academic Journal
Authors: E. S. Vetrova, P. K. Karnakova, N. S. Bagaeva, K. K. Karnakova, M. O. Popova, A. A. Popova, O. A. Archakova, T. N. Komarov, I. E. Shohin
Source: Разработка и регистрация лекарственных средств, Vol 13, Iss 2, Pp 233-244 (2024)
Subject Terms: validation, bioequivalence, tofacitinib, биоаналитические исследования, валидация, 01 natural sciences, биоэквивалентность, 0104 chemical sciences, Lc-ms/ms, 03 medical and health sciences, 0302 clinical medicine, тофацитиниб, ВЭЖХ-МС/МС, lc-ms/ms, bioanalytical study, HD9665-9675, фармакокинетика, pharmacokinetics, Pharmaceutical industry
-
15Conference
Методика определения сравнительной кинетики растворения для оценки качества лекарственного препарата
Contributors: Слепченко, Галина Борисовна
Subject Terms: лекарственные препараты, оценка качества, сравнительная кинетика, растворение, фармакокинетика
File Description: application/pdf
Access URL: http://earchive.tpu.ru/handle/11683/76701
-
16Academic Journal
Authors: A. P. Pereverzev, O. D. Ostroumova
Source: Качественная клиническая практика, Vol 0, Iss 4, Pp 53-59 (2022)
Subject Terms: лекарственно-индуцированные заболевания, RS1-441, нежелательные реакции, 03 medical and health sciences, лекарственные средства, Pharmacy and materia medica, 0302 clinical medicine, Medical technology, сердечная недостаточность, R855-855.5, фармакокинетика, безопасность, 3. Good health
-
17Academic Journal
Authors: V. Tkachenko, I. Sadovnik
Source: Здоров'я суспільства-Zdorov'a suspil'stva; Том 5, № 3-4 (2016); 96-100
Health of Society; Том 5, № 3-4 (2016); 96-100
Здоровье общества-Zdorov'a suspil'stva; Том 5, № 3-4 (2016); 96-100Subject Terms: ЦД 2 типу, препарати сульфанілсечовини, гліклазид, фармакокінетика, фармакодинаміка, застосування, первинна медична допомога, сімейний лікар, Diabetes mellitus type 2, sulfonylureas, gliclazide, pharmacokinetics, pharmacodynamics, application, primary care, family doctor, СД 2 типа, препараты сульфанилмочевины, гликлазид, фармакокинетика, фармакодинамика, использование, первичная медицинская помощь, семейный врач, 3. Good health
File Description: application/pdf
-
18Academic Journal
Authors: S. A. Doktorova, Yu. Yu. Grabovetskaya, M. Stefanov, V. V. Rafalskiy, С. А. Докторова, Ю. Ю. Грабовецкая, М. Стефанов, В. В. Рафальский
Contributors: This research was supported by funds provided to the Immanuel Kant Baltic Federal University through the Russian Federal Academic Leadership Programme “Priority 2030” (project No. 123102600004-1)., Данная работа была поддержана из средств программы стратегического академического лидерства «Приоритет 2030» БФУ им. И. Канта, научный проект № 123102600004-1.
Source: Safety and Risk of Pharmacotherapy; Том 12, № 3 (2024); 285-298 ; Безопасность и риск фармакотерапии; Том 12, № 3 (2024); 285-298 ; 2619-1164 ; 2312-7821 ; 10.30895/2312-7821-2024-12-3
Subject Terms: нестероидные противовоспалительные препараты, drug interactions, adverse drug reactions, pharmacokinetics, pharmacodynamics, safety, rheumatoid arthritis, disease-modifying antirheumatic drugs, biologicals, proton pump inhibitors, non-steroidal anti-inflammatory drugs, лекарственные взаимодействия, нежелательные реакции, фармакокинетика, фармакодинамика, безопасность лекарственных средств, ревматоидный артрит, базисные противовоспалительные препараты, биологические препараты, ингибиторы протонной помпы
File Description: application/pdf
Relation: https://www.risksafety.ru/jour/article/view/416/1222; https://www.risksafety.ru/jour/article/view/416/1034; https://www.risksafety.ru/jour/article/view/416/1043; https://www.risksafety.ru/jour/article/view/416/1044; https://www.risksafety.ru/jour/article/view/416/1045; https://www.risksafety.ru/jour/article/view/416/1048; https://www.risksafety.ru/jour/article/view/416/1050; https://www.risksafety.ru/jour/article/view/416/1052; https://www.risksafety.ru/jour/article/view/416/1059; https://www.risksafety.ru/jour/article/view/416/1067; https://www.risksafety.ru/jour/article/view/416/1074; https://www.risksafety.ru/jour/article/view/416/1081; https://www.risksafety.ru/jour/article/downloadSuppFile/416/447; https://www.risksafety.ru/jour/article/downloadSuppFile/416/448; https://www.risksafety.ru/jour/article/downloadSuppFile/416/473; Weinblatt ME. Methotrexate in rheumatoid arthritis: a quarter century of development. Trans Am Clin Climatol Assoc. 2013;124:16–25. PMID: 23874006; Насонов ЕЛ, Каратеев ДЕ, Сатыбалдыев АМ, Лучихина ЕЛ, Лукина ГВ, Николенко МВ и др. Ревматоидный артрит в Российской Федерации по данным Российского регистра больных артритом (сообщение I). Научно-практическая ревматология. 2016;54:50–62. https://doi.org/10.14412/1995-4484-2016-50-62; Braun J, Kästner P, Flaxenberg P, Währisch J, Hanke P, Demary W, et al. Comparison of the clinical efficacy and safety of subcutaneous versus oral administration of methotrexate in patients with active rheumatoid arthritis: results of a six-month, multicenter, randomized, double-blind, controlled, phase IV trial. Arthritis Rheum. 2008;58(1):73–81. https://doi.org/10.1002/art.23144; Anghel L-A. Utilization patterns of disease-modifying antirheumatic drugs (DMARDs) in patients with autoimmune rheumatic diseases. Farmacia. 2019;67(1):184–92. https://doi.org/10.31925/farmacia.2019.1.25; Левитан АИ, Решетько ОВ. Реальная клиническая практика фармакотерапии ревматоидного артрита. Клиническая фармакология и терапия. 2019;28(1):44–9. https://doi.org/10.32756/0869-5490-2019-1-44-49; Насонов ЕЛ, Мазуров ВИ, Каратеев ДЕ, Лукина ГВ, Жиляев ЕВ, Амирджанова ВН и др. Проект рекомендаций по лечению ревматоидного артрита Общероссийской общественной организации «Ассоциация ревматологов России» — 2014 (часть 1). Научно-практическая ревматология. 2014;52(5):477–94. https://doi.org/10.14412/1995-4484-2014-477-494; Fraenkel L, Bathon JM, England BR, St Clair EW, Arayssi T, Carandang K, et al. 2021 American College of Rheumatology Guideline for the treatment of rheumatoid arthritis. Arthritis Rheumatol. 2021;73(7):1108–23. https://doi.org/10.1002/acr.24596; Lau CS, Chia F, Dans L, Harrison A, Hsieh TY, Jain R, et al. 2018 update of the APLAR recommendations for treatment of rheumatoid arthritis. Int J Rheum Dis. 2019;22(3):357–75. https://doi.org/10.1111/1756-185x.13513; Smolen JS, Landewé RBM, Bergstra SA, Kerschbaumer A, Sepriano A, Aletaha D, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2022 update. Ann Rheum Dis. 2023;82(1):3–18. https://doi.org/10.1136/ard-2022-223356; Насонов ЕЛ, Амирджанова ВН, Олюнин ЮА, Муравьев ЮВ, Баранов АА, Зонова ЕВ и др. Применение метотрексата при ревматоидном артрите. Рекомендации Общероссийской общественной организации «Ассоциация ревматологов России». Научно-практическая ревматология. 2023;61(4):435–49. https://doi.org/10.47360/1995-4484-2023-435-449; Насонов ЕЛ, Каратеев ДЕ, Чичасова НВ. Новые рекомендации по лечению ревматоидного артрита (EULAR, 2013): место метотрексата. Научно-практическая ревматология. 2015;53(5s):32–50. https://doi.org/10.14412/1995-4484-2015-32-50; Tarp S, Jorgensen TS, Furst DE, Dossing A, Taylor PC, Choy EH, et al. Added value of combining methotrexate with a biological agent compared to biological monotherapy in rheumatoid arthritis patients: a systematic review and meta-analysis of randomised trials. Semin Arthritis Rheum. 2019;48(6):958–66. https://doi.org/10.1016/j.semarthrit.2018.10.002; Silva MF, Ribeiro C, Goncalves VMF, Tiritan ME, Lima A. Liquid chromatographic methods for the therapeutic drug monitoring of methotrexate as clinical decision support for personalized medicine: a brief review. Biomed Chromatogr. 2018;32(5):e4159. https://doi.org/10.1002/bmc.4159; Bagatini F, Blatt CR, Maliska G, Trespash GV, Pereira IA, Zimmermann AF, et al. Potential drug interactions in patients with rheumatoid arthritis. Rev Bras Reumatol. 2011;51(1):20–39. English, Portuguese. PMID: 21412604; Ma SN, Zaman Huri H, Yahya F. Drug-related problems in patients with rheumatoid arthritis. Ther Clin Risk Manag. 2019;15:505–24. https://doi.org/10.2147/TCRM.S194921; Jeong H, Baek SY, Kim SW, Eun YH, Kim IY, Kim H, et al. Comorbidities of rheumatoid arthritis: results from the Korean National Health and Nutrition Examination Survey. PLoS One. 2017;12(4):e0176260. https://doi.org/10.1371/journal.pone.0176260; Bechman K, Clarke BD, Rutherford AI, Yates M, Nikiphorou E, Molokhia M, et al. Polypharmacy is associated with treatment response and serious adverse events: results from the British Society for Rheumatology Biologics Register for Rheumatoid Arthritis. Rheumatology. 2019;58(10):1767–76. https://doi.org/10.1093/rheumatology/kez037; Ye L, Yang-Huang J, Franse CB, Rukavina T, Vasiljev V, Mattace-Raso F, et al. Factors associated with polypharmacy and the high risk of medication-related problems among older community-dwelling adults in European countries: a longitudinal study. BMC Geriatr. 2022;22(1):841. https://doi.org/10.1186/s12877-022-03536-z; Bourré-Tessier J, Haraoui B. Methotrexate drug interactions in the treatment of rheumatoid arthritis: a systematic review. J Rheumatol. 2010;37(7):1416–21. https://doi.org/10.3899/jrheum.090153; Hall JJ, Bolina M, Chatterley T, Jamali F. Interaction between low-dose methotrexate and non-steroidal anti-inflammatory drugs, penicillins, and proton pump inhibitors. Ann Pharmacother. 2016;51(2):163–78. https://doi.org/10.1177/1060028016672035; Pflugbeil S, Böckl K, Pongratz R, Leitner M, Graninger W, Ortner A. Drug interactions in the treatment of rheumatoid arthritis and psoriatic arthritis. Rheumatol Int. 2020;40(4):511–21. https://doi.org/10.1007/s00296-020-04526-3; Leveque D, Santucci R, Gourieux B, Herbrecht R. Pharmacokinetic drug-drug interactions with methotrexate in oncology. Expert Rev Clin Pharmacol. 2011;4(6):743–50. https://doi.org/10.1586/ecp.11.57; Patane M, Ciriaco M, Chimirri S, Ursini F, Naty S, Grembiale RD, et al. Interactions among low dose of methotrexate and drugs used in the treatment of rheumatoid arthritis. Adv Pharmacol Sci. 2013;2013:313858. https://doi.org/10.1155/2013/313858; Desmoulin SK, Hou Z, Gangjee A, Matherly LH. The human proton-coupled folate transporter: biology and therapeutic applications to cancer. Cancer Biol Ther. 2012;13(14):1355–73. https://doi.org/10.4161/cbt.22020; Bedoui Y, Guillot X, Selambarom J, Guiraud P, Giry C, Jaffar-Bandjee MC, et al. Methotrexate an old drug with new tricks. Int J Mol Sci. 2019;20(20).5023. https://doi.org/10.3390/ijms20205023; Bannwarth B, Pehourcq F, Schaeverbeke T, Dehais J. Clinical pharmacokinetics of low-dose pulse methotrexate in rheumatoid arthritis. Clin Pharmacokinet. 1996;30(3):194–210. https://doi.org/10.2165/00003088-199630030-00002; Hoekstra M, Haagsma C, Neef C, Proost J, Knuif A, van de Laar M. Bioavailability of higher dose methotrexate comparing oral and subcutaneous administration in patients with rheumatoid arthritis. J Rheumatol. 2004;31(4):645–8. PMID: 15088287; Bianchi G, Caporali R, Todoerti M, Mattana P. Methotrexate and rheumatoid arthritis: current evidence regarding subcutaneous versus oral routes of administration. Adv Ther. 2016;33(3):369–78. https://doi.org/10.1007/s12325-016-0295-8; Maksimovic V, Pavlovic-Popovic Z, Vukmirovic S, Cvejic J, Mooranian A, Al-Salami H, et al. Molecular mechanism of action and pharmacokinetic properties of methotrexate. Mol Biol Rep. 2020;47(6):4699–708. https://doi.org/10.1007/s11033-020-05481-9; Bezabeh S, Mackey AC, Kluetz P, Jappar D, Korvick J. Accumulating evidence for a drug–drug interaction between methotrexate and proton pump inhibitors. Oncologist. 2012;17(4):550–4. https://doi.org/10.1634/theoncologist.2011-0431; Inoue K, Yuasa H. Molecular basis for pharmacokinetics and pharmacodynamics of methotrexate in rheumatoid arthritis therapy. Drug Metab Pharmacokinet. 2014;29(1):12–9. https://doi.org/10.2133/dmpk.dmpk-13-rv-119; Seideman P, Beck O, Eksborg S, Wennberg M. The pharmacokinetics of methotrexate and its 7-hydroxy metabolite in patients with rheumatoid arthritis. Br J Clin Pharmacol. 1993;35(4):409–12. https://doi.org/10.1111/j.1365-2125.1993.tb04158.x; Lima A, Sousa H, Monteiro J, Azevedo R, Medeiros R, Seabra V. Genetic polymorphisms in low-dose methotrexate transporters: current relevance as methotrexate therapeutic outcome biomarkers. Pharmacogenomics. 2014;15(12):1611–35. https://doi.org/10.2217/pgs.14.116; Mikkelsen TS, Thorn CF, Yang JJ, Ulrich CM, French D, Zaza G, et al. PharmGKB summary: methotrexate pathway. Pharmacogenet Genomics. 2011;21(10):679–86. https://doi.org/10.1097/FPC.0b013e328343dd93; Валиев ТТ, Семенова ВВ, Иконникова АЮ, Петрова АА, Белышева ТС, Наседкина ТВ. Роль фармакогенетических факторов в развитии побочных эффектов метотрексата при лечении злокачественных опухолей. Современная онкология. 2021;23(4):622–7. https://doi.org/10.26442/18151434.2021.4.201127; Murakami T, Mori N. Involvement of multiple transporters-mediated transports in mizoribine and methotrexate pharmacokinetics. Pharmaceuticals (Basel). 2012;5(8):802–36. https://doi.org/10.3390/ph5080802; Chabner BA, Allegra CJ, Curt GA, Clendeninn NJ, Baram J, Koizumi S, et al. Polyglutamation of methotrexate. Is methotrexate a prodrug? J Clin Invest. 1985;76(3):907–12. https://doi.org/10.1172/JCI112088; Neuman MG, Cameron RG, Haber JA, Katz GG, Malkiewicz IM, Shear NH. Inducers of cytochrome P450 2E1 enhance methotrexate-induced hepatocytoxicity. Clin Biochem. 1999;32(7):519–36. https://doi.org/10.1016/s0009-9120(99)00052-1; Thyss A, Milano G, Kubar J, Namer M, Schneider M. Clinical and pharmacokinetic evidence of a life-threatening interaction between methotrexate and ketoprofen. Lancet. 1986;1(8475):256–8. https://doi.org/10.1016/s0140-6736(86)90786-5; Ушкалова ЕА, Зырянов СК, Бутранова ОИ, Самсонова КИ. Метамизол натрия: регуляторный статус в разных странах мира, проблемы безопасности и ошибки применения. Безопасность и риск фармакотерапии. 2022;10(4):396–410. https://doi.org/10.30895/2312-7821-2022-10-4-396-410; Nozaki Y, Kusuhara H, Kondo T, Iwaki M, Shiroyanagi Y, Nakayama H, et al. Species difference in the inhibitory effect of nonsteroidal anti-inflammatory drugs on the uptake of methotrexate by human kidney slices. J Pharmacol Exp Ther. 2007;322(3):1162–70. https://doi.org/10.1124/jpet.107.121491; Glynn-Barnhart AM, Erzurum SC, Leff JA, Martin RJ, Cochran JE, Cott GR, Szefler SJ. Effect of low-dose methotrexate on the disposition of glucocorticoids and theophylline. J Allergy Clin Immunol. 1991;88(2):180–6. https://doi.org/10.1016/0091-6749(91)90326-j; Okada M, Fujii H, Suga Y, Morito S, Okada M, Nishigami J, et al. Drug interaction between methotrexate and salazosulfapyridine in Japanese patients with rheumatoid arthritis. J Pharm Health Care Sci. 2017;3:7. https://doi.org/10.1186/s40780-017-0073-z; Ronchera CL, Hernández T, Peris JE, Torres F, Granero L, Jiménez NV, Plá JM. Pharmacokinetic interaction between high-dose methotrexate and amoxycillin. Ther Drug Monit. 1993;15(5):375–9. https://doi.org/10.1097/00007691-199310000-00004; Al-Quteimat OM, Al-Badaineh MA. Methotrexate and trimethoprim-sulphamethoxazole: extremely serious and life-threatening combination. J Clin Pharm Ther. 2013;38(3):203–5. https://doi.org/10.1111/jcpt.12060; Hamid M, Lashari B, Ahsan I, Micaily I, Sarwar U, Crocetti J. A deadly prescription: combination of methotrexate and trimethoprim-sulfamethoxazole. J Community Hosp Intern Med Perspect. 2018;8(3):149–51. https://doi.org/10.1080/20009666.2018.1466598; Haider L, Sharif S, Hasan A, McFarlane IM. Low-dose methotrexate toxicity in the setting of vancomycin-induced acute kidney injury. Am J Med Case Rep. 2020;8(7):206–9. PMID: 32775622; Reid T, Yuen A, Catolico M, Carlson RW. Impact of omeprazole on the plasma clearance of methotrexate. Cancer Chemother Pharmacol. 1993;33(1):82–4. https://doi.org/10.1007/BF00686028; Tröger U, Stötzel B, Martens-Lobenhoffer J, Gollnick H, Meyer FP. Drug points: severe myalgia from an interaction between treatments with pantoprazole and methotrexate. BMJ. 2002;324(7352):1497. https://doi.org/10.1136/bmj.324.7352.1497; Bannwarth B, Labat L, Moride Y, Schaeverbeke T. Methotrexate in rheumatoid arthritis. An update. Drugs. 1994;47(1):25–50. https://doi.org/10.2165/00003495-199447010-00003; Miller DR, Letendre PW, DeJong DJ, Fiechtner JJ. Methotrexate in rheumatoid arthritis: an update. Pharmacotherapy. 1986;6(4):170–8. https://doi.org/10.1002/j.1875-9114.1986.tb03472.x; Kawase A, Yamamoto T, Egashira S, Iwaki M. Stereoselective inhibition of methotrexate excretion by glucuronides of nonsteroidal anti-inflammatory drugs via multidrug resistance proteins 2 and 4. J Pharmacol Exp Ther. 2016;356(2):366–74. https://doi.org/10.1124/jpet.115.229104; Frenia ML, Long KS. Methotrexate and nonsteroidal antiinflammatory drug interactions. Ann Pharmacother. 1992;26(2):234–7. https://doi.org/10.1177/106002809202600219; van Roon EN, van de Laar MA. Methotrexate bioavailability. Clin Exp Rheumatol. 2010;28(5 Suppl 61):S27–32. PMID: 21044430; Grim J, Chládek J, Martínková J. Pharmacokinetics and pharmacodynamics of methotrexate in non-neoplastic diseases. Clin Pharmacokinet. 2003;42(2):139–51. https://doi.org/10.2165/00003088-200342020-00003; Wang W, Zhou H, Liu L. Side effects of methotrexate therapy for rheumatoid arthritis: a systematic review. Eur J Med Chem. 2018;158:502–16. https://doi.org/10.1016/j.ejmech.2018.09.027; Gremese E, Alivernini S, Tolusso B, Zeidler MP, Ferraccioli G. JAK inhibition by methotrexate (and csDMARDs) may explain clinical efficacy as monotherapy and combination therapy. J Leukoc Biol. 2019;106(5):1063–8. https://doi.org/10.1002/JLB.5RU0519-145R; Hasko G, Cronstein B. Regulation of inflammation by adenosine. Front Immunol. 2013;4:85. https://doi.org/10.3389/fimmu.2013.00085; Friedman B, Cronstein B. Methotrexate mechanism in treatment of rheumatoid arthritis. Joint Bone Spine. 2019;86(3):301–7. https://doi.org/10.1016/j.jbspin.2018.07.004; Thomas S, Fisher KH, Snowden JA, Danson SJ, Brown S, Zeidler MP. Methotrexate is a JAK/STAT pathway inhibitor. PLoS One. 2015;10(7):e0130078. https://doi.org/10.1371/journal.pone.0130078; Chinnaiya K, Lawson MA, Thomas S, Haider MT, Down J, Chantry AD, et al. Low-dose methotrexate in myeloproliferative neoplasm models. Haematologica. 2017;102(9):e336–e9. https://doi.org/10.3324/haematol.2017.165738; Solipuram V, Mohan A, Patel R, Ni R. Effect of Janus kinase inhibitors and methotrexate combination on malignancy in patients with rheumatoid arthritis: a systematic review and meta-analysis of randomized controlled trials. Auto Immun Highlights. 2021;12(1):8. https://doi.org/10.1186/s13317-021-00153-5; Panja S, Khatua DK, Halder M. Simultaneous binding of folic acid and methotrexate to human serum albumin: insights into the structural changes of protein and the location and competitive displacement of drugs. ACS Omega. 2018;3(1):246–53. https://doi.org/10.1021/acsomega.7b01437; Liu Y, Zhou S, Nissel J, Wu A, Lau H, Palmisano M. The pharmacokinetic effect of coadministration of apremilast and methotrexate in individuals with rheumatoid arthritis and psoriatic arthritis. Clin Pharmacol Drug Dev. 2014;3(6):456–65. https://doi.org/10.1002/cpdd.109; Tanaka Y, Suzuki M, Nakamura H, Toyoizumi S, Zwillich SH, Tofacitinib Study I. Phase II study of tofacitinib (CP-690,550) combined with methotrexate in patients with rheumatoid arthritis and an inadequate response to methotrexate. Arthritis Care Res (Hoboken). 2011;63(8):1150–8. https://doi.org/10.1002/acr.20494; Payne C, Zhang X, Shahri N, Williams W, Cannady E. AB0492 Evaluation of potential drug–drug interactions with baricitinib. Annals of the Rheumatic Diseases. 2015;74(Suppl 2):1063. https://doi.org/10.1136/annrheumdis-2015-eular.1627; Hazlewood GS, Barnabe C, Tomlinson G, Marshall D, Devoe DJ, Bombardier C. Methotrexate monotherapy and methotrexate combination therapy with traditional and biologic disease modifying anti-rheumatic drugs for rheumatoid arthritis: a network meta-analysis. Cochrane Database Syst Rev. 2016;2016(8):CD010227. https://doi.org/10.1002/14651858.CD010227.pub2; Xu Z, Davis HM, Zhou H. Clinical impact of concomitant immunomodulators on biologic therapy: pharmacokinetics, immunogenicity, efficacy and safety. J Clin Pharmacol. 2015;55 Suppl 3:S60–74. https://doi.org/10.1002/jcph.380; Schaeverbeke T, Truchetet ME, Kostine M, Barnetche T, Bannwarth B, Richez C. Immunogenicity of biologic agents in rheumatoid arthritis patients: lessons for clinical practice. Rheumatology (Oxford). 2016;55(2):210–20. https://doi.org/10.1093/rheumatology/kev277; Iwaki M, Shimada H, Irino Y, Take M, Egashira S. Inhibition of methotrexate uptake via organic anion transporters OAT1 and OAT3 by glucuronides of nonsteroidal anti-inflammatory drugs. Biol Pharm Bull. 2017;40(6):926–31. https://doi.org/10.1248/bpb.b16-00970; Tracy TS, Krohn K, Jones DR, Bradley JD, Hall SD, Brater DC. The effects of a salicylate, ibuprofen, and naproxen on the disposition of methotrexate in patients with rheumatoid arthritis. Eur J Clin Pharmacol. 1992;42(2):121–5. https://doi.org/10.1007/BF00278469; Stewart CF, Fleming RA, Arkin CR, Evans WE. Coadministration of naproxen and low-dose methotrexate in patients with rheumatoid arthritis. Clin Pharmacol Ther. 1990;47(4):540–6. https://doi.org/10.1038/clpt.1990.69; Skeith KJ, Russell AS, Jamali F, Coates J, Friedman H. Lack of significant interaction between low dose methotrexate and ibuprofen or flurbiprofen in patients with arthritis. J Rheumatol. 1990;17(8):1008–10. PMID: 2213774; Combe B, Edno L, Lafforgue P, Bologna C, Bernard JC, Acquaviva P, et al. Total and free methotrexate pharmacokinetics, with and without piroxicam, in rheumatoid arthritis patients. Br J Rheumatol. 1995;34(5):421–8. https://doi.org/10.1093/rheumatology/34.5.421; Hubner G, Sander O, Degner FL, Turck D, Rau R. Lack of pharmacokinetic interaction of meloxicam with methotrexate in patients with rheumatoid arthritis. J Rheumatol. 1997;24(5):845–51. PMID: 9150070; Iqbal MP, Baig JA, Ali AA, Niazi SK, Mehboobali N, Hussain MA. The effects of non-steroidal anti-inflammatory drugs on the disposition of methotrexate in patients with rheumatoid arthritis. Biopharm Drug Dispos. 1998;19(3):163–7. https://doi.org/10.1002/(sici)1099-081x(199804)19:33.0.co;2-l; Karim A, Tolbert DS, Hunt TL, Hubbard RC, Harper KM, Geis GS. Celecoxib, a specific COX-2 inhibitor, has no significant effect on methotrexate pharmacokine tics in patients with rheumatoid arthritis. J Rheumatol. 1999;26(12):2539–43. PMID: 10606360; Hartmann SN, Rordorf CM, Milosavljev S, Branson JM, Chales GH, Juvin RR, et al. Lumiracoxib does not affect methotrexate pharmacokinetics in rheumatoid arthritis patients. Ann Pharmacother. 2004;38(10):1582–7. https://doi.org/10.1345/aph.1E044; Schwartz JI, Agrawal NG, Wong PH, Miller J, Bachmann K, Marbury T, ey al. Examination of the effect of increasing doses of etoricoxib on oral methotrexate pharmacokinetics in patients with rheumatoid arthritis. J Clin Pharmacol. 2009;49(10):1202–9. https://doi.org/10.1177/0091270009338939; Каратеев АЕ, Ермакова ЮА, Березюк АН, Соловьева ЕС. Метотрексат и ингибиторы протонной помпы — имеется ли негативное фармакологическое взаимодействие? Научно-практическая ревматология. 2013;51(6):662–5. https://doi.org/10.14412/1995-4484-2013-662-5; Joerger M, Huitema AD, van den Bongard HJ, Baas P, Schornagel JH, Schellens JH, Beijnen JH. Determinants of the elimination of methotrexate and 7-hydroxy-methotrexate following high-dose infusional therapy to cancer patients. Br J Clin Pharmacol. 2006;62(1):71–80. https://doi.org/10.1111/j.1365-2125.2005.02513.x; Vakily M, Amer F, Kukulka MJ, Andhivarothai N. Coadministration of lansoprazole and naproxen does not affect the pharmacokinetic profile of methotrexate in adult patients with rheumatoid arthritis. J Clin Pharmacol. 2005;45(10):1179–86. https://doi.org/10.1177/0091270005280100; Shimada T, Nishimura Y, Funada Y, Takenaka K, Kobayashi K, Urata Y, et al. [A case of Pneumocystis carinii pneumonia associated with low dose methotrexate treatment for rheumatoid arthritis and trimethoprim-sulphamethoxazole induced pancytopenia]. Arerugi. 2004;53(6):575–81. PMID: 15247519; Blum R, Seymour JF, Toner G. Significant impairment of high-dose methotrexate clearance following vancomycin administration in the absence of overt renal impairment. Ann Oncol. 2002;13(2):327–30. https://doi.org/10.1093/annonc/mdf021; Tobon GJ, Canas C, Jaller JJ, Restrepo JC, Anaya JM. Serious liver disease induced by infliximab. Clin Rheumatol. 2007;26(4):578–81. https://doi.org/10.1007/s10067-005-0169-y; Garces S, Demengeot J, Benito-Garcia E. The immunogenicity of anti-TNF therapy in immune-mediated inflammatory diseases: a systematic review of the literature with a meta-analysis. Ann Rheum Dis. 2013;72(12):1947–55. https://doi.org/10.1136/annrheumdis-2012-202220; Cohen S, Zwillich SH, Chow V, Labadie RR, Wilkinson B. Co-administration of the JAK inhibitor CP-690,550 and methotrexate is well tolerated in patients with rheumatoid arthritis without need for dose adjustment. Br J Clin Pharmacol. 2010;69(2):143–51. https://doi.org/10.1111/j.1365-2125.2009.03570.x; Zhu T, Moy S, Valluri U, Cao Y, Zhang W, Sawamoto T, et al. Investigation of potential drug–drug interactions between peficitinib (ASP015K) and methotrexate in patients with rheumatoid arthritis. Clin Drug Investig. 2020;40(9):827–38. https://doi.org/10.1007/s40261-020-00937-z; Gnjidic D, Le Couteur DG, Hilmer SN. Discontinuing drug treatments. BMJ. 2014;349:g7013. https://doi.org/10.1136/bmj.g7013; Akkara Veetil BM, Bongartz T. Perioperative care for patients with rheumatic diseases. Nat Rev Rheumatol. 2011;8(1):32–41. https://doi.org/10.1038/nrrheum.2011.171; Park JK, Kim MJ, Choi Y, Winthrop K, Song YW, Lee EB. Effect of short-term methotrexate discontinuation on rheumatoid arthritis disease activity: post-hoc analysis of two randomized trials. Clin Rheumatol. 2020;39(2):375–9. https://doi.org/10.1007/s10067-019-04857-y; Lee J, Singh N, Gray SL, Makris UE. Optimizing medication use in older adults with rheumatic musculoskeletal diseases: deprescribing as an approach when less may be more. ACR Open Rheumatol. 2022;4(12):1031–41. https://doi.org/10.1002/acr2.11503; Сычев ДА, Остроумова ОД, Переверзев АП, Кочетков АИ, Остроумова ТМ, Клепикова МВ, Эбзеева ЕЮ. Пожилой и старческий возраст пациентов как фактор риска развития лекарственно-индуцированных заболеваний. Безопасность и риск фармакотерапии. 2021;9(1):15–24. https://doi.org/10.30895/2312-7821-2021-9-1-15-24; Garfinkel D, Mangin D. Feasibility study of a systematic approach for discontinuation of multiple medications in older adults: addressing polypharmacy. Arch Inter Med. 2010;170(18): 1648–54. https://doi.org/10.1001/archinternmed.2010.355; Park JK, Lee MA, Lee EY, Song YW, Choi Y, Winthrop KL, Lee EB. Effect of methotrexate discontinuation on efficacy of seasonal influenza vaccination in patients with rheumatoid arthritis: a randomised clinical trial. Ann Rheum Dis. 2017;76(9):1559–65. https://doi.org/10.1136/annrheumdis-2017-211128; Гриднева ГИ, Муравьев ЮВ, Лучихина ЕЛ, Демидова НВ, Каратеев ДЕ. Вопросы оптимизации терапии метотрексатом у больных ревматоидным артритом. Научно-практическая ревматология. 2017;55(1):41–7. https://doi.org/10.14412/1995-4484-2017-41-47; Hu Q, Wang H, Xu T. Predicting hepatotoxicity associated with low-dose methotrexate using machine learning. J Clin Med. 2023;12(4):1599. https://doi.org/10.3390/jcm12041599; Samal L, Khasnabish S, Foskett C, Zigmont K, Faxvaag A, Chang F, et al. Comparison of a voluntary safety reporting system to a global trigger tool for identifying adverse events in an oncology population. J Patient Saf. 2022;18(6):611–6. https://doi.org/10.1097/PTS.0000000000001050; https://www.risksafety.ru/jour/article/view/416
-
19Academic Journal
Authors: T. L. Antonevskaya, A. I. Khalimon, O. V. Mukhortova, M. M. Khodzhibekova, A. I. Nikiforuk, D. D. Zubkov, G. F. Khamadeeva, D. Yu. Khodakova, T. N. Lazutina, I. V. Pylova, A. V. Leontyev, I. P. Aslanidi, Т. Л. Антоневская, А. И. Халимон, О. В. Мухортова, М. М. Ходжибекова, А. И. Никифорук, Д. Д. Зубков, Г. Ф. Хамадеева, Д. Ю. Ходакова, Т. Н. Лазутина, И. В. Пылова, А. В. Леонтьев, И. П. Асланиди
Contributors: this work was not funded., финансирование данной работы не проводилось.
Source: Research and Practical Medicine Journal; Том 11, № 2 (2024); 8-21 ; Research'n Practical Medicine Journal; Том 11, № 2 (2024); 8-21 ; 2410-1893 ; 10.17709/2410-1893-2024-11-2
Subject Terms: мочевой пузырь, prostate-specific membrane antigen, PET/CT, [18F]PSMA-1007, hydration, pharmacokinetics, bladder, простатспецифический мембранный антиген, ПЭТ/КТ, [18F]ПСМА-1007, гидратация, фармакокинетика
File Description: application/pdf
Relation: https://www.rpmj.ru/rpmj/article/view/1011/623; https://www.rpmj.ru/rpmj/article/view/1011/624; https://www.rpmj.ru/rpmj/article/downloadSuppFile/1011/1022; Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, Bray F. Cancer statistics for the year 2020: An overview. Int J Cancer. 2021 Apr 5. https://doi.org/10.1002/ijc.33588 Epub ahead of print.; Злокачественные новообразования в России в 2021 году (заболеваемость и смертность). Под ред. А. Д. Каприна, В. В. Старинского, А. О. Шахзадовой. М.: МНИОИ им. П. А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2022, 252 с. Доступно по: https://oncology-association.ru/wp-content/uploads/2022/11/zlokachestvennye-novoobrazovaniyav-rossii-v-2021-g_zabolevaemost-i-smertnost.pdf. Дата обращения: 16.05.2024.; Wang R, Shen G, Huang M, Tian R. The Diagnostic Role of 18F-Choline, 18F-Fluciclovine and 18F-PSMA PET/CT in the Detection of Prostate Cancer With Biochemical Recurrence: A Meta-Analysis. Front Oncol. 2021 Jun 17;11:684629. https://doi.org/10.3389/fonc.2021.684629; Afshar-Oromieh A, Zechmann CM, Malcher A, Eder M, Eisenhut M, Linhart HG, et al. Comparison of PET imaging with a (68)Ga-labelled PSMA ligand and (18)F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2014 Jan;41(1):11–20. https://doi.org/10.1007/s00259-013-2525-5; Schwenck J, Rempp H, Reischl G, Kruck S, Stenzl A, Nikolaou K, Pfannenberg C, la Fougère C. Comparison of 68Ga-labelled PSMA-11 and 11C-choline in the detection of prostate cancer metastases by PET/CT. Eur J Nucl Med Mol Imaging. 2017 Jan;44(1):92–101. https://doi.org/10.1007/s00259-016-3490-6; Jadvar H, Calais J, Fanti S, Feng F, Greene KL, Gulley JL, et al. Appropriate Use Criteria for Prostate-Specific Membrane Antigen PET Imaging. J Nucl Med. 2022 Jan;63(1):59–68. https://doi.org/10.2967/jnumed.121.263262; Носов Д. А., Волкова М. И., Гладков О. А., Карабина Е. В., Крылов В. В., Матвеев В. Б., и др. Практические рекомендации по лечению рака предстательной железы. Злокачественные опухоли. 2022;12(3s2-1):607–626. https://doi.org/10.18027/2224-5057-2022-12-3s2-607-626; Schaeffer E, Srinivas S, Antonarakis ES, Armstrong AJ, Cheng HH, et al. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). Prostate Cancer. Version 1.2022 – September 10, 2021. Доступно по: www.nccn.org/patients.; Parker C, Castro E, Fizazi K, Heidenreich A, Ost P, Procopio G, et al.; ESMO Guidelines Committee. Electronic address: clinicalguidelines@esmo.org. Prostate cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2020 Sep;31(9):1119–1134. https://doi.org/10.1016/j.annonc.2020.06.011; Trabulsi EJ, Rumble RB, Jadvar H, Hope T, Pomper M, Turkbey B, et al. Optimum Imaging Strategies for Advanced Prostate Cancer: ASCO Guideline. J Clin Oncol. 2020 Jun 10;38(17):1963–1996. https://doi.org/10.1200/jco.19.02757; Mottet N, van den Bergh RCN, Briers E, Van den Broeck T, Cumberbatch MG, De Santis M, et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer-2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur Urol. 2021 Feb;79(2):243–262. https://doi.org/10.1016/j.eururo.2020.09.042; Sanchez-Crespo A. Comparison of Gallium-68 and Fluorine-18 imaging characteristics in positron emission tomography. Appl Radiat Isot. 2013 Jun;76:55–62. https://doi.org/10.1016/j.apradiso.2012.06.034; Giesel FL, Hadaschik B, Cardinale J, Radtke J, Vinsensia M, Lehnert W, et al. F-18 labelled PSMA-1007: biodistribution, radiation dosimetry and histopathological validation of tumor lesions in prostate cancer patients. Eur J Nucl Med Mol Imaging. 2017 Apr;44(4):678–688. https://doi.org/10.1007/s00259-016-3573-4; Cardinale J, Schäfer M, Benešová M, Bauder-Wüst U, Leotta K, Eder M, et al. Preclinical Evaluation of 18F-PSMA-1007, a New Prostate-Specific Membrane Antigen Ligand for Prostate Cancer Imaging. J Nucl Med. 2017 Mar;58(3):425–431. https://doi.org/10.2967/jnumed.116.181768; Giesel FL, Cardinale J, Schäfer M, Neels O, Benešová M, Mier W, et al. (18)F-Labelled PSMA-1007 shows similarity in structure, biodistribution and tumour uptake to the theragnostic compound PSMA-617. Eur J Nucl Med Mol Imaging. 2016 Sep;43(10):1929– 1930. https://doi.org/10.1007/s00259-016-3447-9; Rahbar K, Weckesser M, Ahmadzadehfar H, Schäfers M, Stegger L, Bögemann M. Advantage of 18F-PSMA-1007 over 68Ga-PSMA-11 PET imaging for differentiation of local recurrence vs. urinary tracer excretion. Eur J Nucl Med Mol Imaging. 2018 Jun;45(6):1076–1077. https://doi.org/10.1007/s00259-018-3952-0; Fendler WP, Eiber M, Beheshti M, Bomanji J, Calais J, Ceci F, et al. PSMA PET/CT: joint EANM procedure guideline/SNMMI procedure standard for prostate cancer imaging 2.0. Eur J Nucl Med Mol Imaging. 2023 Apr;50(5):1466–1486. https://doi.org/10.1007/s00259-022-06089-w; Maisto C, Morisco A, de Marino R, Squame E, Porfidia V, D'Ambrosio L, et al. On site production of [18F]PSMA-1007 using different [18F]fluoride activities: practical, technical and economical impact. EJNMMI Radiopharm Chem. 2021 Oct 13;6(1):36. https://doi.org/10.1186/s41181-021-00150-z; Witkowska-Patena E, Giżewska A, Dziuk M, Miśko J, Budzyńska A, Walęcka-Mazur A. Diagnostic performance of 18F-PSMA-1007 PET/CT in biochemically relapsed patients with prostate cancer with PSA levels ≤ 2.0 ng/ml. Prostate Cancer Prostatic Dis. 2020 Jun;23(2):343–348. https://doi.org/10.1038/s41391-019-0194-6; Dang J, Yao Y, Li Y, Tan X, Ye Z, Zhao Y, et al. An exploratory study of unexplained concentration of 18F-PSMA-1007 in the bladder for prostate cancer PET/CT imaging. Front Med (Lausanne). 2023 Aug 31;10:1238333. https://doi.org/10.3389/fmed.2023.1238333; Allach Y, Banda A, van Gemert W, de Groot M, Derks Y, Schilham M, et al. An Explorative Study of the Incidental High Renal Excretion of [18F]PSMA-1007 for Prostate Cancer PET/CT Imaging. Cancers (Basel). 2022 Apr 21;14(9):2076. https://doi.org/10.3390/cancers14092076; Luurtsema G, Pichler V, Bongarzone S, Seimbille Y, Elsinga P, Gee A, Vercouillie J. EANM guideline for harmonisation on molar activity or specific activity of radiopharmaceuticals: impact on safety and imaging quality. EJNMMI Radiopharm Chem. 2021 Oct 9;6(1):34. https://doi.org/10.1186/s41181-021-00149-6; Soeda F, Watabe T, Naka S, Liu Y, Horitsugi G, Neels OC, et al. Impact of 18F-PSMA-1007 Uptake in Prostate Cancer Using Different Peptide Concentrations: Preclinical PET/CT Study on Mice. J Nucl Med. 2019 Nov;60(11):1594–1599. https://doi.org/10.2967/jnumed.118.223479; Christensen EI, Birn H. Megalin and cubilin: multifunctional endocytic receptors. Nat Rev Mol Cell Biol. 2002 Apr;3(4):256–266. https://doi.org/10.1038/nrm778; https://www.rpmj.ru/rpmj/article/view/1011
-
20Academic Journal
Authors: U. D. Filonova, P. K. Karnakova, K. K. Karnakova, M. O. Popova, A. A. Popova, O. A. Archakova, T. N. Komarov, I. E. Shohin, У. Д. Филонова, П. К. Карнакова, К. К. Карнакова, М. О. Попова, А. А. Попова, О. А. Арчакова, Т. Н. Комаров, И. Е. Шохин
Source: Drug development & registration; Том 13, № 1 (2024); 224-240 ; Разработка и регистрация лекарственных средств; Том 13, № 1 (2024); 224-240 ; 2658-5049 ; 2305-2066
Subject Terms: фармакокинетика, DOAC, apixaban, HPLC-MS/MS, validation, COVID-19, pharmacokinetics, НОАК, апиксабан, ВЭЖХ-МС/МС, валидация
File Description: application/pdf
Relation: https://www.pharmjournal.ru/jour/article/view/1759/1254; https://www.pharmjournal.ru/jour/article/view/1759/1300; https://www.pharmjournal.ru/jour/article/downloadSuppFile/1759/2135; Воробьева Н. М., Ткачева О. Н. Антикоагулянтная терапия у пожилых пациентов: дилемма выбора между эффективностью и безопасностью. Медицинский алфавит. 2018;2(16):6–14.; Панченко Е. П. Антитромботическая терапия ишемической болезни сердца: основы, проверенные временем. Терапевтический архив. 2019;91(6):19–24. DOI:10.26442/00403660.2019.06.000296.; Бокарев И. Н., Кондратьева Т. Б. Новые оральные антикоагулянты в клинической практике. Эффективность и проблемы. Клиническая медицина. 2016;94(5):383–387. DOI:10.18821/0023-2149-2016-94-5-383-387.; Van Rein N., Heide-Jørgensen U., Lijfering W. M., Dekkers O. M., Sørensen H. T., Cannegieter S. C. Major bleeding rates in atrial fibrillation patients on single, dual, or triple antithrombotic therapy: results from a Nationwide Danish Cohort Study. Circulation. 2019;139(6):775–786. DOI:10.1161/CIRCULATIONAHA.118.036248.; Cools F., Wollaert B., Vervoort G., Verstraete S., Voet J., Hermans K., Heyse A., De Wolf A., Hollanders G., Boussy T., Anné W., Vercammen J., Faes D., Beutels M., Mairesse G., Purnode Ph., Blankoff I., Vandergoten P., Capiau L., Allu J., Bassand J., Kayani G. Treatment patterns in anticoagulant therapy in patients with newly diagnosed atrial fibrillation in Belgium: results from the GARFIELD-AF registry. Acta Cardiologica. 2018;74(4):309–318. DOI:10.1080/00015385.2018.1494089.; Мелехов А. В., Гендлин Г. Е., Дадашова Э. Ф., Алексеева Е. М., Заиграев И. А., Никитин И. Г. Динамика применения антитромботических препаратов у больных с фибрилляцией предсердий: собственные данные и обзор отечественных регистров. Российский медицинский журнал.2017;23(3):116–126. DOI:10.18821/0869-2106-2017-23-3-116-126.; Груздева А. А., Хохлов А. Л., Ильин М. В. Оральные антикоагулянты в профилактике тромоэмболических осложнений у кардиологических пациентов: анализ применения в Российской Федерации. Качественная клиническая практика. 2020;1:69–79. DOI:10.37489/2588-0519-2020-1-69-79.; Колбин А. С., Касимова А. Р., Гиляревский С. Р. Сравнительный фармакоэкономический анализ применения апиксабана, ривароксабана и дабигатрана для профилактики развития инсульта и эмболий в сосуды большого круга кровообращения у пациентов с неклапанной фибрилляцией предсердий. Качественная клиническая практика. 2022;4:50–59. DOI:10.37489/2588-0519-2022-4-50-59.; Dzudovic J., Sakac M. C., Antunovic M., Repic A., Obradovic S., Djordjevic S., Dzudovic B. Development and validation of LC-MS/MS method for determination of plasma apixaban. Acta Chromatographica. 2022;34(3):332–337. DOI:10.1556/1326.2021.00948.; Levi M., Thachil J., Iba T., Levy J. H. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020;7:e438–e440. DOI:10.1016/S2352-3026(20)30145-9.; Wenzler E., Engineer M. H., Yaqoob M., Benken S. T. Safety and efficacy of apixaban for therapeutic anticoagulation in critically Ill ICU patients with severe COVID-19 respiratory disease. TH Open: Companion Journal to Thrombosis and Haemostasis. 2020;4(04):e376–e382. DOI:10.1055/s-0040-1720962.; Billett H. H., Reyes-Gil M., Szymanski J., Ikemura K., Stahl L. R., Lo Y., Rahman S., Gonzalez-Lugo J. D., Kushnir M., Barouqa M., Golestaneh L., Bellin E. Anticoagulation in COVID-19: effect of enoxaparin, heparin, and apixaban on mortality. Thrombosis and haemostasis. 2020;120(12):1691–1699. DOI:10.1055/s-0040-1720978.; Appiah D., Quinn N. J., Messing E. G., Veltri K. T. Safety and efficacy analysis of apixaban compared to heparins in hospitalized non-critically ill COVID-19 patients. Hospital Pharmacy. 2022;57(6):727–733. DOI:10.1177/00185787221095764.; Pinto D. J., Orwat M. J., Koch S., Rossi K. A., Alexander R. S., Smallwood A., Wong P. C., Rendina A. R., Luettgen J. M., Knabb R. M., He K., Xin B., Wexler R. R., Lam P. Y. Discovery of 1-(4-methoxyphenyl)-7-oxo-6-(4-(2-oxopiperidin-1-yl)phenyl)-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-c]pyridine-3-carboxamide (Apixaban, BMS-562247), a highly potent, selective, efficacious, and orally bioavailable inhibitor of blood coagulation factor Xa. Journal of medicinal chemistry. 2007;50(22):5339–5356. DOI:10.1021/jm070245n.; Luettgen J. M., Knabb R. M., He K., Pinto D. J., Rendina A. R. Apixaban inhibition of factor Xa: microscopic rate constants and inhibition mechanism in purified protein systems and in human plasma. Journal of Enzyme Inhibition and Medicinal Chemistry. 2011;26(4):514–526. DOI:10.3109/14756366.2010.535793.; Byon W., Garonzik S., Boyd R. A., Frost C. E. Apixaban: a clinical pharmacokinetic and pharmacodynamic review. Clinical pharmacokinetics. 2019;58(10):1265–1279. DOI:10.1007/s40262-019-00775-z.; Granger C. B, Alexander J. H, McMurray J. J. V, Lopes R. D., Hylek E. M., Hanna M., Al-Khalidi H. R., Ansell J., Atar D., Avezum A., Bahit M. C., Diaz R., Easton J. D., Ezekowitz J. A., Flaker G., Garcia D., Geraldes M., Gersh B. J., Golitsyn S., Goto S., Hermosillo A. G., Hohnloser S. H., Horowitz J., Mohan P., Jansky P., Lewis B. S., Lopez-Sendon J. L., Pais P., Parkhomenko A., Verheugt F. W. A., Zhu J., Wallentin L. Apixaban versus Warfarin in Patients with Atrial Fibrillation. New England Journal of Medicine. 2011;365(11):981–992. DOI:10.1056/NEJMoa1107039.; Романова М. В., Пузенко Д. В. Некоторые аспекты применения антикоагулянтов при венозных тромбоэмболиях, тромбоэмболии легочной артерии. Фокус на пожилых пациентов. Российский кардиологический журнал. 2022;27(3):97–106. DOI:10.15829/1560-4071-2022-4944.; Hylek E. M., Held C., Alexander J. H., Lopes R. D., De Caterina R., Wojdyla D. M., Huber K., Jansky P., Steg Ph. G., Hanna M., Thomas L., Wallentin L., Granger C. B. Major bleeding in patients with atrial fibrillation receiving apixaban or warfarin: The ARISTOTLE Trial (Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation): Predictors, Characteristics, and Clinical Outcomes. Journal of the American College of Cardiology. 2014;63(20):2141–2147. DOI:10.1016/j.jacc.2014.02.549.; Avezum A., Lopes R. D., Schulte P. J., Lanas F., Gersh B. J., Hanna M., Pais P., Erol C., Diaz R., Bahit M. C., Bartunek J., De Caterina R., Goto S., Ruzyllo W., Zhu J., Granger C. B., Alexander J. H. Apixaban in comparison with warfarin in patients with atrial fibrillation and valvular heart disease: findings from the Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation (ARISTOTLE) Trial. Circulation. 2015;132(8):624–632. DOI:10.1161/CIRCULATIONAHA.114.014807.; Lip G. Y., Keshishian A., Li X., Hamilton M., Masseria C., Gupta K., Luo X., Mardekian J., Friend K., Nadkarni A., Pan X., Baser O., Deitelzweig S. Effectiveness and safety of oral anticoagulants among nonvalvular atrial fibrillation patients: the ARISTOPHANES study. Stroke. 2018;49(12):2933–2944. DOI:10.1161/STROKEAHA.118.020232.; Fralick M., Colacci M., Schneeweiss S., Huybrechts K. F., Lin K. J., Gagne J. J. Effectiveness and safety of apixaban compared with rivaroxaban for patients with atrial fibrillation in routine practice: a cohort study. Annals of internal medicine. 2020;172(7):463–473. DOI:10.7326/M19-2522.; Rutherford O. C. W., Jonasson C., Ghanima W., Söderdahl F., Halvorsen S. Comparison of dabigatran, rivaroxaban, and apixaban for effectiveness and safety in atrial fibrillation: a nationwide cohort study. European Heart Journal-Cardiovascular Pharmacotherapy. 2020;6(2):75–85. DOI:10.1093/ehjcvp/pvz086.; Jeong H.-C., Kim T.-E., Shin K.-H. Quantification of apixaban in human plasma using ultra performance liquid chromatography coupled with tandem mass spectrometry. Translational and Clinical Pharmacology. 2019;27(1):33–41. DOI:10.12793/tcp.2019.27.1.33.; Rodina T. A., Melnikov E. S., Aksenov A. A., Belkov S. A., Sokolov A. V., Prokof’ev A. B., Ramenskaya G. V. Simultaneous Determination of Dabigatran, Rivaroxaban, Apixaban, and Warfarin in Human Blood Serum by HPLC-MS/MS for Therapeutic Drug Monitoring. Pharmaceutical Chemistry Journal. 2022;56(2):289–293. DOI:10.1007/s11094-022-02633-y.; Gouveia F., Bicker J., Santos J., Rocha M., Alves G., Falcão A., Fortuna A. Development, validation and application of a new HPLC-DAD method for simultaneous quantification of apixaban, dabigatran, edoxaban and rivaroxaban in human plasma. Journal of Pharmaceutical and Biomedical Analysis. 2020;181:113109. DOI:10.1016/j.jpba.2020.113109.; Cini M., Legnani C., Padrini R., Cosmi B., Dellanoce C., De Rosa G., Palareti G., Marcucci R., Pengo V., Poli D., Testa S. DOAC plasma levels measured by chromogenic anti-Xa assays and HPLC-UV in apixaban-and rivaroxaban-treated patients from the START-Register. International Journal of Laboratory Hematology. 2020;42(2):214–222. DOI:10.1111/ijlh.13159.; Lindahl S., Dyrkorn R., Spigset O., Hegstad S. Quantification of apixaban, dabigatran, edoxaban, and rivaroxaban in human serum by UHPLC-MS/MS – method development, validation, and application. Therapeutic drug monitoring. 2018;40(3):369. DOI:10.1097/FTD.0000000000000509.; Raghavan N., Frost C. E., Yu Z., He K., Zhang H., Humphreys W. G., Zhang D., Pinto D., Chen S., Bonacorsi S., Wong P. C. Apixaban metabolism and pharmacokinetics after oral administration to humans. Drug metabolism and disposition. 2009;37(1):74–81. DOI:10.1124/dmd.108.023143.; https://www.pharmjournal.ru/jour/article/view/1759