Εμφανίζονται 1 - 20 Αποτελέσματα από 55 για την αναζήτηση '"фаготерапия"', χρόνος αναζήτησης: 0,78δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Πηγή: Epidemiology and Vaccinal Prevention; Том 23, № 6 (2024); 129-136 ; Эпидемиология и Вакцинопрофилактика; Том 23, № 6 (2024); 129-136 ; 2619-0494 ; 2073-3046

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.epidemvac.ru/jour/article/view/2128/1088; Покровская М. П., Каганова Л. С., Морозенко М. А., и др. Лечение ран бактериофагом. М.: Медгиз, 1941. 51 с.; Летаров А. В. История ранних исследований бактериофагов и рождение основных концепций вирусологии. Биохимия. 2020;85(9):1189–1212. DOI:10.31857/S0320972520090031; Горшенин А. В. Участие микробиологов З.В. Ермольевой и Л.М. Якобсон в научной дискуссии о судьбе производства советских холерных бактериофагов в 1967 году. Самарский научный вестник. 2021;10(4):201–207. DOI:10.17816/snv2021104211; Turner PE, Azeredo J, Buurman ET, et al. Addressing the research and development gaps in modern phage therapy. Phage. 2024;5(1):30–39. DOI:10.3389/fphar.2021.699054; Hesse S, Adhya S. Phage therapy in the twenty-first century: facing the decline of the antibiotic era; is it finally time for the age of the phage? Annu Rev Microbiol. 2019;73:155–174. DOI:10.1146/annurev-micro-090817-062535; Alanis AJ. Resistance to antibiotics: are we in the post-antibiotic era? Arch Med Res. 2005;36(6):697–705. DOI:10.1016/j.arcmed.2005.06.009; Kinch MS, Kraft Z, Schwartz T. Antibiotic development: lessons from the past and future opportunities. Pharm Res. 2024;41(5):839–848. DOI:10.1007/s11095-024-03694-2; O’Neill J. Tackling drug-resistant infections globally: final report and recommendations. Review on Antimicrobial Resistance. 2016. 84 p.; GBD 2021 Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance 1990-2021: a systematic analysis with forecasts to 2050. Lancet. 2024;404(10459):1199–1226. DOI:10.1016/ S0140-6736(24)01867-1; Nilsson AS. Pharmacological limitations of phage therapy. Ups J Med Sci. 2019;124(4):218–227. DOI:10.1080/03009734.2019.1688433; Valente L, Prazak J, Que YA, et al. Progress and pitfalls of bacteriophage therapy in critical care: a concise definitive review. Crit Care Explor. 2021;3(3):e0351. DOI:10.1097/ CCE.0000000000000351; Pirnay JP, Verbeken G. Magistral phage preparations: is this the model for everyone? Clin Infect Dis. 2023;77(Suppl 5):S360–S369. DOI:10.1093/cid/ciad481; Yerushalmy O, Braunstein R, Alkalay-Oren S, et al. Towards standardization of phage susceptibility testing: the Israeli phage therapy center «clinical phage microbiology»-a pipeline proposal. Clin Infect Dis. 2023;77(Suppl 5):S337–S351. DOI:10.1093/cid/ciad514; Fedorov E, Samokhin A, Kozlova Y, et al. Short-term outcomes of phage-antibiotic combination treatment in adult patients with periprosthetic hip joint infection. Viruses. 2023;15(2):499. DOI:10.3390/v15020499; Асланов Б. И., Зуева Л. П., Пунченко О. Е., и др. Рациональное применение бактериофагов в лечебной и противоэпидемической практике. Методические рекомендации. Москва, 2022. 32 с.; Hyman P, Abedon ST. Bacteriophage host range and bacterial resistance. Adv Appl Microbiol. 2010;70:217–48. DOI:10.1016/S0065-2164(10)70007-1; Pchelin IM, Smolensky AV, Azarov DV, et al. Lytic spectra of tailed bacteriophages: a systematic review and meta-analysis. Viruses. 2024;16(12):1879. DOI:10.3390/v16121879; Pereira C, Moreirinha C, Lewicka M, et al. Characterization and in vitro evaluation of new bacteriophages for the biocontrol of Escherichia coli. Virus Res. 2017;227:171–182. DOI:10.1016/j.virusres.2016.09.019; Barros J, Melo LDR, Poeta P, et al. Lytic bacteriophages against multidrug-resistant Staphylococcus aureus, Enterococcus faecalis and Escherichia coli isolates from orthopaedic implant-associated infections. Int J Antimicrob Agents. 2019;54(3):329–337. DOI:10.1016/j.ijantimicag.2019.06.007; Pacios O, Fernández-García L, Bleriot I, et al. Phenotypic and genomic comparison of Klebsiella pneumoniae lytic phages: vB_KpnM-VAC66 and vB_KpnM-VAC13. Viruses. 2021;14(1):6. DOI:10.3390/v14010006; Pertics BZ, Kovács T, Schneider G. Characterization of a lytic bacteriophage and demonstration of its combined lytic effect with a K2 depolymerase on the hypervirulent Klebsiella pneumoniae strain 52145. Microorganisms. 2023;11(3):669. DOI:10.3390/microorganisms11030669; Shahin K, Bouzari M, Wang R, et al. Prevalence and molecular characterization of multidrug-resistant Shigella species of food origins and their inactivation by specific lytic bacteriophages. Int J Food Microbiol. 2019;305:108252. DOI:10.1016/j.ijfoodmicro.2019.108252; Pertics BZ, Cox A, Nyúl A, et al. Isolation and characterization of a novel lytic bacteriophage against the K2 capsule-expressing hypervirulent Klebsiella pneumoniae strain 52145, and identification of its functional depolymerase. Microorganisms. 2021;9(3):650. DOI:10.3390/microorganisms9030650; González-Gómez JP, López-Cuevas O, Castro-Del Campo N, et al. Genomic and biological characterization of the novel phages vB_VpaP_AL-1 and vB_VpaS_AL-2 infecting Vibrio parahaemolyticus associated with acute hepatopancreatic necrosis disease (AHPND). Virus Res. 2022;312:198719. DOI:10.1016/j.virusres.2022.198719; Orozco-Ochoa AK, González-Gómez JP, Castro-Del Campo N, et al. Characterization and genome analysis of six novel Vibrio parahaemolyticus phages associated with acute hepatopancreatic necrosis disease (AHPND). Virus Res. 2023;323:198973. DOI:10.1016/j.virusres.2022.198973; Filik K, Szermer-Olearnik B, Wernecki M, et al. The podovirus 80-18 targets the pathogenic American biotype 1B strains of Yersinia enterocolitica. Front Microbiol. 2020;11:1356. DOI:10.3389/fmicb.2020.01356; Essoh C, Vernadet JP, Vergnaud G, et al. Characterization of sixteen Achromobacter xylosoxidans phages from Abidjan, Côte d’Ivoire, isolated on a single clinical strain. Arch Virol. 2020;165(3):725–730. DOI:10.1007/s00705-019-04511-7; Xu J, Zhang R, Yu X, et al. Molecular characteristics of novel phage vB_ShiP-A7 infecting multidrug-resistant Shigella flexneri and Escherichia coli, and its bactericidal effect in vitro and in vivo. Front Microbiol. 2021;12:698962. DOI:10.3389/fmicb.2021.698962; Imklin N, Nasanit R. Characterization of Salmonella bacteriophages and their potential use in dishwashing materials. J Appl Microbiol. 2020;129(2):266–277. DOI:10.1111/jam.14617; Guo M, Gao Y, Xue Y, et al. Bacteriophage cocktails protect dairy cows against mastitis caused by drug resistant Escherichia coli infection. Front Cell Infect Microbiol. 2021;11:690377. DOI:10.3389/fcimb.2021.690377; Liao YT, Sun X, Quintela IA, et al. Discovery of shiga toxin-producing Escherichia coli (STEC)-specific bacteriophages from non-fecal composts using genomic characterization. Front Microbiol. 2019;10:627. DOI:10.3389/fmicb.2019.00627; Fong K, LaBossiere B, Switt AIM, et al. Characterization of four novel bacteriophages isolated from British Columbia for control of non-typhoidal Salmonella in vitro and on sprouting alfalfa seeds. Front Microbiol. 2017;8:2193. DOI:10.3389/fmicb.2017.02193; Ding Y, Huang C, Zhu W, et al. Characterization of a novel Jerseyvirus phage T102 and its inhibition effect on biofilms of multidrug-resistant Salmonella. Virus Res. 2023;326:199054. DOI:10.1016/j.virusres.2023.199054; Turner D, Hezwani M, Nelson S, et al. Characterization of the Salmonella bacteriophage vB_SenS-Ent1. J Gen Virol. 2012;93(Pt 9):2046–2056. DOI:10.1099/vir.0.043331-0; Harada LK, Silva EC, Rossi FP, et al. Characterization and in vitro testing of newly isolated lytic bacteriophages for the biocontrol of Pseudomonas aeruginosa. Future Microbiol. 2022:111–141. DOI:10.2217/fmb-2021-0027; de Melo ACC, da Mata Gomes A, Melo FL, et al. Characterization of a bacteriophage with broad host range against strains of Pseudomonas aeruginosa isolated from domestic animals. BMC Microbiol. 2019;19(1):134. DOI:10.1186/s12866-019-1481-z; Kauppinen A, Siponen S, Pitkаnen T, et al. Phage biocontrol of Pseudomonas aeruginosa in water. Viruses. 2021;13(5):928. DOI:10.3390/v13050928; Ding T, Sun H, Pan Q, et al. Isolation and characterization of Vibrio parahaemolyticus bacteriophage vB_VpaS_PG07. Virus Res. 2020;286:198080. DOI:10.1016/j.virusres.2020.198080; Abedon ST. Information Phage Therapy Research Should Report. Pharmaceuticals (Basel). 2017;10(2):43. DOI:10.3390/ph10020043; Ooi ML, Drilling AJ, Morales S, et al. Safety and tolerability of bacteriophage therapy for chronic rhinosinusitis due to Staphylococcus aureus. JAMA Otolaryngol Head Neck Surg. 2019;145(8):723–729. DOI:10.1001/jamaoto.2019.1191; Wright A, Hawkins CH, Anggård EE, et al. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin Otolaryngol. 2009;34(4):349–57. DOI:10.1111/j.1749-4486.2009.01973.x; https://www.epidemvac.ru/jour/article/view/2128

  3. 3
    Academic Journal

    Συνεισφορές: 1

    Πηγή: Traumatology and Orthopedics of Russia; Vol 30, No 4 (2024); 180-191 ; Травматология и ортопедия России; Vol 30, No 4 (2024); 180-191 ; 2542-0933 ; 2311-2905 ; 10.17816/2311-2905-2024-30-4

    Περιγραφή αρχείου: application/pdf

  4. 4
    Academic Journal

    Πηγή: University as a factor of Modernization of Russia: History and Prospects (to the 55th anniversary of the I.N. Ulyanov ChSU); 241-243 ; Великая Отечественная война в истории народов Поволжья; 241-243

    Περιγραφή αρχείου: text/html

    Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-907830-20-2; https://phsreda.com/e-articles/10575/Action10575-110575.pdf; Дягтерев И.Г. Клинические материалы по лечению гнойных инфекций бактериофагом / И.Г. Дягтерев // Хирургия. – 1944. – №6. – С. 88–89.; Журавлев П.Я. Фаготерапия и фагопрофилактика газовой гангрены / П.Я. Журавлев, Г.А. Кокин, М.П. Покровская // Журнал микробиологии, эпидемиологии и иммунологии. – 1944. – №9. – С. 44–49.; Заева С.П. Анаэробные бактериофаги / С.П. Заева. – М.: Медгиз, 1945. – 56 с.; Кишишева А.А. К вопросу о применении бактериофага в гнойной хирургии / А.А. Кишишева, Г.Н. Фишер // Хирургия. – 1944. – №6. – С. 87–88.; Кованов В.В. Клиника и микрофлора гнойных процессов, леченных бактериофагом / В.В. Кованов, А.С. Каменская // Советская медицина. – 1941. – №9. – С. 20.; Колесов В.И. Бактериологический контроль и фаготерапия в гнойной хирургии / В.И. Колесов. – М.: Изд-во АМН СССР, 1948. – 144 с.; Криницкий Я.М. Материалы к вопросу лечения ран бактериофагом / Я.М. Криницкий // Хирургия. – 1944. – №6. – С. 3–7.; Крисс А.Е. Фагин – комплексный препарат для лечения инфицированных ран с хроническим течением / А.Е. Крисс, З.С. Рябцева // Бюллетень экспериментальной биологии и медицины. – 1944. – Т. 18. Вып. 3. №9. – С. 31–34.; Летаров А.В. История ранних исследований бактериофагов и рождение основных концепций вирусологии / А.В. Летаров // Биохимия. – 2020. – Т. 85. №9. – С. 1189–1212. – DOI 10.31857/S0320972520090031. – EDN AFRAPH; Покровская М.П. Лечение ран бактериофагом / М.П. Покровская, Л.С. Каганова, М.А. Морозенко. – М.; Л.: Медгиз, 1941. – 58 с.; Цулукидзе А.П. Краткое наставление по применению бактериофага при лечении ран / А.П. Цулукидзе. – Тбилиси: Грузмедгиз, 1942. – 26 с.; https://phsreda.com/files/Books/10575/6639d2cd76620.jpg?req=110575; https://phsreda.com/article/110575/discussion_platform

  5. 5
    Academic Journal

    Πηγή: Wounds and wound infections. The prof. B.M. Kostyuchenok journal; Том 10, № 2 (2023); 6-14 ; Раны и раневые инфекции. Журнал имени проф. Б.М. Костючёнка; Том 10, № 2 (2023); 6-14 ; 2500-0594 ; 2408-9613

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.riri.su/jour/article/view/304/302; Vigani A., Culler C. A. Systemic and Local Management of Burn Wounds. Vet Clin North Am Small Anim Pract. 2017; 47 (6): 1149–1163.; Jeschke M. G., van Baar M. E., Choudhry M. A., et al. Burn injury. Nat Rev Dis Primers. 2020; 6 (1): 11.; Tsai S. Y., Lio C. F., Yao W. C., et al. Cost-drivers of medical expenses in burn care management. Burns. 2020; 46 (4): 817–824.; Stewart W. H. New challenges in public health in The United States of America. Bol Oficina Sanit Panam. 1967; 62 (1): 53–56.; Baquero F., Martínez J. L., F. Lanza V., et al. Evolutionary Pathways and Trajectories in Antibiotic Resistance. Clin Microbiol Rev. 2021; 34 (4): e0005019.; Усенко Д. В. Антибиотикиндуцированные изменения микробиома желудочно-кишечного тракта и их коррекция. РМЖ. 2018; 2 (2): 96–99. [Usenko D. V. Antibiotic-induced changes in the microbiome of the gastrointestinal tract and their correction = Usenko D. V. Antibiotik-inducirovannye izmeneniya mikrobioma zheludochno-kishechnogo trakta i ih korrekciya. RMZh. 2018; 2 (2): 96–99. (In Russ.)]; Привольнев В. В., Зубарева Н. А., Каракулина Е. В. Местное лечение раневой инфекции: антисептики или антибиотики? Клиническая микробиология и антимикробная химиотерапия. 2017; 19 (2): 131–138. [Privolnev V. V., Zubareva N. A., Karakulina E. V. Local treatment of wound infection: antiseptics or antibiotics? = Privol’nev V. V., Zubareva N. A., Karakulina E. V. Mestnoye lecheniye ranevoy infektsii: antiseptiki ili antibiotiki? Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya. 2017; 19 (2): 131–138. (In Russ.)]; Schooley R. T., Biswas B., Gill J. J., et al. Development and Use of Personalized Bacteriophage-Based Therapeutic Cocktails To Treat a Patient with a Disseminated Resistant Acinetobacter baumannii Infection. Antimicrob Agents Chemother. 2017; 61 (10): e00954-17.; Ferry T., Kolenda C., Laurent F., et al. Personalized bacteriophage therapy to treat pandrug-resistant spinal Pseudomonas aeruginosa infection. Nat Commun. 2022; 13 (1): 4239.; Azevedo M. M., Pina-Vaz C., Rodrigues A. G. The Role of Phage Therapy in Burn Wound Infections Management: Advantages and Pitfalls. J Burn Care Res. 2022; 43 (2): 336–342.; Edlich R. F., Rodeheaver G. T., Spengler M., et al. Practical bacteriologic monitoring of the burn victim. Clin Plast Surg. 1977; 4 (4): 561–569.; Mayhall C. G. The epidemiology of burn wound infections: then and now. Clin Infect Dis. 2003; 37 (4): 543–550.; Cambiaso-Daniel J., Gallagher J. J., Norbury W. B., et al. Treatment of infection in burn patients. In: Total Burn Care. Herndon D. N., ed. 5th ed. Philadelphia, PA: Elsevier Inc.; 2018. pp. 93–113.; Белобородов В. Б., Голощапов О. В., Гусаров В. Г. и др. Методические рекомендации Российской некоммерческой общественной организации «Ассоциация анестезиологов-реаниматологов», Межрегиональной общественной организации «Альянс клинических химиотерапевтов и микробиологов», Межрегиональной ассоциации по клинической микробиологии и антимикробной химиотерапии (МАКМАХ), общественной организации «Российский Сепсис Форум» «Диагностика и антимикробная терапия инфекций, вызванных полирезистентными штаммами микроорганизмов» (обновление 2022 г.). Вестник анестезиологии и реаниматологии. 2022; 19 (2): 84–114. [Beloborodov V. B., Goloshchapov O. V., Gusarov V. G., et al. Methodological recommendations of the Russian non-profit public Organization “Association of Anesthesiologists-Resuscitators”, Interregional Public Organization “Alliance of Clinical Chemotherapists and Microbiologists”, Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy (MCMAH), public organization “Russian Sepsis Forum” “Diagnostics and antimicrobial therapy of infections caused by polyresistant strains of microorganisms” (update 2022) = Beloborodov V. B., Goloshchapov O. V., Gusarov V. G., i dr. Metodicheskiye rekomendatsii Rossiyskoy nekommercheskoy obshchestvennoy organizatsii “Assotsiatsiya anesteziologov-reanimatologov”, Mezhregional’noy obshchestvennoy organizatsii “Al’yans klinicheskikh khimioterapevtov i mikrobiologov”, Mezhregional’noy assotsiatsii po klinicheskoy mikrobiologii i antimikrobnoy khimioterapii (MAKMAKH), obshchestvennoy organizatsii “Rossiyskiy Sepsis Forum” “Diagnostika i antimikrobnaya terapiya infektsiy, vyzvannykh polirezistentnymi shtammami mikroorganizmov” (obnovleniye 2022 g.). Vestnik anesteziologii i reanimatologii. 2022; 19 (2): 84–114. (In Russ.)]; Li Z., Xie J., Yang J., et al. Pathogenic Characteristics and Risk Factors for ESKAPE Pathogens Infection in Burn Patients. Infect Drug Resist. 2021; 14: 4727–4738.; Babushkina I. V., Bondarenko A. S., Ulyanov V. Y., et al. Biofilm Formation by Gram-Negative Bacteria during Implant-Associated Infection. Bull Exp Biol Med. 2020; 169 (3): 365–368.; Williams M. Wound infections: an overview. Br J Community Nurs. 2021; 26 (6): S22–S25.; Белобородова Н. В., Черненькая Т. В., Богданов М. Б. Алгоритмы антибиотикотерапии в эпоху антибиотикорезистентности. М., 2019. 356 с. [Beloborodova N. V., Chernenkaya T. V., Bogdanov M. B. Algorithms of antibiotic therapy in the era of antibiotic resistance = Beloborodova N. V., CHernen’kaya T. V., Bogdanov M. B. Algoritmy antibiotikoterapii v epohu antibiotikorezistentnosti. M., 2019. 356 s. (In Russ.)]; Ladhani H. A., Yowler C. J., Claridge J. A. Burn Wound Colonization, Infection, and Sepsis. Surg Infect (Larchmt). 2021; 22 (1): 44–48.; Wanis M., Walker S. A. N., Daneman N., et al. Impact of hospital length of stay on the distribution of Gram-negative bacteria and likelihood of isolating a resistant organism in a Canadian burn center. Burns. 2016; 42 (1): 104–111.; Барсук А. Л., Ловцова Л. В., Некаева Е. С. и др. Современное состояние и перспективы антибиотикопрофилактики у пациентов, перенесших ожоговую травму. Саратовский научно-медицинский журнал. 2019; 15 (1): 108–113. [Barsuk A. L., Lovtsova L. V., Nechaeva E. S., et al. The current state and prospects of antibiotic prophylaxis in patients who have suffered a burn injury = Barsuk A. L., Lovcova L. V., Nechaeva E. S. i dr. Sovremennoe sostoyanie i perspektivy antibiotikoprofilaktiki u pacientov, perenesshih ozhogovuyu travmu. Saratovskiy nauchnomedicinskiy zhurnal. 2019; 15 (1): 108–113. (In Russ.)]; Sharma S., Tripathi P. Gut microbiome and type 2 diabetes: where we are and where to go? J Nutr Biochem. 2019; 63: 101–108.; Kim H. J., Lee S. H., Hong S. J. Antibiotics-Induced Dysbiosis of Intestinal Microbiota Aggravates Atopic Dermatitis in Mice by Altered Short-Chain Fatty Acids. Allergy Asthma. Immunol Res. 2020; 12 (1): 137–148.; Lee J. Y., Cevallos S. A., Byndloss M. X., et al. High-Fat Diet and Antibiotics Cooperatively Impair Mitochondrial Bioenergetics to Trigger Dysbiosis that Exacerbates Pre-inflammatory Bowel Disease. Cell Host Microbe. 2020; 28 (2): 273–284.e6.; Ramirez J., Guarner F., Bustos Fernandez L., et al. Antibiotics as Major Disruptors of Gut Microbiota. Front Cell Infect Microbiol. 2020; 10: 572912.; Tomic-Canic M., Burgess J. L., O’Neill K. E., et al. Skin Microbiota and its Interplay with Wound Healing. Am J Clin Dermatol. 2020; 21 (1): 36–43.; Ожоги термические и химические. Ожоги солнечные. Ожоги дыхательных путей. Национальные клинические рекомендации. М., 2021. 179 с. [Thermal and chemical burns. Sun burns. Burns of the respiratory tract = Ozhogi termicheskie i himicheskie. Ozhogi solnechnye. Ozhogi dyhatel’nyh putej. Nacional’nye klinicheskie rekomendacii. M., 2021. 179 s. (In Russ.)]; Cooper M. The cytotoxic effects of commonly used topical antibacterial agents on human fibroblasts and keratinocytes. J Trauma. 1991; 1: 782–784.; Thomas G., Rael L., Bar-Or R. Mechanisms of delayed wound healing by commonly used antiseptics. J Trauma. 2009; 66: 82–91.; Cold F., Olsen N. S., Hansen L. H., et al. Bacteriophage therapy. Ugeskr Laeger. 2020; 182 (27): 01200041.; Асланов Б. И., Зуева Л. П., Пунченко О. Е. и др. Рациональное применение бактериофагов в лечебной и противоэпидемической практике. Методические рекомендации. М., 2022. 32 с. [Aslanov B. I., Zueva L. P., Punchenko O. E., et al. Rational use of bacteriophages in therapeutic and antiepidemic practice = Aslanov B. I., Zueva L. P., Punchenko O. E. i dr. Racional’noe primenenie bakteriofagov v lechebnoy i protivoepidemicheskoy praktike. Metodicheskie rekomendacii. M., 2022. 32 s. (In Russ.)]; Torres-Barceló C. The disparate effects of bacteriophages on antibiotic-resistant bacteria. Emerg Microbes Infect. 2018; 7 (1): 168.; d’Herelle F. Bacteriophage as a Treatment in Acute Medical and Surgical Infections. Bull N Y Acad Med. 1931; 7 (5): 329–348.; Dąbrowska K., Abedon S. T. Pharmacologically Aware Phage Therapy: Pharmacodynamic and Pharmacokinetic Obstacles to Phage Antibacterial Action in Animal and Human Bodies. Microbiol Mol Biol Rev. 2019; 83 (4): e00012-19.; Пасхалова Ю. С. Стратегия комплексного лечения нейроишемической формы синдрома диабетической стопы при критической ишемии и наличии резистентных форм возбудителей гнойной инфекции с применением бактериофагов на примере клинического наблюдения. Раны и раневые инфекции. Журнал им. проф. Б. М. Костючёнка. 2022; 9 (3): 38– 45. [Paskhalova Yu. S. Strategy of complex treatment of the neuroishemic form of diabetic foot syndrome in critical ischemia and the presence of resistant forms of pathogens of purulent infection with the use of bacteriophages on the example of clinical observation = Paskhalova Yu. S. Strategiya kompleksnogo lecheniya neyroishemicheskoy formy sindroma diabeticheskoy stopy pri kriticheskoy ishemii i nalichii rezistentnykh form vozbuditeley gnoynoy infektsii s primeneniyem bakteriofagov na primere klinicheskogo nablyudeniya. Rany i ranevyye infektsii. Zhurnal im. prof. B. M. Kostyuchonka. 2022; 9 (3): 38–45. (In Russ.)]; Jault P., Leclerc T., Jennes S., et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect Dis. 2019; 19 (1): 35–45.; Merabishvili M., Monserez R., van Belleghem J., et al. Stability of bacteriophages in burn wound care products. PLoS One. 2017; 12 (7): e0182121.; Nogueira F., Karumidze N., Kusradze I., et al. Immobilization of bacteriophage in wound-dressing nanostructure. Nanomedicine: Nanotechnology, Biology and Medicine. 2017; 13 (8): 2475–2484.; Cheng W., Zhang Z., Xu R., et al. Incorporation of bacteriophages in polycaprolactone/collagen fibers for antibacterial hemostatic dual-function. J Biomed Mater Res B Appl Biomater. 2018; 106(7): 2588–2595.; Chang R. Y. K., Okamoto Y., Morales S., et al. Hydrogel formulations containing nonionic polymers for topical delivery of bacteriophages. Int J Pharm. 2021; 605: 120850.; Бесчастнов В. В., Юданова Т. Н., Рябков М. Г. и др. Патент № 2687108 C1 Российская Федерация, МПК A61L 15/36, A61K 35/76. Способ профилактики инфекционных процессов при свободной кожной пластике: № 2018139554: заявл. 09.11.2018: опубл. 07.05.2019. [Beschastnov V. V., Yudanova T. N., Ryabkov M. G., et al. Patent No. 2687108 C1 Russian Federation, IPC A61L 15/36, A61K 35/76. Method of prevention of infectious processes with free skin grafting = Patent № 2687108 C1 Rossiyskaya Federatsiya, MPK A61L 15/36, A61K 35/76. Sposob profilaktiki infektsionnykh protsessov pri svobodnoy kozhnoy plastike: № 2018139554: zayavl. 09.11.2018: opubl. 07.05.2019. (In Russ.)]; Międzybrodzki R., Borysowski J., Weber-Dąbrowska B., et al. Clinical aspects of phage therapy. Adv Virus Res. 2012; 83: 73–121.; Alverdy J. C., Hyman N., Gilbert J. Reexamining causes of surgical site infections following elective surgery in the era of asepsis. Lancet Infect Dis. 2020; 20 (3): e38–e43.; Gosain A., Gamelli R. L. Role of the gastrointestinal tract in burn sepsis. J Burn Care Rehabil. 2005; 26 (1): 85–91.; Szermer-Olearnik B., Boratyński J. Removal of endotoxins from bacteriophage preparations by extraction with organic solvents. PLoS One. 2015; 10 (3): e0122672.; Speck P., Smithyman A. Safety and efficacy of phage therapy via the intravenous route. FEMS Microbiol Lett. 2016; 363 (3): fnv242.; Murray C. K. Infections in Burns. J Trauma. 2007; 62 (6 Suppl): S73.; Duan Y., Young R., Schnabl B. Bacteriophages and their potential for treatment of gastrointestinal diseases. Nat Rev Gastroenterol Hepatol. 2022; 19 (2): 135–144.; Danis-Wlodarczyk K., Dąbrowska K., Abedon S. T. Phage Therapy: The Pharmacology of Antibacterial Viruses. Curr Issues Mol Biol. 2021; 40: 81–164.; Zelasko S., Gorski A., Dabrowska K. Delivering phage therapy per os: benefits and barriers. Expert Rev Anti Infect Ther. 2017; 15 (2): 167–179.; Nadareishvili L., Hoyle N., Nakaidze N., et al. Bacteriophage Therapy as a Potential Management Option for Surgical Wound Infections. Phage (New Rochelle). 2020; 1 (3): 158–165.; Luria S. E., Delbruck M. Mutations of bacteria from virus sensitivity to virus resistance. Genetics. 1943; 28: 491–511.; Dennehy J. J. What can phages tell us about host-pathogen coevolution? Int J Evol Biol. 2012: 2012: 396165.; Nepal R., Houtak G., Wormald P. J., et al. Prophage: a crucial catalyst in infectious disease modulation. Lancet Microbe. 2022; 3 (3): e162–e163.; Zhvania P., Hoyle N. S., Nadareishvili L., et al. Phage Therapy in a 16-Year-Old Boywith Netherton Syndrome. Front Med (Lausanne). 2017; 4: 94.; Steele A., Stacey H. J., de Soir S., et al. The Safety and Efficacy of Phage Therapy for Superficial Bacterial Infections: A Systematic Review. Antibiotics (Basel). 2020; 9 (11): 754.; Villarreal L. P. Overall issues of virus and host evolution. In: Viruses and the evolution of life. Washington DC: ASM Press; 2005. p. 383.; Merabishvili M., Pirnay J. P., De Vos D. Guidelines to Compose an Ideal Bacteriophage Cocktail. Methods Mol Biol. 2018; 1693: 99–110.; Бочкарева С. С., Караулов А. В., Алешкин А. В. и др. Методические подходы к оценке некоторых параметров гуморального и клеточного иммунного ответа на бактериофаги. Клиническая лабораторная диагностика. 2019; 64 (4): 237–242. [Bochkareva S. S., Karaulov A. V., Aleshkin A. V., et al. Methodological approaches to the assessment of some parameters of the humoral and cellular immune response to bacteriophages = Bochkareva S. S., Karaulov A. V., Aleshkin A. V. i dr. Metodicheskiye podkhody k otsenke nekotorykh parametrov gumoral’nogo i kletochnogo immunnogo otveta na bakteriofagi. Klinicheskaya laboratornaya diagnostika. 2019; 64 (4): 237–242. (In Russ.)]; Friman V. P., Soanes-Brown D., Sierocinski P., et al. Pre-adapting parasitic phages to a pathogen leads to increased pathogen clearance and lowered resistance evolution with Pseudomonas aeruginosa. J Evolut Biol. 2016; 29: 188–198.; Алешкин А. В., Селькова Е. П., Ершова О. Н. и др. Концепция персонализированной фаготерапии пациентов отделения реанимации и интенсивной терапии, страдающих инфекциями, связанными с оказанием медицинской помощи. Фундаментальная и клиническая медицина. 2018; 3 (2): 66–74. [Aleshkin A. V., Selkova E. P., Ershova O. N., et al. The concept of personalized phage therapy for patients of the intensive care unit and intensive care unit suffering from infections associated with the provision of medical care = Aleshkin A. V., Sel’kova E. P., Ershova O. N. i dr. Kontseptsiya personalizirovannoy fagoterapii patsiyentov otdeleniya reanimatsii i intensivnoy terapii, stradayushchikh infektsiyami, svyazannymi s okazaniyem meditsinskoy pomoshchi. Fundamental’naya i klinicheskaya meditsina. 2018; 3 (2): 66–74 (In Russ.)]; Nair A., Ghugare G. S., Khairnar K. An Appraisal of Bacteriophage Isolation Techniques from Environment. Microb Ecol. 2022; 83 (3): 519–535.; Zhang L., Shen Z., Fang W., et al. Composition of bacterial communities in municipal wastewater treatment plant. Sci Total Environ. 2019; 689: 1181–1191.; https://www.riri.su/jour/article/view/304

  6. 6
    Academic Journal

    Πηγή: Problems of Particularly Dangerous Infections; № 4 (2024); 42-53 ; Проблемы особо опасных инфекций; № 4 (2024); 42-53 ; 2658-719X ; 0370-1069

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.microbe.ru/jour/article/view/2078/1524; Иконникова Н.В. Бактериофаги – вирусы бактерий. Минск: ИВЦ Минфина; 2017. 41 c.; Адамов А.К., Наумшина М.С. Холерные вибрионы. Саратов: Изд-во Сарат. ун-та; 1984. 328 с.; Ломов Ю.М., Сомова А.Г., Кудрякова Т.А. Холерные фаги. Ростов н/Д; 1990. 160 с.; Łusiak-Szelachowska M., Międzybrodzki R., Drulis-Kawa Z., Cater K., Knežević P., Winogradow C., Amaro K., Jończyk-Matysiak E., Weber-Dąbrowska B., Rękas J., Górski A. Bacteriophages and antibiotic interactions in clinical practice: what we have learned so far. J. Biomed. Sci. 2022; 29(1):23. DOI:10.1186/s12929-022-00806-1.; Li X., Hu T., Wei J., He Y., Abdalla A.E., Wang G., Li Y., Teng T. Characterization of a novel bacteriophage Henu2 and evaluation of the synergistic antibacterial activity of phage-antibiotics. Antibiotics (Basel). 2021; 10(2):174. DOI:10.3390/antibiotics10020174.; Li X., He Y., Wang Z., Wei J., Hu T., Si J., Tao G., Zhang L., Xie L., Abdalla A.E., Wang G., Li Y., Teng T. A combination therapy of phages and antibiotics: two is better than one. Int. J. Biol. Sci. 2021; 17(13):3573–82. DOI:10.7150/ijbs.60551.; Drulis-Kawa Z., Majkowska-Skrobek G., Maciejewska B. Bacteriophages and phage-derived proteins – application approa ches. Curr. Med. Chem. 2015; 22(14):1757–73. DOI:10.2174/0929867322666150209152851.; Payne R.J., Jansen V.A. Evidence for a phage prolife ration threshold? J. Virol. 2002; 76(24):13123–4. DOI:10.1128/jvi.76.24.13123-13124.2002.; Alonso J.C., Sarachu A.N., Grau O. DNA gyrase inhibitors block development of Bacillus subtilis bacteriophage SP01. J. Virol. 1981; 39(3):855–60. DOI:10.1128/JVI.39.3.855-860.1981.; Abedon S.T., Thomas-Abedon C., Thomas A., Mazure H. Bacteriophage prehistory: Is or is not Hankin, 1896, a phage reference? Bacteriophage. 2011; 1(3):174–8. DOI:10.4161/bact.1.3.16591.; Летаров А.В. История ранних исследований бактериофагов и рождение основных концепций в вирусологии. Биохимия. 2020; 85(9):1189–212. DOI:10.31857/S0320972520090031.; Горшенин А.В. Участие микробиологов З.В. Ермолье вой и Л.М. Якобсон в научной дискуссии о судьбе производства советских холерных бактериофагов в 1967 году. Самарский научный вестник. 2021; 10(4):201–7. DOI:10.17816/snv2021104211.; Krupovic M., Prangishvili D., Hendrix R.W., Bamford D.H. Genomics of bacterial and archaeal viruses: dynamics within the prokaryotic virosphere. Microbiol. Mol. Biol. Rev. 2011; 75(4):610–35. DOI:10.1128/MMBR.00011-11.; Waldor M.K., Mekalanos J.J. Lysogenic conversion by a filamentous phage encoding cholerae toxin. Science. 1996; 272(5270):1910–4. DOI:10.1126/science.272.5270.1910.; Boyd C.M., Angermeyer A., Hays S.G., Barth Z.K., Patel K.M., Seed K.D. Bacteriophage ICP1: a persistent predator of Vibrio cholerae. Annu. Rev. Virol. 2021; 8(1):285–304. DOI:10.1146/annurev-virology-091919-072020.; Заднова С.П., Плеханов Н.А., Спирина А.Ю., Швиденко И.Г., Савельев В.Н. Выявление фагоиндуцируемых мобильных генетических элементов в штаммах Vibrio cholerae О1 биовара Эль Тор. Проблемы особо опасных инфекций. 2023; 2:112–9. DOI:10.21055/0370-1069-2023-2-112-119.; Giri N. Bacteriophage structure, classification, assembly and phage therapy. Biosci. Biotech. Res. Asia. 2021; 18(2):239–50. DOI:10.13005/bbra/2911.; Ильина Т.С. Нитчатые бактериофаги и их роль в вирулентности и эволюции патогенных бактерий. Молекулярная генетика, микробиология и вирусология. 2015; 1:3–10. DOI:10.3103/S0891416815010036.; Phage Population Dynamics. In: Nicastro J., Wong S., Khazaei Z., Lam P., Blay J., Slavcev R.A. Bacteriophage Applications – Historical Perspective and Future Potential. Part of SpringerBriefs in Biochemistry and Molecular Biology. Springer; 2016. P. 44–5. DOI:10.1007/978-3-319-45791-8_5.; Turner D., Shkoporov A.N., Lood C., Millard A.D., Dutilh B.E., Alfenas-Zerbini P., van Zyl L.J., Aziz R.K., Oksanen H.M., Poranen M.M., Kropinski A.M., Barylski J., Brister J.R., Chanisvili N., Edwards R.A., Enault F., Gillis A., Knezevic P., Krupovic M., Kurtböke I., Kushkina A., Lavigne R., Lehman S., Lobocka M., Moraru C., Moreno Switt A., Morozova V., Nakavuma J., Reyes Muñoz A., Rūmnieks J., Sarkar B.L., Sullivan M.B., Uchiyama J., Wittmann J., Yigang T., Adriaenssens E.M. Abolishment of morphology-based taxa and change to binomial species names: 2022 taxonomy update of the ICTV bacterial viruses subcommittee. Arch. Virol. 2023; 168(2):74. DOI:10.1007/s00705-022-05694-2.; Casjens S.R., Gilcrease E.B. Determining DNA packaging strategy by analysis of the termini of the chromosomes in tailed-bacteriophage virions. Methods Mol. Boil. 2009; 502:91–111. DOI:10.1007/978-1-60327-565-1_7.; Shen X., Zhang J., Xu J., Du P., Pang B., Li J., Kan B. The resistance of Vibrio cholerae O1 El Tor Strains to the typing phage 919TP, a member of K139 phage family. Front. Microbiol. 2016; 7:726. DOI:10.3389/fmicb.2016.00726.; LeGault K.N., Hays S.G., Angermeyer A., McKitterick A.C., Johura F.T., Sultana M., Ahmed T., Alam M., Seed K.D. Temporal shifts in antibiotic resistance elements govern phage-pathogen conflicts. Science. 2021; 373(6554):eabg2166. DOI:10.1126/science.abg2166.; Catalão M.J., Gil F., Moniz-Pereira J., São-José C., Pimentel M. Diversity in bacterial lysis systems: bacteriophages show the way. FEMS Microbiol. Rev. 2013; 37(4):554–71. DOI:10.1111/1574-6976.12006.; Hays S.G., Seed K.D. Dominant Vibrio cholerae phage exhibits lysis inhibition sensitive to disruption by a defensive phage satellite. Elife. 2020; 9:e53200. DOI:10.7554/eLife.53200.; Loh B., Kuhn A., Leptihn S. The fascinating biology behind phage display: filamentous phage assembly. Mol. Microbiol. 2019; 111(5):1132–8. DOI:10.1111/mmi.14187.; Rakonjac J., Bennett N.J., Spagnuolo J., Gagic D., Russel M. Filamentous bacteriophage: biology, phage display and nanotechno logy applications. Curr. Issues Mol. Biol. 2011; 13(2):51–76.; Смирнова Н.И., Кульшань Т.А., Челдышова Н.Б., Осин А.В. Структурные и функциональные изменения генома возбудителя холеры в водной среде. Эпидемиология и инфекционные болезни. 2007; 5:22–8.; Pathania A., Hopper C., Pandi A., Függer M., Nowak T., Kushwaha M. A synthetic communication system uncovers extracellular immunity that self-limits bacteriophage transmission. bioRxiv. 2022; 5(11):1–29. DOI:10.1101/2022.05.11.491355.; Lenski R.E. Dynamics of interactions between bacteria and virulent bacteriophage. In: Marshall K.C., editor. Advances in Microbial Ecology. 1988. Vol. 10. P. 1–44. DOI:10.1007/978-1-4684-5409-3_1.; Davis B.M., Kimsey H.H., Kane A.V., Waldor M.K. A sa tellite phage-encoded antirepressor induces repressor aggregation and cholera toxin gene transfer. EMBO J. 2002; 21(16):4240–9. DOI:10.1093/emboj/cdf427.; Zingl F.G., Kohl P., Cakar F., Leitner D.R., Mitterer F., Bonnington K.E., Rechberger G.N., Kuehn M.J., Guan Z., Reidl J., Schild S. Outer membrane vesiculation facilitates surface exchange and in vivo adaptation of Vibrio cholerae. Cell Host Microbe. 2020; 27(2):225–237.e8. DOI:10.1016/j.chom.2019.12.002.; Barth Z.K., Silvas T.V., Angermeyer A., Seed K.D. Genome replication dynamics of a bacteriophage and its satellite reveal stra tegies for parasitism and viral restriction. Nucleic Acids Res. 2020; 48(1):249–63. DOI:10.1093/nar/gkz1005.; Заднова С.П., Плеханов Н.А., Спирина А.Ю., Челдышова Н.Б. Анализ антифаговых систем в штаммах Vibrio cholerae O1 биовара Эль Тор. Здоровье населения и среда обитания – ЗНиСО. 2023; 31(11):94–100. DOI:10.35627/2219-5238/2023-31-11-94-100.; Goldfarb T., Sberro H., Weinstock E., Cohen O., Doron S., Charpak-Amikam Y., Afik S., Ofir G., Sorek R. BREX is a novel phage resistance system widespread in microbial genomes. EMBO J. 2015; 34(2):169–83. DOI:10.15252/embj.201489455.; Lopatina A., Tal N., Sorek R. Abortive infection: bacterial suicide as an antiviral immune strategy. Annu. Rev. Virol. 2020; 7(1):371–84. DOI:10.1146/annurev-virology-011620-040628.; Barth Z.K., Nguyen M.H., Seed K.D. A chimeric nuclease substitutes a phage CRISPR-Cas system to provide sequence-specific immunity against subviral parasites. Elife. 2021; 10:e68339. DOI:10.7554/eLife.68339.; Petrov V.M., Ratnayaka S., Nolan J.M., Miller E.S., Karam J.D. Genomes of the T4-related bacteriophages as windows on microbial genome evolution. Virol. J. 2010; 7:292. DOI:10.1186/1743-422X-7-292.; Seed K.D., Yen M., Shapiro B.J., Hilaire I.J., Charles R.C., Teng J.E., Camilli A. Evolutionary consequences of intra-patient phage predation on microbial populations. Elife. 2014; 3:e03497. DOI:10.7554/eLife.03497.; Погожова М.П., Гаевская Н.Е., Водопьянов А.С., Писанов Р.В., Аноприенко А.О., Романова Л.В., Тюрина А.В. Биологические свойства и генетическая характеристика экспериментальных диагностических бактериофагов Vibrio cholerae. Журнал микробиологии, эпидемиологии и иммунобиологии. 2021; 98(3):290–7. DOI:10.36233/0372-9311-39.; Погожова М.П., Гаевская Н.Е., Тюрина А.В., Аноприенко А.О. Создание коллекции фагов патогенных вибрионов и ее применение в диагностических и профилактических целях. Вестник биотехнологии и физико-химической биологии имени Ю.А. Овчинникова. 2023; 19(3):37–45.; CDC. Laboratory methods for the diagnosis of Vibrio cholerae. [Электронный ресурс]. URL: https://stacks.cdc.gov/view/cdc/52473/cdc_52473_DS1.pdf?download-document-submit=Download (дата обращения 27.02.2024).; Остроумова Н.М., Мороз В.П., Караваева Т.Б., Коровкина Г.И., Грачева И.В. Внутривидовая дифференциация Vibrio cholerae по иммунотипу их умеренных фагов на токсигенные (Vct+ ) и нетоксигенные (Vсt – ) варианты. Журнал микробиологии, эпидемиологии и иммунобиологии. 1993; 4:116–20.; Chattopadhyay D.J., Sarkar B.L., Ansari M.Q., Chakrabarti B.K., Roy M.K., Ghosh A.N., Pal S.C. New phage typing scheme for Vibrio cholerae O1 biotype El Tor strains. J. Clin. Microbiol. 1993; 31(6):1579–85. DOI:10.1128/jcm.31.6.1579-1585.1993.; Sarkar B.L., De S.P., Saha M.R., Niyogi S.K., Roy M.K. Validity of new phage typing scheme against Vibrio cholerae 01 biotype ElTor strains. Indian J. Med. Res. 1994; 99:159–61.; Gao S., Wu S., Liu B. Characteristics of typing phages of Vibrio cholerae biotype El Tor. Fu Huo Luan Zi Liao Hui Bian. 1984; 4:237–45.; Chakrabarti A.K., Ghosh A.N., Nair G.B., Niyogi S.K., Bhattacharya S.K., Sarkar B.L. Development and evaluation of a phage typing scheme for Vibrio cholerae O139. J. Clin. Microbiol. 2000; 38(1):44–9. DOI:10.1128/JCM.38.1.44-49.2000.; Rowe B., Frost J.A. Vibrio phages and phage-typing. In: Barua D., Greenough W.B., editors. Cholera. Part of Current Topics in Infectious Disease. Springer, Boston, MA; 1992. P. 95–105. DOI:10.1007/978-1-4757-9688-9_5.; Yen M., Camilli A. Mechanisms of the evolutionary arms race between Vibrio cholerae and Vibriophage clinical isolates. Int. Microbiol. 2017; 20(3):116–20. DOI:10.2436/20.1501.01.292.; Планкина З.А., Никонов А.Г., Саямов Р.М., Котлярова Р.И. Борьба с холерой в Афганистане. Журнал микробиологии, эпидемиологии и иммунобиологии. 1961; 32:202–4.; Monsur K.A., Rahman M.A., Huq F., Islam M.N., Northrup R.S., Hirschhorn N. Effect of massive doses of bacteriophage on excretion of vibrios, duration of diarrhoea and output of stools in acute cases of cholera. Bull. World Health Organ. 1970; 42(5):723–32.; Marcuk L.M., Nikiforov V.N., Scerbak J.F., Levitov T.A., Kotljarova R.I., Naumsina M.S., Dovydov S.U., Monsur K.A., Rahman M.A., Latif M.A., Northrup R.S., Cash R.A., Huq I., Dey C.R., Phillips R.A. Clinical studies of the use of bacteriophage in the treatment of cholera. Bull. World Health Organ. 1971; 45(1):77–83.; Jaiswal A., Koley H., Ghosh A., Palit A., Sarkar B. Efficacy of cocktail phage therapy in treating Vibrio cholerae infection in rabbit model. Microbes Infect. 2013; 15(2):152–6. DOI:10.1016/j.micinf.2012.11.002.; Bhandare S., Colom J., Baig A., Ritchie J.M., Bukhari H., Shah M.A., Sarkar B.L., Su J., Wren B., Barrow P., Atterbury R.J. Reviving phage therapy for the treatment of cholera. J. Infect. Dis. 2019; 219(5):786–94. DOI:10.1093/infdis/jiy563.; Chakrabarti A.K., Biswas A., Tewari D.N., Mondal P.P., Dutta S. Phage types of Vibrio cholerae O1 biotype ElTor strains isolated from India during 2012–2017. J. Glob. Infect. Dis. 2020; 12(2):94–100. DOI:10.4103/jgid.jgid_42_19.; Бочкарева С.С., Алешкин А.В., Ершова О.Н., Новикова Л.И., Караулов А.В., Киселева И.А., Зулькарнеев Э.Р., Рубальский Е.О., Зейгарник М.В. Гуморальный иммунный ответ на бактериофаги на фоне фаготерапии инфекций, связанных с оказанием медицинской помощи (ИСМП). Инфекционные болезни. 2017; 15(1):35–40. DOI:10.20953/1729-9225-2017-1-35-40.; Решение Совета Евразийской экономической комиссии от 3 ноября 2016 года № 89 «Об утверждении Правил проведения исследований биологических лекарственных средств Евразийского экономического союза». [Электронный ресурс]. URL: https://www.garant.ru/products/ipo/prime/doc/71446406/#review (дата обращения 26.02.2024).; Тюрина А.В., Гаевская Н.Е., Селянская Н.А., Егиазарян Л.А., Погожова М.П., Головин С.Н., Пасюкова Н.И. Активность препарата бактериофагов в отношении антибиотикорезистентных штаммов холерных вибрионов. Антибиотики и химиотерапия. 2018; 63(7-8):29–32.; Аноприенко А.О., Тюрина А.В., Гаевская Н.Е., Погожова М.П. Создание экспериментального профилактического препарата на основе холерных бактериофагов. Вестник биотехнологии и физико-химической биологии имени Ю.А. Овчинникова. 2020; 16(3):10–3.; Иванова И.А., Гаевская Н.Е., Тюрина А.В., Омельченко Н.Д., Филиппенко А.В., Труфанова А.А. Способ профилактики холеры с помощью бактериофагов. Патент РФ № 2783000, опубл. 08.11.2022. Бюл. № 31.; https://journal.microbe.ru/jour/article/view/2078

  7. 7
    Academic Journal

    Συνεισφορές: This study was conducted by the Scientific Centre for Expert Evaluation of Medicinal Products as part of the applied research funded under State Assignment No. 056-00026-24-01 (R&D Registry No. 124022200103-5), Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00026-24-01 на проведение прикладных научных исследований (номер государственного учета НИР № 124022200103-5)

    Πηγή: Biological Products. Prevention, Diagnosis, Treatment; Том 24, № 3 (2024); 322-334 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 24, № 3 (2024); 322-334 ; 2619-1156 ; 2221-996X ; 10.30895/2221-996X-2024-24-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/602/917; https://www.biopreparations.ru/jour/article/downloadSuppFile/602/1040; Cooper CJ, Khan Mirzaei M, Nilsson AS. Adapting drug approval pathways for bacteriophage-based therapeutics. Front Microbiol. 2016;7:1209. https://doi.org/10.3389/fmicb.2016.01209; Pirnay JP, Ferry T, Resch G. Recent progress toward the implementation of phage therapy in Western medicine. FEMS Microbiol Rev. 2022;46(1):fuab040 https://doi.org/10.1093/femsre/fuab040; Hall AR, Vos DD, Friman V-P, Pirnay J-P, Buckling A. Effects of sequential and simultaneous applications of bacteriophages on populations of Pseudomonas aeruginosa in vitro and in wax moth larvae. Appl Environ Microbiol. 2012;78(16):5646–52. https://doi.org/10.1128/aem.00757-12; Schooley RT, Biswas B, Gill JJ, Hernandez-Morales A, Lancaster J, Lessor L. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob Agents Chemother. 2017;61(10):e00954–17. https://doi.org/10.1128/AAC.00954-17; Verbeken G, Pirnay JP, Lavigne R, Jennes S, De Vos D, Casteels M, Huys I. Call for a dedicated European legal framework for bacteriophage therapy. Arch Immunol Ther Exp. 2014;62(2):117–29. https://doi.org/10.1007/s00005-014-0269-y; Pirnay JP, Verbeken G, Rose T, Jennes S, Zizi M, Huys I, et al. Introducing yesterday’s phage therapy in today’s medicine. Future Virol. 2012;7(4):379–90. https://doi.org/10.2217/fvl.12.24; Van Nieuwenhuyse B, Van der Linden D, Chatzis O, Lood C, Wagemans J, Lavigne R, et al. Bacteriophage-antibiotic combination therapy against extensively drug-resistant Pseudomonas aeruginosa infection to allow liver transplantation in a toddler. Nat Commun. 2022;13(1):5725. https://doi.org/10.1038/s41467-022-33294-w; Gill JJ, Hyman P. Phage choice, isolation, and preparation for phage therapy. Curr Pharm Biotechnol. 2010;11(1):2–14. https://doi.org/10.2174/138920110790725311; Glonti T, Pirnay JP. In vitro techniques and measurements of phage characteristics that are important for phage therapy success. Viruses. 2022;14(7):1490. https://doi.org/10.3390/v14071490; Carlton RM. Phage therapy: past history and future prospects. Arch Immunol Ther Exp. 1999;47(5):267–74. PMID: 10604231; Egido JE, Costa AR, Aparicio-Maldonado C, Haas PJ, Brouns SJJ. Mechanisms and clinical importance of bacteriophage resistance. FEMS Microbiol Rev. 2022;46(1):fuab048. https://doi.org/10.1093/femsre/fuab048; Pirnay JP, De Vos D, Verbeken G, Merabishvili M, Chanishvili N, Vaniichoutte M, et al. The phage therapy paradigm: preˆt-a`-porter or sur-mesure? Pharm Res. 2011;28(4):934–7. https://doi.org/10.1007/s11095-010-0313-5; Mattey M, Spencer J. Bacteriophage therapy — cooked goose or phoenix rising? Curr Opin Biotechnol. 2008;19(6):608–12. https://doi.org/10.1016/j.copbio.2008.09.001; Wouters OJ, McKee M, Luyten J. Estimated research and development investment needed to bring a new medicine to market, 2009–2018. JAMA. 2020;323(9):844–53. https://doi.org/10.1001/jama.2020.1166; Jault P, Leclerc T, Jennes S, Pirnay JP, Que Y-A, Resch G, et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect Dis. 2019;19(1):35–45. https://doi.org/10.1016/S1473-3099(18)30482-1; Servick K. Drug development. Beleaguered phage therapy trial presses on. Science. 2016;352(6293):1506. https://doi.org/10.1126/science.352.6293.1506; Merabishvili M, De Vos D, Verbeken G, Kropinski AM, Vandenheuvel D, Lavigne R, et al. Selection and characterization of a candidate therapeutic that lyses the Escherichia coli O104:H4 strain from the 2011 outbreak in Germany. PLoS One. 2012;7(12):e52709. https://doi.org/10.1371/journal.pone.0052709; Henein A. What are the limitations on the wider thera peutic use of phage? Bacteriophage. 2013;3(2):e24872. https://doi.org/10.4161/bact.24872; Verbeken G, Pirnay JP, De Vos D, Jennes S, Zizi M, Lavigne R, et al. Optimizing the European regulatory frame-work for sustainable bacteriophage therapy in human medicine. Arch Immunol Ther Exp (Warsz). 2012;60(3):161–72. https://doi.org/10.1007/s00005-012-0175-0; Fauconnier A. Regulating phage therapy: the biolog ical master file concept could help to overcome regulatory challenge of personalized medicines. EMBO Rep. 2017;18(2):198–200. https://doi.org/10.15252/embr.201643250; Shapiro SZ. The HIV/AIDS vaccine researchers’ orientation to the process of preparing a US FDA application for an investigational new drug (IND): what it is all about and how you start by preparing for your pre-IND meeting. Vaccine. 2002;20(9–10):1261–80. https://doi.org/10.1016/s0264-410x(01)00453-4; Aslam S, Yung G, Dan J, Reed S, LeFebvre M, Logan C, et al. Bacteriophage treatment in a lung transplant recipient. J Heart Lung Transplant. 2018;37(4):S155–6. https://doi.org/10.1016/j.healun.2018.01.376; Chan BK, Turner PE, Kim S, Mojibian HR, Elefteriades JA, Narayan D. Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evol Med Public Health. 2018;(1):60–6. https://doi.org/10.1093/emph/eoy005; Furr CLL, Lehman SM, Morales SP, Rosas FX, Gaidamaka A, Bilinsky IP, et al. P084 bacteriophage treatment of multidrug-resistant Pseudomonas aeruginosa pneumonia in a cystic fibrosis patient. J Cyst Fibros. 2018;17:S83. https://doi.org/10.1016/S1569-1993(18)30381-3; LaVergne S, Hamilton T, Biswas B, Kumaraswamy M, Schooley RT, Wooten D. Phage therapy for a multidrugresistant Acinetobacter baumannii craniectomy site infection. Open Forum Infect Dis. 2018;5(4):ofy064. https://doi.org/10.1093/ofid/ofy064; Greene J, Goldberg RB. Isolation and preliminary characterization of lytic and lysogenic phages with wide host range within the streptomycetes. J Gen Microbiol. 1985;131(9):2459–65. https://doi.org/10.1099/00221287-131-9-2459; Harshey RK. Phage Mu. In: Calendar R, ed. The bacteriophages. Boston: Springer; 1988.; Yarmolinsky MB, Sternberg N. Bacteriophage P. In: Calen dar R, ed. The bacteriophages. Boston: Springer;1988.; Jensen EC, Schrader HS, Rieland B, Thompson TL, Lee KW, Nickerson KW, Kokjohn TA. Prevalence of broad-host-range lytic bacteriophages of Sphaerotilus natans, Escherichia coli, and Pseudomonas aeruginosa. Appl Environ Microbiol. 1998;64(2):575–80. https://doi.org/10.1128/AEM.64.2.575-580.1998; Pantucek R, Rosypalova A, Doskar J, Kailerova J, Ruzicko va V, Borecka P, et al. The polyvalent staphylococcal phage phi 812: its host-range mutants and related phages. Virology. 1998;246(2):241–52. https://doi.org/10.1006/viro.1998.9203; Khan MA, Satoh H, Katayama H, Kurisu F, Mino T. Bacteriophages isolated from activated sludge processes and their polyvalency. Water Res. 2002;36(13):3364–70. https://doi.org/10.1016/s0043-1354(02)00029-5; Sullivan MB, Waterbury JB, Chisholm SW. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature. 2003;424(6952):1047–51. https://doi.org/10.1038/nature01929; O’Flaherty S, Ross RP, Meaney W, Fitzgerald GF, Elbreki MF, Coffey A. Potential of the polyvalent anti-Staphylococcus bacteriophage K for control of antibiotic-resistant staphylococci from hospitals. Appl Environ Microbiol. 2005;71(4):1836–42. https://doi.org/10.1128/AEM.71.4.1836-1842.2005; El-Arabi TF, Griffiths MW, She YM, Villegas A, Lingohr EJ, Kropinski AM. Genome sequence and analysis of a broadhost range lytic bacteriophage that infects the Bacillus cereus group. Virol J. 2013;10:48. https://doi.org/10.1186/1743-422X-10-48; Mirzaei KM, Nilsson AS. Isolation of phages for phage therapy: a comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. PLoS One. 2015;10(3):e0118557. https://doi.org/10.1371/journal.pone.0118557; DeWyngaert MA, Hinkle DC. Bacterial mutants affecting phage T7 DNA replication produce RNA polymerase resistant to inhibition by the T7 gene 2 protein. J Biol Chem. 1979;254(22):11247–53. PMID: 387768; Qimron U, Marintcheva B, Tabor S, Richardson CC. Genomewide screens for Escherichia coli genes affecting growth of T7 bacteriophage. Proc Natl Acad Sci USA. 2006;103(50):19039–44. https://doi.org/10.1073/pnas.0609428103; James TD, Cashel M, Hinton DM. A mutation within the beta subunit of Escherichia coli RNA polymerase impairs transcription from bacteriophage T4 middle promoters. J Bacteriol. 2010;192(21):5580–7. https://doi.org/10.1128/JB.00338-10; Azam AH, Hoshiga F, Takeuchi I, Miyanaga K, Tanji Y. Analysis of phage resistance in Staphylococcus aureus SA003 reveals different binding mechanisms for the closely related Twortlike phages SA012 and SA039. Appl Microbiol Biotechnol. 2018;102(20):8963–77. https://doi.org/10.1007/s00253-018-9269-x; Merril CR, Biswas B, Carlton R, Jensen NC, Creed GJ, Zullo S, Adhya S. Long-circulating bacteriophage as antibacterial agents. Proc Natl Acad Sci USA. 1996;93(8):3188–92. https://doi.org/10.1073/pnas.93.8.3188; Sander M, Schmieger H. Method for host-independent detection of generalized transducing bacteriophages in natural habitats. Appl Environ Microbiol. 2001;67(4):1490–3. https://doi.org/10.1128/AEM.67.4.1490-1493.2001; Beumer A, Robinson JB. A broad-host-range, generalized transducing phage (SN-T) acquires 16S rRNA genes from different genera of bacteria. Appl Environ Microbiol. 2005;71(12):8301–4. https://doi.org/10.1128/AEM.71.12.8301-8304.2005; DelCasale A, Flanagan PV, Larkin MJ, Allen CC, Kulakov LA. Analysis of transduction in wastewater bacterial populations by targeting the phage-derived 16S rRNA gene sequences. FEMS Microbiol Ecol. 2011;76(1):100–8. https://doi.org/10.1111/j.1574-6941.2010.01034.x; Yen M, Camilli A. Mechanisms of the evolutionary arms race between Vibrio cholerae and Vibriophage clinical isolates. Int Microbiol. 2017;20(3):116–20. https://doi.org/10.2436/20.1501.01.292; Chan BK, Sistrom M, Wertz JE, Kortright KE, Narayan D, Turner PE. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci Rep. 2016;6:26717. https://doi.org/10.1038/srep26717; Henry M, Biswas B, Vincent L, Mokashi V, Schuch R, Bishop-Lilly KA, Sozhamannan S. Development of a high throughput assay for indirectly measuring phage growth using the OmniLog(TM) system. Bacteriophage. 2012;2(3):159–67. https://doi.org/10.4161/bact.21440; Estrella LA, Quinones J, Henry M, Hannah RM, Pope RK, Hamilton T, et al. Characterization of novel Staphylococcus aureus lytic phage and defining their combinatorial virulence using the OmniLog(R) system. Bacteriophage. 2016;6(3):e1219440. https://doi.org/10.1080/21597081.2016.1219440; Давыдов ДС, Парфенюк РЛ, Дурманова ЗВ, Меркулов ВА, Мовсесянц АА. Особенности государственной регистрации и обеспечения качества лекарственных препаратов бактериофагов в Российской Федерации. БИОпрепараты. Профилактика, диагностика, лечение. 2023;23(2):181–93. https://doi.org/10.30895/2221-996X-2023-431; https://www.biopreparations.ru/jour/article/view/602

  8. 8
    Academic Journal

    Συνεισφορές: The study was performed without external funding, Работа выполнена без спонсорской поддержки

    Πηγή: Biological Products. Prevention, Diagnosis, Treatment; Том 24, № 1 (2024); 103-116 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 24, № 1 (2024); 103-116 ; 2619-1156 ; 2221-996X

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/537/824; https://www.biopreparations.ru/jour/article/view/537/817; https://www.biopreparations.ru/jour/article/downloadSuppFile/537/756; https://www.biopreparations.ru/jour/article/downloadSuppFile/537/757; https://www.biopreparations.ru/jour/article/downloadSuppFile/537/847; https://www.biopreparations.ru/jour/article/downloadSuppFile/537/848; https://www.biopreparations.ru/jour/article/downloadSuppFile/537/849; https://www.biopreparations.ru/jour/article/downloadSuppFile/537/850; https://www.biopreparations.ru/jour/article/downloadSuppFile/537/851; https://www.biopreparations.ru/jour/article/downloadSuppFile/537/854; Periasamy S, Kolenbrander PE. Central role of the early colonizer Veillonella sp. in establishing multispecies biofilm communities with initial, middle, and late colonizers of enamel. J Bacteriol. 2010;192(12):2965–72. https://doi.org/10.1128/JB.01631-09; Wu C, Mishra A, Reardon ME, Huang IH, Counts SC, Das A, Ton-That H. Structural determinants of Actinomyces sortase SrtC2 required for membrane localization and assembly of type 2 fimbriae for interbacterial coaggregation and oral biofilm formation. J Bacteriol. 2012;194(10):2531–9. https://doi.org/10.1128/JB.00093-12; Sterzenbach T, Helbig R, Hannig C, Hannig M. Bioadhesion in the oral cavity and approaches for biofilm management by surface modifications. Clin Oral Investig. 2020;24(12):4237–60. https://doi.org/10.1007/s00784-020-03646-1; Das V, Vinod V, Biswas L, Kumar A, Biswas R. An update on possible alternative therapeutics for future periodontal disease management. J Appl Microbiol. 2023;134(1):lxac039. https://doi.org/10.1093/jambio/lxac039; Mombelli A. Microbial colonization of the periodontal pocket and its significance for periodontal therapy. Periodontol 2000. 2018;76(1):85–96. https://doi.org/10.1111/prd.12147; Szafrański SP, Winkel A, Stiesch M. The use of bacteriophages to biocontrol oral biofilms. J Biotechnol. 2017;250:29–44. https://doi.org/10.1016/j.jbiotec.2017.01.002; Tagliaferri TL, Jansen M, Horz HP. Fighting pathogenic bacteria on two fronts: phages and antibiotics as combined strategy. Front Cell Infect Microbiol. 2019;9:22. https://doi.org/10.3389/fcimb.2019.00022; Łusiak-Szelachowska M, Weber-Dąbrowska B, Górski A. Bacteriophages and lysins in biofilm control. Virol Sin. 2020;35(2):125–33. https://doi.org/10.1007/s12250-019-00192-3; Suzuki I, Shimizu T, Senpuku H. Role of SCFAs for fimbrillin-dependent biofilm formation of Actinomyces oris. Microorganisms. 2018;6(4):114. https://doi.org/10.3390/microorganisms6040114; Mishra A, Wu C, Yang J, Cisar JO, Das A, Ton-That H. The Actinomyces oris type 2 fimbrial shaft FimA mediates co-aggregation with oral streptococci, adherence to red blood cells and biofilm development. Mol Microbiol. 2010;77(4):841–54. https://doi.org/10.1111/j.1365-2958.2010.07252.x; Sanchez BC, Chang C, Wu C, Tran B, Ton-That H. Electron transport chain is biochemically linked to pilus assembly required for polymicrobial interactions and biofilm formation in the gram-positive actinobacterium Actinomyces oris. mBio. 2017;8(3):e00399-17. https://doi.org/10.1128/mBio.00399-17; Kachlany SC. Aggregatibacter actinomycetemcomitans leukotoxin: from threat to therapy. J Dent Res. 2010;89(6):561–70. https://doi.org/10.1177/0022034510363682; Danforth DR, Tang-Siegel G, Ruiz T, Mintz KP. A nonfimbrial adhesin of Aggregatibacter actinomycetemcomitans mediates biofilm biogenesis. Infect Immun. 2018;87(1):e00704-18. https://doi.org/10.1128/IAI.00704-18; Nambu T, Mashimo C, Maruyama H, Taniguchi M, Huang Y, Takigawa H, et al. Complete genome sequence of Actinomyces oris strain K20, isolated from an oral apical lesion. Microbiol Resour Announc. 2022;11(8):e0054122. https://doi.org/10.1128/mra.00541-22; Phichaphop C, Apiwattanakul N, Wanitkun S, Boonsathorn S. Bacterial endocarditis caused by Actinomyces oris: first reported case and literature review. J Investig Med High Impact Case Rep. 2020;8:2324709620910645. https://doi.org/10.1177/2324709620910645; Tang-Siegel GG, Chen C, Mintz KP. Increased sensitivity of Aggregatibacter actinomycetemcomitans to human serum is mediated by induction of a bacteriophage. Mol Oral Microbiol. 2023:38(1):58–70. https://doi.org/10.1111/omi.12378; Hbibi A, Bouziane A, Lyoussi B, Zouhdi M, Benazza D. Aggregatibacter actinomycetemcomitans: from basic to advanced research. Adv Exp Med Biol. 2022;1373:45–67. https://doi.org/10.1007/978-3-030-96881-6_3; Gholizadeh P, Pormohammad A, Eslami H, Shokouhi B, Fakhrzadeh V, Kafil HS. Oral pathogenesis of Aggregatibacter actinomycetemcomitans. Microb Pathog. 2017;113:303–11. https://doi.org/10.1016/j.micpath.2017.11.001; Романова НА, Феоктистова НА, Золотухин СН, Васильев ДА, Алешкин АВ. Сравнительная эффективность методов выделения фагов бактерий Bacillus megaterium. Вестник ветеринарии. 2013;(1):26–7. EDN: PLHIWV; Лурия С, Дарнелл Дж. Общая вирусология. М.: Мир; 1970.; Kropinski AM, Prangishvili D, Lavigne R. Position paper: the creation of a rational scheme for the nomenclature of viruses of Bacteria and Archaea. Environ Microbiol. 2009;11(11):2775–7. https://doi.org/10.1111/j.1462-2920.2009.01970.x; Адамс М. Бактериофаги. М.: Медгиз; 1961.; Гольдфарб ДМ. Бактериофагия. М.: Медгиз; 1961.; Peng SY, Chen LK, Wu WJ, Paramita P, Yang PW, Li YZ, Lai MJ, Chang KC. Isolation and characterization of a new phage infecting Elizabethkingia anophelis and evaluation of its therapeutic efficacy in vitro and in vivo. Front Microbiol. 2020;11:728. https://doi.org/10.3389/fmicb.2020.00728; Сульдина ЕВ. Разработка ускоренной схемы идентификации листерий с помощью фагового биопрепарата L.m 4УЛГАУ. Вестник Ульяновской государственной сельскохозяйственной академии. 2020;(4):191–7. https://doi.org/10.18286/1816-4501-2020-4-191-197; Орловская ПИ, Гирилович НИ, Пилипчук ТА, Мандрик-Литвинкович МН, Коломиец ЭИ. Влияние физико-химических факторов на выживаемость бактериофагов фитопатогенных бактерий. В кн.: Коломиец ЭИ, ред. Микробные биотехнологии: фундаментальные и прикладные аспекты. Минск: Беларуская навука; 2021. С. 204–11. https://doi.org/10.47612/2226-3136-2021-13-204-211; Кочетова ТА, Юскевич ВВ, Садикова ГТ, Попова ВМ. Выделение и изучение биологических свойств бактериофагов, специфичных к Bordetella bronchiseptica. Ветеринария сегодня. 2022;11(3):273–9. https://doi.org/10.29326/2304-196X-2022-11-3-273-279; Stevens RH, Preus HR, Dokko B, Russell DT, Furgang D, Schreiner HC, et al. Prevalence and distribution of bacteriophage phi Aa DNA in strains of Actinobacillus actinomycetemcomitans. FEMS Microbiol Lett. 1994;119(3):329–37. https://doi.org/10.1111/j.1574-6968.1994.tb06909.x; Loftus A, Delisle AL. Inducible bacteriophages of Actinobacillus actinomycetemcomitans. Curr Microbiol. 1995;30(5):317–21. https://doi.org/10.1007/BF00295508; Dige I, Raarup MK, Nyengaard JR, Kilian M, Nyvad B. Actinomyces naeslundii in initial dental biofilm formation. Microbiology (Reading). 2009;155(Pt 7):2116–26. https://doi.org/10.1099/mic.0.027706-0; Arai T, Ochiai K, Senpuku H. Actinomyces naeslundii GroEL-dependent initial attachment and biofilm formation in a flow cell system. J Microbiol Methods. 2015;109:160–6. https://doi.org/10.1016/j.mimet.2014.12.021; https://www.biopreparations.ru/jour/article/view/537

  9. 9
  10. 10
    Academic Journal

    Πηγή: Wounds and wound infections. The prof. B.M. Kostyuchenok journal; Том 9, № 3 (2022); 40-47 ; Раны и раневые инфекции. Журнал имени проф. Б.М. Костючёнка; Том 9, № 3 (2022); 40-47 ; 2500-0594 ; 2408-9613

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.riri.su/jour/article/view/288/284; Алгоритмы специализированной медицинской помощи больным сахарным диабетом / под редакцией И. И. Дедова, М. В. Шестаковой, А. Ю. Майорова. 10-й вып. М., 2021.; Национальные рекомендации по диагностике и лечению заболеваний артерий нижних конечностей. М., 2019.; Wagner F. W. The dysvascular foot: a system for diaghttps://www.riri.su/jour/editor/submissionEngCit/288nosis and treatment. Foot Ankle. 1981; 2 (2): 64–122.; Chhibber S., Kaur T., Sandeep Kaur. Co-therapyusing lytic bacteriophage and linezolid: effective treatment in eliminating methicillin resistant Staphylococcus aureus (MRSA) from diabetic foot infections. PLoS One. 2013; 8 (2): e56022.; Пасхалова Ю. С. Стратегия хирургического лечения нейро-ишемической формы синдрома диабетической стопы: автореф. дис. … канд. мед. наук. М., 2011.; https://www.riri.su/jour/article/view/288

  11. 11
    Academic Journal

    Συνεισφορές: The study was performed without external funding., Работа выполнялась без спонсорской поддержки.

    Πηγή: Biological Products. Prevention, Diagnosis, Treatment; Том 23, № 3-1 (2023): Разработка и совершенствование отечественных биологических лекарственных средств; 379-388 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 23, № 3-1 (2023): Разработка и совершенствование отечественных биологических лекарственных средств; 379-388 ; 2619-1156 ; 2221-996X

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/511/765; https://www.biopreparations.ru/jour/article/downloadSuppFile/511/713; https://www.biopreparations.ru/jour/article/downloadSuppFile/511/714; https://www.biopreparations.ru/jour/article/downloadSuppFile/511/767; Кузьменков АЮ, Виноградова АГ. Мониторинг антибиотикорезистентности: обзор информационных ресурсов. Бюллетень сибирской медицины. 2020;19(2):163–70. https://doi.org/10.20538/1682-0363-2020-2-163-170; Ефименко ТА, Терехова ЛП, Ефременкова ОВ. Современное состояние проблемы антибиотикорезистентности патогенных бактерий. Антибиотики и химиотерапия. 2019;64(5–6):64–8. https://doi.org/10.24411/0235-2990-2019-100033; Ковязина НА, Функнер ЕВ, Николаева АМ, Орлова ЕВ, Ефимова МГ, Шитова ОИ. Технологические аспекты разработки капсул с бактериофагами. Вестник Воронежского государственного университета. Серия: Химия, биология, фармация. 2015;(1):132–6. EDN: TTUGTB; Baqer AA, Fang K, Mohd-Assaad N, Adnan SNA, Md Nor NS. In vitro activity, stability and molecular characterization of eight potent bacteriophages infecting carbapenem-resistant Klebsiella pneumoniae. Viruses. 2023;15(1):117. https://doi.org/10.3390/v15010117; Ковязина НА, Функнер ЕВ, Николаева АМ, Орлова ЕВ, Ефимова МГ, Шитова ОИ. Антибактериальная фармацевтическая композиция для перорального применения, содержащая бактериофаги. Патент Российской Федерации № 2660355; 2018. EDN: YPANBC; Красильникова АН, Сперанская ВН, Ковязина НА, Селезнева НР. К вопросу об образовании антител к бактериофагам. В кн.: Николаева А.М., ред. Перспективы развития производства и применения иммунобиологических препаратов в ХХI веке. Пермь; 2018. С. 185–9. EDN: XVIFGH; Николаева АМ, Казьянин АВ, Вязникова ТВ, Борисова ВН, Буданов МВ, Яковлева ИМ, Мельников ВА. Тест-система для определения антител к HBs-антигену и блокатор в тест-системе. Патент Российской Федерации № 2206095; 2001. EDN: SNYAPB; Алешкин АВ, Светоч ЭА, Воложанцев НВ, Киселева ИА, Рубальский ЕО, Ершова ОН, Новикова ЛИ. Инновационные направления использования бактериофагов в сфере санитарно-эпидемиологического благополучия Российской Федерации. Бактериология. 2016;(1):22–31. https://doi.org/10.20953/2500-1027-2016-1-22-31; https://www.biopreparations.ru/jour/article/view/511

  12. 12
    Academic Journal

    Πηγή: Сборник статей

    Περιγραφή αρχείου: application/pdf

    Relation: Актуальные вопросы современной медицинской науки и здравоохранения: материалы VII Международной научно-практической конференции молодых учёных и студентов, Екатеринбург, 17-18 мая 2022 г.; http://elib.usma.ru/handle/usma/10131

    Διαθεσιμότητα: http://elib.usma.ru/handle/usma/10131

  13. 13
    Academic Journal

    Πηγή: Wounds and wound infections. The prof. B.M. Kostyuchenok journal; Том 9, № 1 (2022); 6-11 ; Раны и раневые инфекции. Журнал имени проф. Б.М. Костючёнка; Том 9, № 1 (2022); 6-11 ; 2500-0594 ; 2408-9613

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.riri.su/jour/article/view/269/263; Murray C. K, Wilkins K. , Molter N. C., et al. Infections complicating the care of combat casualties during operations Iraqi Freedom and Enduring Freedom. J Trauma. 2011; 71 (1 Suppl): S62–73.; Petersen K., Riddle M. S., Danko J.R., et al. Trauma-related infections in battlefield casualties from Iraq. Ann Surg. 2007; 245 (5): 803–811.; Krueger C. A., Wenke J. C., Ficke J. R. Ten years at war: comprehensive analysis of amputation trends. J Trauma Acute Care Surg. 2012; 73 (6 Suppl 5): S438–S444.; Weintrob A. C., Murray C. K., Xu J., et al. Early Infections Complicating the Care of Combat Casualties from Iraq and Afghanistan. Surg Infect (Larchmt). 2018; 19 (3): 286–297.; McDonald J. R., Liang S. Y., Li P., et al. Infectious Complications After Deployment Trauma: Following Wounded US Military Personnel Into Veterans Affairs Care. Clin Infect Dis. 2018; 67 (8): 1205–1212.; Rostami S., Farajzadeh Sheikh A., Shoja S., et al. Investigating of four main carbapenem-resistance mechanisms in highlevel carbapenem resistant Pseudomonas aeruginosa isolated from burn patients. J Chin Med Assoc. 2018; 81 (2): 127–132.; Кокин Г. А. Применение бактериофагов в хирургии. Советская медицина. 1941; 9: 15–18.; Крестовникова В.А. Фаготерапия и фагопрофилактика и их обоснование в работах советских исследователей. Журнал микробиологии, эпидемиологии и иммунологии. 1947; 11: 56–65.; Покровская М. П. Каганова Л. С., Морозенко М. А. и др. Лечение ран бактериофагами. М.: Медгиз, 1941. 51 с.; Häusler T. Virus vs. Superbug: A solution to the antibiotic crisis? New York, N.Y: Macmillan, 2006. 294 p.; Kwiatek M., Parasion S., Nakonieczna A. Therapeutic bacteriophages as a rescue treatment for drug-resistant infections – an in vivo studies overview. J Appl Microbiol. 2020; 128 (4): 985–1002.; Mirski T., Lidia M., Nakonieczna A., Gryko R. Bacteriophages, phage endolysins and antimicrobial peptides – the possibilities for their common use to combat infections and in the design of new drugs. Ann Agric Environ Med. 2019; 26 (2): 203–209.; Zimecki M., Artym J., Kocieba M., et al. Effects of prophylactic administration of bacteriophages to immunosuppressed mice infected with Staphylococcus aureus. BMC Microbiol. 2009; 9: 169.; Przerwa A., Zimecki M., Switała-Jeleń K., et al. Effects of bacteriophages on free radical production and phagocytic functions. Med Microbiol Immunol. 2006; 195: 143–150.; Górski A., Jończyk-Matysiak E., Łusiak- Szelachowska M., et al. Phage therapy in allergic disorders? Exp Biol Med (Maywood). 2018; 243 (6): 534–537.; Górski A., Dąbrowska K., Międzybrodzki R., et al. Phages and immunomodulation. Future Microbiol. 2017; 12: 905–914.; Górski A., Jończyk-Matysiak E., Łusiak- Szelachowska M., et al. The Potential of Phage Therapy in Sepsis. Front Immunol. 2017; 8: 1783.; Chang R. Y. K., Morales S., Okamoto Y., Chan H. K. Topical application of bacteriophages for treatment of wound infections. Transl Res. 2020; 220: 153–166.; Myelnikov D. An Alternative Cure: The Adoption and Survival of Bacteriophage Therapy in the USSR, 1922–1955. J Hist Med Allied Sci. 2018; 73 (4): 385–411.; Chanishvili N. Bacteriophages as Therapeutic and Prophylactic Means: Summary of the Soviet and Post Soviet Experiences. Curr Drug Deliv. 2016; 13 (3): 309–323.; Verbeken G., Huys I., Pirnay J. P., et al. Taking bacteriophage therapy seriously: a moral argument. Biomed Res Int. 2014; 2014: 621316.; FDA разрешило применение бактериофагов у больных COVID-19. Phagex. Фагопрепараты и фаготерапия.; Pirnay J. P., Verbeken G., Ceyssens P. J., et al. The Magistral Phage. Viruses. 2018; 10: 64.; Schooley R. T., Biswas B., Gill J. J., et al. Development and Use of Personalized Bacteriophage-Based Therapeutic Cocktails To Treat a Patient with a Disseminated Resistant Acinetobacter baumannii Infection Antimicrob Agents Chemother. 2017; 61 (10): e00954–e00917.; Duplessis C., Biswas B., Hanisch B., et al. Refractory Pseudomonas Bacteremia in a 2-Year-Old Sterilized by Bacteriophage Therapy. J Pediatric Infect Dis Soc. 2018; 7 (3): 253–256.; Vogt D., Sperling S., Tkhilaishvili T., et al. Beyond antibiotic therapy – Future antiinfective strategies – Update 2017. Unfallchirurg. 2017; 120 (7): 573–584.; Oechslin F., Piccardi P., Mancini S., et al. Synergistic interaction between phage therapy and antibiotics clears Pseudomonas aeruginosa infection in endocarditis and reduces virulence. J Infect Dis. 2017; 215: 703–712.; Valério N., Oliveira C., Jesus V., et al. Effects of single and combined use of bacteriophages and antibiotics to inactivate Escherichia coli. Virus Res. 2017; 240: 8–17.; Ryan E. M., Alkawareek M. Y., Donnelly R. F., Gilmore B. F. Synergistic phage-antibiotic combinations for the control of Escherichia coli biofilms in vitro. FEMS Immunol Med Microbiol. 2012; 65: 395–398.; Chaudhry W. N., Concepción-Acevedo J., Park T., et al. Synergy and order effects of antibiotics and phages in killing Pseudomonas aeruginosa biofilms. PLoS ONE. 2017; 12: e0168615.; Marza J. A., Soothill J. S., Boydell P., Collyns T. A. Multiplication of therapeutically administered bacteriophages in Pseudomonas aeruginosa infected patients. Burns. 2006; 32 (5): 644–646.; Melo L. D. R., Oliveira H., Pires D. P., et al. Phage therapy efficacy: a review of the last 10 years of preclinical studies. Crit Rev Microbiol. 2020; 46 (1): 78–99.; Freyberger H. R., He Y., Roth A. L., et al. Effects of Staphylococcus aureus Bacteriophage K on Expression of Cytokines and Activation Markers by Human Dendritic Cells In Vitro. Viruses. 2018; 10(11): 617.; Regeimbal J. M., Jacobs A. C., Corey B. W., et al. Personalized Therapeutic Cocktail of Wild Environmental Phages Rescues Mice from Acinetobacter baumannii Wound Infections. Antimicrob Agents Chemother. 2016; 60 (10): 5806–5816.; Jault P., Leclerc T., Jennes S., et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect Dis. 2019; 19 (1): 35–45.; Kaur P., Gondil V. S., Chhibber S. A novel wound dressing consisting of PVA-SA hybrid hydrogel membrane for topical delivery of bacteriophages and antibiotics. Int J Pharm. 2019; 572: 118779.; Dąbrowska K., Abedon S.T. Pharmacologically Aware Phage Therapy: Pharmacodynamic and Pharmacokinetic Obstacles to Phage Antibacterial Action in Animal and Human Bodies. Microbiol Mol Biol Rev. 2019; 83 (4): e00012–e00019.; Pinto A. M., Cerqueira M. A., Bañobre-Lópes M., et al. Bacteriophages for Chronic Wound Treatment: from Traditional to Novel Delivery Systems. Viruses. 2020; 12 (2): 235.; Lin P., Pu Q., Shen G., et al. CdpR Inhibits CRISPR-Cas Adaptive Immunity to Lower Anti-viral Defense while Avoiding Self-Reactivity. iScience. 2019; 13: 55–68.; Yin S., Huang G., Zhang Y., et al. Phage Abp1 Rescues Human Cells and Mice from Infection by Pan-Drug Resistant Acinetobacter Baumannii. Cell Physiol Biochem. 2017; 44 (6): 2337–2345.; Wang R., Xing S., Zhao F., et al. Characterization and genome analysis of novel phage vB_EfaP_IME195 infecting Enterococcus faecalis. Virus Genes. 2018; 54 (6): 804–811.; Deng L. Y., Yang Z. C., Gong Y.L., et al. Therapeutic effect of phages on extensively drug-resistant Acinetobacter baumannii-induced sepsis in mice. Zhonghua Shao Shang Za Zhi. 2016; 32 (9): 523–528.; Yang Z. C., Deng L. Y., Gong Y. L., et al. Inventory building of phages against extensively drug-resistant Acinetobacter baumannii isolated from wounds of patients with severe burn and related characteristic analysis. Zhonghua Shao Shang Za Zhi. 2016; 32 (9): 517–522.; Gelman D., Eisenkraft A., Chanishvili N., et al. The history and promising future of phage therapy in the military service. J Trauma Acute Care Surg. 2018; 85 (1S Suppl 2): S18–S26.; https://www.riri.su/jour/article/view/269

  14. 14
  15. 15
    Academic Journal

    Πηγή: Wounds and wound infections. The prof. B.M. Kostyuchenok journal; Том 8, № 3 (2021); 8-12 ; Раны и раневые инфекции. Журнал имени проф. Б.М. Костючёнка; Том 8, № 3 (2021); 8-12 ; 2500-0594 ; 2408-9613

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.riri.su/jour/article/view/251/245; Holcomb J. B., Stansbury L. G., Champion H. R., et al. Understanding combat casualty care statistics. J Trauma. 2006; 60 (2): 397-401. Обзоры, лекции, история ран и раневых инфекций; Schweizer M. A., Janak J. C., Stock-inger Z. T., Monchal T. Description of trauma among French service members in the Department of Defense Trauma Registry: understanding the nature of trauma and the care provided. Mil Med Res. 2019; 6 (1): 7.; Holcomb J., Caruso J., McMullin N., et al. Causes of death in US Special Operations Forces in the global war on terrorism: 2001-2004. US Army Med Dep J. 2007; (1): 24-37.; Weintrob A. C., Murray C. K., Xu J., et al. Early Infections Complicating the Care of Combat Casualties from Iraq and Afghanistan. Surg Infect (Larchmt). 2018; 19 (3): 286-297.; Stansbury L. G., Lalliss S. J., Branstet-ter J. G., et al. Amputations in U.S. military personnel in the current conflicts in Afghanistan and Iraq. J Orthop Trauma. 2008; 22 (1): 43-46.; Krueger C. A., Wenke J. C., Ficke J. R. Ten years at war: comprehensive analysis of amputation trends. J Trauma Acute Care Surg. 2012; 73: 438-444.; Stewart L., Shaikh F., Bradley W., et al. Combat-Related Extremity Wounds: Injury Factors Predicting Early Onset Infections. Mil Med. 2019; 184 (Suppl 1): 83-91.; Grosset A., Pfister G., del’Escalopier N., et al. Risk factors and failures in the management of limb injuries in combat casualties. Int Orthop. 2019; 43 (12): 2671-2680.; Juarez J. K., Pugh M. J., Wenke J. C., Rivera J. C. Infection Precedes Heterotopic Ossification in Combat Wounded. US Army Med Dep J. 2018; 2 (18): 1-5.; Casey K., Demers P., Deben S., et al. Outcomes after long-term follow-up of combat-related extremity injuries in a multidisciplinary limb salvage clinic. Ann Vasc Surg. 2015; 29 (3): 496-501.; Murray C. K., Wilkins K., Molter N. C., et al. Infections complicating the care of combat casualties during Operations Iraqi Freedom and Enduring Freedom. J Trauma. 2011; 71 (1 Suppl): 6273.; Tribble D. R., Conger N. G., Fraser S., et al. Infection-associated clinical outcomes in hospitalized medical evacuees after traumatic injury: Trauma Infectious Disease Outcome Study. J Trauma. 2011; 71 (1 Suppl): 33-42.; Tribble D. R., Krauss M. R., Murray C. K., et al. Epidemiology of Trauma-Related Infections among a Combat Casualty Cohort after Initial Hospitalization: The Trauma Infectious Disease Outcomes Study. SurgInfect (Larchmt). 2018; 19 (5); 494-503.; Murray C. K., Roop S. A., Hospen-thal D. R., et al. Bacteriology of war wounds at the time of injury. Mil Med. 2006: 171 (9): 826-829.; Blyth D. M., Yun H. C., Tribble D. R., Murray C. K. Lessons of war: Combat-related injury infections during the Vietnam War and Operation Iraqi and Enduring Freedom. J Trauma Acute Care Surg. 2015; 79 (4 Suppl 2): 227-235.; Boucher H. W., Talbot G. H., Bradley J. S., et al. Bad bugs, no drugs: No ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis. 2009; 48 (1): 1-12.; Rice L. B. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis. 2009; 197 (8): 1079-1081.; Brown K. V., Murray C. K., Clasper J. C. Infectious complications of combat-related mangled extremity injuries in the British military. J Trauma. 2010; 69 (Suppl 1): 109-115.; Mende K., Stewart L., Shaikh F., et al. Microbiology of combat-related extremity wounds: Trauma Infectious Disease Outcomes Study. Diagn Microbiol Infect Dis. 2018; 94 (2): 173-179.; Campbell W. R., Li P, Whitman T. J., et al. Multi-Drug-Resistant Gram-Negative Infections in Deployment-Related Trauma Patients. Surg Infect (Larchmt). 2017; 18 (3): 357-367.; Dallo S. F., Weitao T. Insights into Acinetobacter war-wound infections, biofilms, and control. Adv Skin Wound Care. 2010; 23 (4): 169-174.; Heitkamp R. A., Li P, Mende K., et al. Association of Enterococcus spp. with Severe Combat Extremity Injury, Intensive Care, and Polymicrobial Wound Infection. Surg Infect (Larchmt). 2018; 19 (1): 95-103.; Geiger S., McCormick F., Chou R., Wangel A. G. War wounds: lessons learned from Operation Iraqi Freedom. Plast Reconstr Surg. 2008; 122 (1): 146153.; Couch K. S., Stojadinovic A. Negative-pressure wound therapy in military: lessons learned. Plast Reconstr Surg. 2011; 127 Supp 1: 117-130.; Atwood R. E., Bradley M. J., Elster E. A. Use of negative pressure wound therapy on conflict-related wounds. Lancet Glob Health. 2020; 8 (3): 319— 320.; Freyberger H. R., He Y., Roth A. L., et al. Effects of Staphylococcus aureus Bacteriophage K on Expression of Cytokines and Activation Markers by Human Dendritic Cells In Vitro. Viruses. 2018; 10 (11): 617.; Engeman E., Freyberger H. R., Corey B. W., et al. Synergistic Killing and Re-Sensitization of Pseudomonas aeruginosa to Antibiotics by Phage-Antibiotic Combination Treatmen. Pharmaceuticals (Basel). 2021; 14 (3): 184.; https://www.riri.su/jour/article/view/251

  16. 16
    Academic Journal

    Πηγή: General Reanimatology; Том 17, № 6 (2021); 4-14 ; Общая реаниматология; Том 17, № 6 (2021); 4-14 ; 2411-7110 ; 1813-9779

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.reanimatology.com/rmt/article/view/2153/1568; https://www.reanimatology.com/rmt/article/view/2153/1577; Rello J., Kalwaje Eshwara V., Conway-Morris A., Lagunes L., Alves J., Alp E., Zhang Z., Mer M., TOTEM Study Investigators. Perceived differences between intensivists and infectious diseases consultants facing antimicrobial resistance: a global cross-sectional survey. Eur J Clin Microbiol Infect Dis. 2019; 38: 1235–1240. DOI:10.1007/s10096-019-03530-1. PMID: 30900056; Kutter E. Phage therapy: Bacteriophages as natural, self-replicating antimicrobials. Practical Handbook of Microbiology, Third Edition. CRC Press; 2015. pp. 883–908.; Merabishvili M., Pirnay J-P., Verbeken G., Chanishvili N., Tediashvili M., Lashkhi N., Glonti T., Krylov V., Mast J., Parys L.V., Lavigne R., Volckaert G., Mattheus W., Verween G., De Corte P., Rose T., Jennes S., Zizi M., De Vos D., Vaneechoutte M. Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS One. 2009; 4: e4944. DOI:10.1371/journal.pone.0004944. PMID: 19300511; Перепанова Т.С., Меринов Д.С., Казаченко А.В., Хазан П.Л., Малова Ю.А. Бактериофаготерапия урологической инфекции. Урология. 2020; 106–114.; Ooi M.L., Drilling A.J., Morales S., Fong S., Moraitis S., Macias-Valle L., Vreugde S., Psaltis A.J., Wormald P.-J. Safety and Tolerability of Bacteriophage Therapy for Chronic Rhinosinusitis Due to Staphylococcus aureus. JAMA Otolaryngol Head Neck Surg. 2019; 145: 723–729. DOI:10.1001/jamaoto.2019.1191. PMID: 31219531; Liu D., Van Belleghem J.D., de Vries C.R., Burgener E., Chen Q., Manasherob R., Aronson J.R., Amanatullah D.F., Tamma P.D., Suh G.A. The Safety and Toxicity of Phage Therapy: A Review of Animal and Clinical Studies. Viruses. 2021; 13. DOI:10.3390/v13071268. PMID: 34209836; Saperkin N.V., Kovalishena O.V., Kvashnina D.V., Ruizendaal E., Scholten R. Efficiency of phage therapy in humans: systematic review. J Infectology. 2019; 11: 19–30.; Cheng M., Liang J., Zhang Y., Hu L., Gong P., Cai R., Zhang L., Zhang H., Ge J., Ji Y., Guo Z., Feng X., Sun Ch., Yang Y., Lei L., Han W., Gu J. The Bacteriophage EF-P29 Efficiently Protects against Lethal Vancomycin-Resistant Enterococcus faecalis and Alleviates Gut Microbiota Imbalance in a Murine Bacteremia Model. Frontiers in Microbiology. 2017. DOI:10.3389/fmicb.2017.00837. PMID: 2853657.; Yang X., Haque A., Matsuzaki S., Matsumoto T., Nakamura S. The Efficacy of Phage Therapy in a Murine Model of Pseudomonas aeruginosa Pneumonia and Sepsis. Frontiers in Microbiology. 2021. DOI:10.3389/fmicb.2021.682255. PMID: 34290683; Takemura-Uchiyama I., Uchiyama J., Osanai M., Morimoto N., Asagiri T., Ujihara T., Daibata M., Sugiura T., Matsuzaki S. Experimental phage therapy against lethal lung-derived septicemia caused by Staphylococcus aureus in mice. Microbes Infect. 2014; 16: 512–517. DOI:10.1016/j.micinf.2014.02.011. PMID: 24631574; Anand T., Virmani N., Kumar S., Mohanty A.K., Pavulraj S., Bera B.C., Vaid R.K., Ahlawat U., Tripathi B.N. Phage therapy for treatment of virulent Klebsiella pneumoniae infection in a mouse model. J Glob Antimicrob Resist. 2020; 21: 34–41. DOI:10.1016/j.jgar.2019.09.018. PMID: 31604128; Petrovic Fabijan A., Lin R.C.Y., Ho J., Maddocks S., Ben Zakour N.L., Iredell J.R., Westmead Bacteriophage Therapy Team. Safety of bacteriophage therapy in severe Staphylococcus aureus infection. Nat Microbiol. 2020; 5: 465–472. DOI:10.1038/s41564-019-0634-z. PMID: 32066959; Парфенов А.Л., Петрова М.В., Пичугина И.М., Лугинина Е.В. Формирование коморбидности у пациентов с тяжелым повреждением мозга и исходом в хроническое критическое состояние (обзор). Общая реаниматология. 2020; 16 (4): 72–89. DOI:10.15360/1813-9779-2020-4-72-89; Zurabov F., Zhilenkov E. Characterization of four virulent Klebsiella pneumoniae bacteriophages, and evaluation of their potential use in complex phage preparation. Virol J. 2021; 18: 9. DOI:10.1186/s12985-020-01485-w. PMID: 33407669; Slopek S., Weber-Dabrowska B., Dabrowski M., KucharewiczKrukowska A. Results of bacteriophage treatment of suppurative bacterial infections in the years 1981–1986. Arch Immunol Ther Exp. 1987; 35: 569–583.; Черневская Е.А., Меглей А.Ю., Буякова И.В., Ковалева Н.Ю., Горшков К.М., Захарченко В.Е., Белобородова Н.В. Таксономический дисбиоз микробиоты и сывороточные биомаркеры как отражение тяжести поражения центральной нервной системы. Вестник Российского государственного медицинского университета. 2020; 5: 58–63. DOI:10.24075/vrgmu.2020.053; Miedzybrodzki R., Fortuna W., Weber-Dabrowska B., Górski A. A retrospective analysis of changes in inflammatory markers in patients treated with bacterial viruses. Clin Exp Med. 2009; 9: 303–312. DOI:10.1007/s10238-009-0044-2. PMID: 19350363; van Hecke O., Wang K., Lee J.J., Roberts N.W., Butler C.C. Implications of Antibiotic Resistance for Patients’ Recovery From Common Infections in the Community: A Systematic Review and Meta-analysis. Clinical Infectious Diseases. Clin Infect Dis. 2017; 65 (3): 371–382. DOI:10.1093/cid/cix233. PMID: 28369247; Popov D.A., Bakulev A. N. National Medical Research Center of Cardiovascular Surgery. Comparative review of the modern methods for carbapenemases detection. Clinical Microbiology and Antimicrobial Chemotherapy. 2019; 21 (2): 125–133 DOI:10.36488/cmac.2019.2.125-133; Meletis G. Carbapenem resistance: overview of the problem and future perspectives. Ther Adv Infect Dis. 2016; 3: 15–21. DOI:10.1177/2049936115621709. PMID: 26862399; Górski A., Międzybrodzki R., Żaczek M., Borysowski J. Phages in the fight against COVID-19? Future Microbiol. 2020; 15: 1095–1100. DOI:10.2217/fmb-2020-0082. PMID: 32845164.; https://www.reanimatology.com/rmt/article/view/2153

  17. 17
    Academic Journal
  18. 18
  19. 19
    Academic Journal

    Πηγή: Journal Infectology; Том 11, № 1 (2019); 65-70 ; Журнал инфектологии; Том 11, № 1 (2019); 65-70 ; 2072-6732 ; 10.22625/2072-6732-2019-11-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.niidi.ru/jofin/article/view/853/690; Акимкин, В.Г. Бактериофаги: исторические и современные аспекты их применения: опыт и перспективы / В.Г. Акимкин, О.С. Дарбеева, В.Ф. Колков // Клиническая практика. – 2010. – № 4. – С. 48–54.; Акимкин, В.Г. Нозокомиальный сальмонеллез взрослых / В.Г. Акимкин, В.И. Покровский. – М. : Издательство РАМН, 2002. – 136 с.; Асланов, Б.И. Пути рационального использования синегнойных бактериофагов в лечебной и противоэпидемической практике / Б.И. Асланов, Р.Х. Яфаев, Л.П. Зуева // Журнал микробиологии, эпидемиологии и иммунобиологии. – 2003. – № 5. – С. 72–76.; Асланов, Б.И. Бактериофаги как факторы формирования госпитальных штаммов и средства борьбы с внутри- больничными инфекциями / Б.И. Асланов [и др.] // Инфекции в хирургии. – 2009. – Т. 7, № 1. – С. 25–29.; Зуева, Л.П. Современный взгляд на роль бактериофагов в эволюции госпитальных штаммов и профилактике инфекций, связанных с оказанием медицинской помощи / Л.П. Зуева, Б.И. Асланов, В.Г. Акимкин // Журнал микро- биологии, эпидемиологии и иммунобиологии. – 2014. – № 3. – С. 100–107.; Фаготерапия воспалительных урогенитальных заболеваний у женщин / В.И. Кисина [и др.] // Вестник дерм тологии и венерологии. – 1996. – № 5. – С. 45–48.; Перепанова, Т.С. Комплексное лечение и профилактика госпитальной инфекции мочевых путей: автореф. дис. … д-ра мед. наук : 14.00.40 / Перепанова Тамара Сергеевна. – М., 1996. – 57 с.; Лазарева, Е.Б. Бактериофаги для лечения и профилактики инфекционных заболеваний / Е.Б. Лазарева // Ант биотики и химиотерапия. – 2003. – Т. 48, № 1. – С. 36–40.; Микробиологическая диагностика инфекций мочевых путей у женщин при беременности и использование препаратов бактериофагов при данной патологии : методические рекомендации / Ю.А. Захарова [и др.]. – Пермь, 2007. – 29 с.; Эффективность применения бактериофагов в комплексном лечении больных с ожоговой травмой / Е.Б. Лазарева [и др.] // Антибиотики и химиотерапия. – 2001. – Т. 46, № 1. – С. 10–14.; Хайруллин, И.Н. Роль микрофлоры хирургического отделения в развитии послеоперационных осложнений хирургических ран и их коррекция с помощью бактериофагов : автореф. дис. . канд. мед. наук : 14.00.27 / Хайруллин Ильдар Нургалиевич. – Казань, 2003. – 19 с.; Хайруллин, И.Н. Эффективность применения специфических бактериофагов в лечении и профилактике хирургических послеоперационных инфекций / И.Н. Хайруллин, О.К. Поздеев, Р.Ш. Шаймарданов // Казанский медицинский журнал. – 2002. – № 4. – С. 258–261.; Профилактика и лечение гнойно-воспалительных осложнений в раннем послеоперационном периоде у больных с рубцовым стенозом трахеи на основе микробиологического мониторинга / А.В. Бондаренко [и др.] // Антибиотики и химиотерапия. – 2005. – Т. 50, № 2–3. – С. 42–47.; Дроздова, О.М. Применение бактериофагов в эпидемиологической практике: взгляд через столетие / О.М. Дроздова, Е.Б. Брусина // Эпидемиология и инфекционные болезни. – 2010. – № 5. – С. 20–24.; Loeffler, J.M. Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase / J.M. Loeffler, D. Nelson, V.A. Fischetti // Science. – 2001. – Vol. 294. – P. 2170–2172.; Bacteriophage therapy of venous leg ulcers in humans: results of a phase I safety trial / D.D. Rhoads [et al.] // Journal of Wound Care. – 2009. – Vol. 18. – P. 237–243.; Сontrolled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa: a preliminary report of efficacy / A. Wrigh [et al.] // Clinical otolaryngology. – 2009. – Vol. 34, № 4. – P. 349–357.; Kutateladze, M. Bacteriophages as potential new therapeutics to replace or antibiotics / M. Kutateladze, R. Adamia // Trends in Biotechnology. – 2010. – Vol. 28, № 12. – P. 591–595.; Oral T4-like phage cocktail application to healthy adult volunteers from Bangladesh / S.A. Sarker [et al.] // Virology. – 2012. – Vol. 434, № 2. – Р. 222–232.; Respirable bacteriophages for the treatment of bacterial lung infections / S. Hoe [et al.] // Journal of Aerosol Medicine and Pulmonary Drug Delivery. – 2013. – Vol. 26, № 6. – P. 317–35.; Sulakvelidze, A. Using lytic bacteriophages to eliminate or significantly reduce contamination of food by foodborne bacterial pathogens / A. Sulakvelidze // Journal of the Science of Food and Agriculture. – 2013. – Vol. 93, № 13. – P. 3137– 3146.; Outbreaks in neonatal intensive care units – They are not like others / P. Gastmeier [et al.] // American Journal of Infection Control. – 2007. – Vol. 35, № 3. – P. 172–176.; Popoola, V. Decolonization to prevent Staphylococcus aureus transmission and infections in the neonatal intensive care unit / V. C. A. Milstone // Journal of Perinatology. – 2014. – Vol. 34(11). – P. 805–810.; Бактериофаги для купирования вспышки, вызванной Staphylococcus aureus, в отделении реанимации ново- рожденных / Б.И. Асланов [и др.] // Медицинский альманах. – 2015. – № 5. – С. 115–118.; https://journal.niidi.ru/jofin/article/view/853

  20. 20