Εμφανίζονται 1 - 20 Αποτελέσματα από 216 για την αναζήτηση '"устойчивость к болезням"', χρόνος αναζήτησης: 1,06δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Συνεισφορές: The study was supported as part of Project 8 “Genetically identify the collection samples of agricultural crops to form a new gene pool of donors of economically valuable traits for use in breeding” of the State program “Scientific and innovative activities of the National Academy of Sciences of Belarus” and grant No. B23CUB-009 “Study of genetic polymorphism of disease resistance genes in the tomato forms of Cuban and Belarusian origin to improve the efficiency of breeding programs” of the Belarusian Republican Foundation for Fundamental Research., Данные исследования выполнялись при поддержке задания 8 «Генетически идентифицировать коллекционные образцы сельскохозяйственных культур для формирования нового генофонда доноров хозяйственно ценных признаков в целях использования в селекции» государственной программы «Научно-инновационная деятельность Национальной академии наук Беларуси» и проекта Б23КУБ-009 «Изучение генетического полиморфизма генов устойчивости к болезням у форм томата кубинской и белорусской селекции для повышения эффективности селекционных программ» Белорусского республиканского фонда фундаментальных исследований.

    Πηγή: Vegetable crops of Russia; № 1 (2025); 5-13 ; Овощи России; № 1 (2025); 5-13 ; 2618-7132 ; 2072-9146

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.vegetables.su/jour/article/view/2538/1620; Biotechnology and plant disease management / ed. by Z.K. Punja, S.H. De Boer, H. Sanfaçon / Biddles Ltd, King’s Lynn, UK. 2007. 574 p.; Lee J.M., Oh C., Yeam I. Molecular Markers for Selecting Diverse Disease Resistances in Tomato Breeding Programs. Plant Breeding and Biotechnology. 2015;(3):308-322. https://doi.org/10.9787/PBB.2015.3.4.308; Truong H.T.H., Choi H., Cho M.C., Lee H.E., Kim J.H. Use of Cf-9 gene-based markers in marker-assisted selection to screen tomato cultivars with resistance to Cladosporium fulv um. Hortic. Environ. Biotechnol. 2011;(52):204–210. https://doi.org/10.1007/s13580-011-0164-y; Kang W., Hoang N., Yang H., Kwon J., Jo S., Seo J., Kim K., Choi D., Kang B. Molecular mapping and characterization of a single dominant gene controlling CMV resistance in peppers (Capsicum annuum L.). Theor. Appl. Genet. 2010;(120):1587–1596. https://doi.org/10.1007/s00122-010-1278-9; Uncu A.T., Celik I., Devran Z., Ozkaynak E., Frary A., Frary A., Doganla S. Development of SNP-based CAPS assay for the Me1 gene conferring resistance to root knot nematode in pepper. Euphytica. 2015;(206):393–399. https://doi.org/10.1007/s10681-015-1489-x; Kim H., Nahm S., Lee H., Yoon G., Kim K., Kang B., Choi D., Kweon O.Y., Cho M., Kwon J., Han J., Kim J., Park M., Ahn J.H., Choi S.H., Her N.H., Sung J., Kim B. BAC-derived markers converted from RFLP linked to Phytophthora capsici resistance in pepper (Capsicum annuum L. Theor. Appl. Genet. 2008;(118):15–27.; ChunYing S., Li M., Hai Z., Alainb P., Haoa W., Xi Z. Resistances to anthracnose (Colletotrichum acutatum) of Capsicum mature green and ripe fruit are controlled by a major dominant cluster of QTLs on chromosome P5. Scientia Horticulturae. 2015;(181):81-88. https://doi.org/10.1016/j.scienta.2014.10.033; Paran I., Benarous S., Ashkenazi V. Disease resistant pepper plants. Hazera Genetics Ltd, The Agricultural Research Organization. Volcani Center, 2009. Patent WO2009098685 A2; Lee H.R., An H.J., You Y.G., Lee J., Kim H.J., Kang B.C., Harn C.H. Development of a novel codominant molecular marker for Chili veinal mottle virus resistance in Capsicum annuum L. Euphytica. 2013;(193):197–205.; Quirin E.A., Ogundiwin E.A., Prince J.P., Mazourek M., Briggs M.O., Chlanda T.S., Kim K., Falise M., Kang B., Jahn M.M. Development of sequence characterized amplified region (SCAR) primers for the detection of Phyto.5.2, a major QTL for resistance to Phytophthora capsici Leon. in pepper. Theor. Appl. Genet. 2005;(110):605–612. https://doi.org/10.1007/s00122-004-1874-7; Özkaynak E., Devran Z., Kahveci E., Doğanlar S., Başköylü B., Doğan F., İşleyen M., Yüksel A., Yüksel M. Pyramiding Multiple Genes for Resistance to PVY, TSWV and PMMoV in Pepper Using Molecular Markers. Europ. J. Hort. Sci. 2014;79(4):233–239.; Rӧmer P., Jordan T., Lahaye T. Identification and application of a DNA-based marker that is diagnostic for the pepper (Capsicum annuum) bacterial spot resistance gene Bs3. Plant Breed. 2010;(129):737–740. https://doi.org/10.1111/j.1439-0523.2009.01750.x; Бабак О.Г., Некрашевич Н.А., Анисимова Н.В., Дрозд Е.В., Яцевич К.К., Кильчевский А.В. Технология маркер-сопутствующего отбора форм томата с высокими биохимическими и технологическими свойствами плодов: методические рекомендации. Минск: Министерство сельского хозяйства и продовольствия Республики Беларусь; Национальная академия наук Беларуси; Институт генетики и цитологии Национальной академии наук Беларуси Право и экономика, 2023. 74 c.; Игнатова С.И., Бабак О.Г., Багирова С.Ф. Создание высоколикопиновых гибридов томата для теплиц с использованием традиционных методов селекции и молекулярных маркеров. Овощи России. 2020;(5):22-28. https://doi.org/10.18619/2072-9146-2020-5-22-28 https://elibrary.ru/avqfuj; Бабак О.Г., Дрозд Е.В., Некрашевич Н.А., Анисимова Н.В., Яцевич К.К., Баева И.Е., Пугачева И.Г., Французенок А.В., Добродькин М.М., Кильчевский А.В. Оценка и применение молекулярных маркеров в селекции на устойчивость томата (Solanum lycopersicum L.) к фитофторе (Phytophthora Infestans). Молекулярная и прикладная генетика. 2021;(31):22-30. https://doi.org/10.47612/1999-9127-2021-31-22-30 https://elibrary.ru/kgdhdp; Liu Y., Tikunov Y., Schouten R.E., Marcelis L., Visser R., Bovy A. Anthocyanin biosynthesis and degradation mechanisms in Solanaceous Vegetables: a review. Frontiers in Chemistry. 2018;6(52):1–17. https://doi.org/10.3389/fchem.2018.00052; Bassolino L., Zhang Y., Schoonbeek H.J., Kiferle C., Perata P., Martin C. Accumulation of anthocyanins in tomato skin extends shelf life. New Phytol. 2013;200(3):650-655. https://doi.org/10.1111/nph.12524; Zhang Y., Butelli E., De Stefano R., Schoonbeek H.J., Magusin A., Pagliarani C., Wellner N., Hill L., Orzaez D., Granell A., Jones J.D., Martin C. Anthocyanins double the shelf life of tomatoes by delaying overripening and reducing susceptibility to gray mold. Curr. Biol. 2013;23(12):1094-100. https://doi.org/10.1016/j.cub.2013.04.072; Sapir M., Oren-Shamir M., Ovadia R., Reuveni M., Evenor D., Tadmor Y., Nahon S., Shlomo H., Chen L., Meir A., Levin I. Molecular Aspects of Anthocyanin fruit Tomato in Relation to high pigment-1. Journal of Heredity. 2008;99(3):292–303. https://doi.org/10.1093/jhered/esm128; Cao X., Qiu Z., Wang X., Van Giang T., Liu X., Wang J., Wang X., Gao J., Guo Y., Du Y., Wang G., Huang Z. A putative R3 MYB repressor is the candidate gene underlying atroviolacium, a locus for anthocyanin pigmentation in tomato fruit. J. Exp. Bot. 2017;68(21-22):5745-5758. https://doi.org/10.1093/jxb/erx382; Бабак О.Г., Дрозд Е.В., Некрашевич Н.А., Анисимова Н.В., Яцевич К.К., Кильчевский А.В. Разработка молекулярных маркеров накопления антоцианов в плодах и изучение особенностей взаимодействия генов Ant1, An2 и Atv у Solanum lycopersicum. Молекулярная и прикладная генетика. 2024;(36):7-23. https://elibrary.ru/gdbfhm; Бабак О.Г., Некрашевич Н.А., Никитинская Т.В., Яцевич К.К., Кильчевский А.В. Изучение полиморфизма генов Myb-факторов на основе сравнительной геномики овощных пасленовых культур (томат, перец, баклажан) для поиска ДНК-маркеров, дифференцирующих образцы по накоплению антоцианов. Доклады Национальной академии наук Беларуси. 2019;63(6):721-729. – https://doi.org/10.29235/1561-8323-2019-63-6-721-729 https://elibrary.ru/bmbsqh; Babak O., Nikitinskaya T., Nekrashevich N., Yatsevich K., Kilchevsky A. Identification of DNA Markers of Anthocyanin Biosynthesis Disorders Based on the Polymorphism of Anthocyanin 1 Tomato Ortholog Genes in Pepper and Eggplant. Crop Breed Genet Genom. 2020;2(3):e200011. https://doi.org/10.20900/cbgg20200011; Бабак О.Г., Никитинская Т.В., Некрашевич Н.А., Яцевич К.К., Дрозд Е.В., Фатеев Д.А., Беренсен Ф.А., Артемьева А.М., Кильчевский А.В. Изучение полиморфизма генов R2R3MYB транскрипционных факторов культур семейства Solanaceae и гена Myb114 рода Brassica в связи с регуляцией биосинтеза антоцианов. Доклады Национальной академии наук Беларуси. 2022;66(4):414-424. https://doi.org/10.29235/1561-8323-2022-66-4-414-424 https://elibrary.ru/fuwcwf; https://www.vegetables.su/jour/article/view/2538

  3. 3
    Academic Journal

    Συνεισφορές: Cytogenetic analysis was carried out with the support of the budget project FWNR-2022-0017 of the Ministry of Science and Higher Education.

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 28, № 5 (2024); 506-514 ; Вавиловский журнал генетики и селекции; Том 28, № 5 (2024); 506-514 ; 2500-3259 ; 10.18699/vjgb-24-52

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/4232/1857; Adonina I.G., Petrash N.V., Timonova E.M., Khristov Yu.A., Salina E.A. Construction and study of leaf rust resistant common wheat lines with translocations of Aegilops speltoides Tausch. Genetic material. Russ. J. Genet. 2012;48(4):404¬409. DOI 10.1134/S1022795412020020; Badaeva E.D., Badaev N.S., Gill B.S., Filatenko A.A. Intraspecific karyotype divergence in Triticum araraticum (Poaceae). Plant Syst. Evol. 1994;192(1):117-145. DOI 10.1007/BF00985912; Badaeva E.D., Friebe B., Gill B.S. Genome differentiation in Aegilops. 1. Distribution of highly repetitive DNA sequence on chromosomes of diploid species. Genome. 1996;39(2):293¬306. DOI 10.1139/g96-040; Bedbrook J.R., Jones J., O’Dell M., Thompson R.D., Flavell R.B. A molecular description of telomeric heterochromatin in Secale species. Cell. 1980;19(2):545-560. DOI 10.1016/0092-8674(80)90529-2; Brevis J.C., Chicaiza O., Khan I.A., Jackson L., Morris C.F., Dubcovsky J. Agronomic and quality evaluation of common wheat nearisogenic lines carrying the leaf rust resistance gene Lr47. Crop Sci. 2008;48(4):1441¬1451. DOI 10.2135/cropsci2007.09.0537; Cherukuri D.P., Gupta S.K., Charpe A., Koul S., Prabhu K.V., Singh R.B., Haq Q.M.R. Molecular mapping of Aegilops speltoides derived leaf rust resistance gene Lr28 in wheat. Euphytica. 2005; 143:19¬26. DOI 10.1007/s10681-005-1680-6; Davoyan E.R., Davoyan R.O., Bebyakina I.V., Davoyan O.R., Zubanova Yu.S., Kravchenko A.M., Zinchenko A.N. Identification of a leaf¬rust resistance gene in species of Aegilops L., synthetic forms, and introgression lines of common wheat. Russ. J. Genet.: Appl. Res. 2012;2(4):325¬329. DOI 10.1134/S2079059712040041; Davoyan R.O., Bebyakina I.V., Davoyan O.R., Zinchenko A.N., Davoyan E.R., Kravchenko A.M., Zubanova Y.S. The use of synthetic forms in the preservation and exploitation of the gene pool of wild common wheat relatives. Russ. J. Genet.: Appl. Res. 2012;2(6):480¬485. DOI 10.1134/S2079059712060044; Davoyan R.O., Bebyakina I.V., Davoyan E.R., Mikov D.S., Badaeva E.D., Adonina I.G., Salina E.A., Zinchenco A.N., Zubanova Y.S. Use of a synthetic form Avrodes for transfer of leaf rust resistance from Aegilops speltoides to common wheat. Vavilovskii Zhurnal Ge netiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017; 21(6):663¬670. DOI 10.18699/VJ17.284 (in Russian); Davoyan R.O., Bebyakina I.V., Davoyan E.R., Zinchenko A.N., Zubanova Yu.S., Badaeva E.D. Use of synthetic forms for common wheat improvement. Risovodstvo = Rice Growing. 2018;3(40):47¬53 (in Russian); Dvorak J. Genetic variability in Aegilops speltoides affecting on homoelogous pairing in wheat. Can. J. Genet. Cytol. 1972;14(2):133¬141. DOI 10.1139/g72-046; Friebe B., Jiang J., Raupp W.J., McIntosh R.A., Gill B.S. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica. 1996;91:59¬87. DOI 10.1007/BF00035277; Gasner G., Straib U.W. Weitere Untersuchungen uber die Spezialisierung sverhaltnissedes Gelbrostes Puccinia glumarum (Schm.) Erikss. u. Henn. Arb. Boil. Reichsanstalt. 1934;21:121¬145; Helguera M., Vanzetti L., Soria M., Khan I.A., Kolmer J., Dubcovsky J. PCR markers for Triticum speltoides leaf rust resistance gene Lr51 and their use to develop isogenic hard red spring wheat lines. Crop Sci. 2005;45(2):728¬734. DOI 10.2135/cropsci2005.0728; Hoffmann B. Alteration of drought tolerance of winter wheat caused by translocation of rye chromosome segment 1RS. Cereal Res. Comm. 2008;36:269-278. DOI 10.1556/CRC.36.2008.2.7; Kerber E.R., Dyck P.L. Transfer to hexaploid wheat of linked genes for adult-plant leaf rust and seedling stem rust resistance from an amphiploid of Aegilops speltoides × Triticum monococcum. Genome. 1990;33(4):530¬537. DOI 10.1139/g90-07; Knott D.R. Transferring alien genes to wheat. In: Heyne E.G. (Ed.). Wheat and Wheat Improvement. American Society of Agronomy. Madison, WI, USA, 1987;462¬471; Lapochkina I.F., Grishina E.E., Vishnyakova Kh.S., Pukhalskiy V.A., Solomatin D.A., Serezhkina G.V. Common wheat lines with genetic material from Aegilops speltoides Tausch. Russ. J. Genet. 1996; 32(12):1438¬1442; Leonova I.N. Influence of alien genetic material on the manifestation of agronomically important traits of common wheat (T. aestivum L.). Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2018;22(3):321¬328. DOI 10.18699/VJ18.367 (in Russian); Leonova I.N., Budashkina E.B. The study of agronomical traits determining productivity of Triticum aestivum/Triticum timopheevii introgression lines with resistance to fungal diseases. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2016;20(3):311¬319. DOI 10.18699/VJ16.120 (in Russian); Mains E.B., Jakson H.S. Physiologic specialization in leaf rust of wheat, Puccinia triticiana Erikss. Phytopatology. 1926;16:89¬120; Manisterski A., Segal A., Lev A.A., Feeldman M. Evaluation of Israel Aegilops and Agropyron species for resistance to wheat leaf rust. Plant Disease. 1988;72(11):941¬944. DOI 10.1094/PD-72-0941; McIntosch R.A., Wellings C.R., Park R.F. Wheat Rust: an Atlas of Resistance Genes. Australia: CSIRO Publ., 1995; McIntosh R.A., Yamazaki Y., Dubovsky J., Rogers J., Morris C., Appels R., Xia X.C. Catalogue of Gene Symbols for Wheat. 2013. Available at: http://shigen.nig.ac.jp/wheat/komugi/genes; Methodology of State Variety Testing of Agricultural Crops. Moscow, 1988 (in Russian); Peterson R.F., Cambell A.B., Hannah A.E. A diagrammatic scale for estimating rust intensity of leaves and stem of cereals. Can. J. Res. 1948;26(5):496¬500. DOI 10.1139/cjr48c-033; Petrash N.V., Leonova I.N., Adonina I.G., Salina E.A. Effect of trans-locations from Aegilops speltoides Tausch on resistance to fungal diseases and productivity in common wheat. Russ. J. Genet. 2016; 52(12):1253¬1262. DOI 10.1134/S1022795416120097; Plaschke J., Ganal M.W., Röder M.S. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor. Appl. Genet. 1995;91(6-7):1001¬1007. DOI 10.1007/BF00223912; Rayburn A.L., Gill B.S. Isolation of a D¬genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol. Biol. Rep. 1986;4: 102¬109. DOI 10.1007/BF02732107; Salina E., Adonina I., Vatolina T., Kurata N. A comparative analysis of the composition and organization of two subtelomeric repeat families in Aegilops speltoides Tausch. and related species. Genetics. 2004;122(3):227¬237. DOI 10.1007/s10709-004-5602-7; Salina E.A., Lim Y.K., Badaeva E.D., Shcherban A.B., Adonina I.G., Amosova A.V., Samatadze T.E., Vatolina T.Yu., Zoshchuk S.A., Leitch A.A. Phylogenetic reconstruction of Aegilops section Sitopsis and the evolution of tandem repeats in the diploids and derived wheat polyploids. Genome. 2006;49(8):1023¬1035. DOI 10.1139/G06-050; Schneider A., Linc G., Molnar¬Lang M. Fluorescence in situ hybridization polymorphism using two repetitive DNA clones in different cultivars of wheat. Plant Breed. 2003;122(5):396¬400. DOI 10.1046/j.1439-0523.2003.00891; Sibikeev S.N., Voronina S.A., Badaeva E.D., Druzhin A.E. Study of resistance to leaf and stem rusts in Triticum aestivum–Aegilops speltoides lines. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2015;19(2):165¬170 (in Russian); Song W., Xie H., Liu Q., Xie C., Ni Z., Yang T., Sun Q., Liu Z. Molecular identification of Pm12 carrying introgression lines in wheat using genomic and EST¬SSR markers. Euphytica. 2007;158:95¬102. DOI 10.1007/s10681-007-9432-4; Volkova G.V., Matveeva I.P., Kudinova O.A. Virulence of the wheat stripe rust pathogene populationin the North¬Caucasus region of Russia. Mikologiya i Fitopatologiya = Mycology and Phytopathology. 2020;54(1):33¬41. DOI 10.31857/s0026364820010110 (in Russian); Zhirov E.G., Ternovskaya T.K. The genome engineering in wheat. Vestnik Sel’skokhozyaystvennoy Nauki = Herald of Agricultural Science. 1984;10:58¬66 (in Russian); https://vavilov.elpub.ru/jour/article/view/4232

  4. 4
    Academic Journal

    Συνεισφορές: The work was supported by Russian Science Foundation (project 22-24-20067), https://rscf.ru/project/22-24-20067.

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 28, № 5 (2024); 536-553 ; Вавиловский журнал генетики и селекции; Том 28, № 5 (2024); 536-553 ; 2500-3259 ; 10.18699/vjgb-24-52

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/4235/1860; Ali N., Mujeeb-Kazi A. Food production: global challenges to mitigate climate change. In: Physiological, Molecular, and Genetic Perspectives of Wheat Improvement. 2021;1-13. DOI 10.1007/978-3-030-59577-7_1; Ali S., Rodriguez-Algaba J., Thach T., Sørensen C.K., Hansen J.G., Lassen P., Nazari K., Hodson D.P., Justesen A.F., Hovmøller M.S. Yellow rust epidemics worldwide were caused by pathogen races from divergent genetic lineages. Front. Plant Sci. 2017;8:1057. DOI 10.3389/fpls.2017.01057; Alisaac E., Mahlein A.-K. Fusarium head blight on wheat: biology, modern detection and diagnosis and integrated disease management. Toxins. 2023;15(3):192. DOI 10.3390/toxins15030192; Antonovics J., Alexander H.M. The concept of fitness in plant-fungal pathogen systems. In: Leonard K.J., Fry W.E. (Eds.) Plant Disease Epidemiology. New York: McGraw-Hill, 1989;2:185-214; Aravindh R., Sivasamy M., Ganesamurthy K., Jayaprakash P., Gopalakrishnan C., Geetha M., Nisha R., Shajitha P., Peter J., Sindhu P.A., Vikas V.K. Marker assisted stacking/pyramiding of stem rust, leaf rust and powdery mildew disease resistance genes (Sr2/ Lr27/Yr30, Sr24/Lr24 and Sr36/Pm6) for durable resistance in wheat (Triticum aestivum L.). Electron. J. Plant Breed. 2020;11(3):907-991. DOI 10.37992/2020.1103.148; Arora S., Steuernagel B., Gaurav K., Chandramohan S., Long Y., Matny O., Johnson R., Enk J., Periyannan S., Singh N., … Bentley A.R., Ayliffe M., Olson E., Xu S.S., Steffenson B.J., Lagudah E., Wulff B.B.H. Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nat. Biotechnol. 2019; 37(2):139-143. DOI 10.1038/s41587-018-0007-9; Babkenova S.A., Babkenov A.T., Pakholkova E.V., Kanafin B.K. Pathogenic complexity of Septoria spot disease of wheat in northern Kazakhstan. Plant Sci. Today. 2020;7(4):601-606. DOI 10.14719/pst.2020.7.4.798; Bajgain P., Zhang X., Jungers J.M., DeHaan L.R., Heim B., Sheaf-fer C.C., Wyse D.L., Anderson J.A. ‘MN-Clearwater’, the first food-grade intermediate wheatgrass (Kernza perennial grain) cultivar. J. Plant Regist. 2020;14(3):288-297. DOI 10.1002/plr2.20042; Baker L., Grewal S., Yang C., Hubbart-Edwards S., Scholefield D., Ashling S., Burridge A., Przewieslik-Allen A., Wilkinson P., King I., King J. Exploiting the genome of Thinopyrum elongatum to expand the gene pool of hexaploid wheat. Theor. Appl. Genet. 2020;133(7): 2213-2226. DOI 10.1007/s00122-020-03591-3; Baranova O., Solyanikova V., Kyrova E., Konkova E., Gaponov S., Sergeev V., Shevchenko S., Mal’chikov P., Dolzhenko D., Bespalova L., Ablova I., Tarhov A., Vasilova N., Askhadullin D., Askhadullin D., Sibikeev S.N. Evaluation of resistance to stem rust and identification of Sr genes in Russian spring and winter wheat cultivars in the Volga region. Agriculture. 2023;13(3):635. DOI 10.3390/agriculture13030635; Bhardwaj S.C., Prashar M., Kumar M., Jain S.K., Datta D. Lr19 resistance in wheat becomes susceptible to Puccinia triticina in India. Plant Dis. 2005;89(12):1360. DOI 10.1094/PD-89-1360A; Bhavani S., Hodson D.P., Huerta-Espino J., Randhawa M.S., Singh R.P. Progress in breeding for resistance to Ug99 and other races of the stem rust fungus in CIMMYT wheat germplasm. Front. Agric. Sci. Eng. 2019;6(3):210-224. DOI 10.15302/J-FASE-2019268; Brar G.S., Fetch T., McCallum B.D., Hucl P.J., Kutcher H.R. Virulence dynamics and breeding for resistance to stripe, stem, and leaf rust in Canada since 2000. Plant Dis. 2019;103(12):2981-2995. DOI 10.1094/PDIS-04-19-0866-FE; Carmona M.A., Ferrazini M., Barreto D.E. Tan spot of wheat caused by Drechslera tritici-repentis: detection, transmission, and control in wheat seed. Cereal Res. Commun. 2006;34(2-3):1043-1049. DOI 10.1556/CRC.34.2006.2-3.236; Ceoloni C., Kuzmanović L., Forte P., Gennaro A., Bitti A. Targeted exploitation of gene pools of alien Triticeae species for sustainable and multi-faceted improvement of the durum wheat crop. Crop Pasture Sci. 2014;65(1):96-111. DOI 10.1071/CP13335; Ceoloni C., Forte P., Kuzmanović L., Tundo S., Moscetti I., De Vita P., Virili M.E., D’Ovidio R. Cytogenetic mapping of a major locus for resistance to Fusarium headblight and crown rot of wheat on Thinopyrum elongatum 7EL and its pyramiding with valuable genes from a Th. ponticum homoeologous arm onto bread wheat 7DL. Theor. Appl. Genet. 2017;130(10):2005-2024. DOI 10.1007/s00122-017-2939-8; Chen C., Han Y., Xiao H., Zou B., Wu D., Sha L., Yang C., Liu S., Cheng Y., Wang Y., Kang H., Fan X., Zhou Y., Zhang T., Zhang H. Chromosome-specific painting in Thinopyrum species using bulked oligonucleotides. Theor. Appl. Genet. 2023;136(8):177. DOI 10.1007/s00122-023-04423-w; Chen Q., Conner R.L., Laroche A. Identification of the parental chromosomes of the wheat–alien amphiploid agrotana by genomic in situ hybridization. Genome. 1995;38(6):1163-1169. DOI 10.1139/g95-154; Chen Q., Conner R.L., Laroche A., Thomas J.B. Genome analysis of Thinopyrum intermedium and Thinopyrum ponticum using genomic in situ hybridization. Genome. 1998;41(4):580-586. DOI 10.1139/g98-055; Chen S., Huang Z., Dai Y., Qin Y., Zhang L., Gao Y., Chen J. The development of 7E chromosome-specific molecular markers for Thinopyrum elongatum based on SLAF-seq technology. PLoS One. 2013;8(6):e65122. DOI 10.1371/journal.pone.0065122; Chen X.M. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Can. J. Plant Pathol. 2005;27:314-337. DOI 10.1080/07060660509507230; Colmer T.D., Flowers T.J., Munns R. Use of wild relatives to improve salt tolerance in wheat. J. Exp. Bot. 2006;57(5):1059-1078. DOI 10.1093/jxb/erj124; Curtis T., Halford N.G. The challenge of increasing wheat yield and the importance of not compromising food safety. Ann. Appl. Biol. 2014;164(3):354-372. DOI 10.1111/aab.12108; Davoyan R.O., Bebyakina I.V., Davoyan E.R., Zinchenco A.N., Zubanova Y.S., Mikov D.S. Introgression of common wheat lines with genetic material of Agropyron glaucum. Russ. J. Genet. Appl. Res. 2016;6(1):54-61. DOI 10.1134/S2079059716010056; FAO Report. The impact of disasters and crises on agriculture and food security. Rome: FAO, 2021. DOI 10.4060/cb3673en; Fedak G., Chen Q., Conner R.L., Laroche A., Petroski R., Arm-strong K.W. Characterization of wheat-Thinopyrum partial amphiploids by meiotic analysis and genomic in situ hybridization. Genome. 2000;43(4):712-719. DOI 10.1139/g00-027; Fisenko A.V., Kuzmina N.P. Remote hybridization of wheat in winter hardiness selection. Agrarnaya Rossiya = Agricultural Russia. 2020;5:3-8. DOI 10.30906/1999-5636-2020-5-3-8 (in Russian); Fones H., Gurr S. The impact of Septoria tritici Blotch disease on wheat: an EU perspective. Fungal Genet. Biol. 2015;79:3-7. DOI 10.1016/j.fgb.2015.04.004; Frailie T.B., Innes R.W. Engineering healthy crops: molecular strategies for enhancing the plant immune system. Curr. Opin. Biotechnol. 2021;70:151-157. DOI 10.1016/j.copbio.2021.04.006; Friebe B., Jiang J., Knott D.R., Gill B.S. Compensation indices of radiation-induced wheat-Agropyron elongatum translocations conferring resistance to leaf rust and stem rust. Crop Sci. 1994;34(2): 400-404. DOI 10.2135/cropsci1994.0011183X003400020018x; Friebe B., Jiang J., Raupp W.J., McIntosh R.A., Gill B.S. Characterization of wheat-alien translocations resistance to diseases and pest: current status. Euphytica. 1996;91:59-87. DOI 10.1007/BF00035277; Friebe B., Raupp W.J., Gill B.S. Wheat alien translocation lines. Ann. Wheat Newslett. 2000;46:198-202; Friebe B., Zhang P., Linc G., Gill B.S. Robertsonian translocations in wheat arise by centric misdivision of univalents at anaphase I and rejoining of broken centromeres during interkinesis of meiosis II. Cytogenet. Genome Res. 2005;109(1-3):293-297. DOI 10.1159/000082412; Gao P., Zhou Y., Gebrewahid T.W., Zhang P., Yan X., Li X., Yao Z., Li Z., Liu D. Identification of known leaf rust resistance genes in common wheat cultivars from Sichuan province in China. Crop Protect. 2019;115:122-129. DOI 10.1016/j.cropro.2018.09.012; Gill B.S., Friebe B., Wilson D.L., Cox T.S. Registration of KS93WGRC27 wheat streak mosaic virus-resistant T4DL·4Ai#2S wheat germplasm. Crop Sci. 1995;35(4):1236-1237. DOI 10.2135/cropsci1995.0011183X003500040100x; Goncharov N.P. Scientific support to plant breeding and seed production in Siberia in the XXI century. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2021;25(4): 448-459. DOI 10.18699/VJ21.050; Gorham J., Forster B.P., Budrewicz E., Wyn J.R.G., Miller T.E., Law C.N. Salt tolerance in the Triticeae: solute accumulation and distribution in an amphidiploid derived from Triticum aestivum cv. Chinese Spring and Thinopyrum bessarabicum. J. Exp. Bot. 1986;37(10):1435-1449. DOI 10.1093/jxb/37.10.1435; Gultyaeva E., Shaydayuk E., Gannibal P. Leaf rust resistance genes in wheat cultivars registered in Russia and their influence on adaptation processes in pathogen populations. Agriculture. 2021;11(4): 319. DOI 10.3390/agriculture11040319; Gultyaeva E., Shaydayuk E., Kosman E. Virulence diversity of Puccinia striiformis f. sp. tritici in common wheat in Russian regions in 2019–2021. Agriculture. 2022;12(11):1957. DOI 10.3390/agriculture12111957; Gultyaeva E., Gannibal P., Shaydayuk E. Long-term studies of wheat leaf rust in the north-western region of Russia. Agriculture. 2023; 13(2):255. DOI 10.3390/agriculture13020255; Guo J., Yu X., Yin H., Liu G., Li A., Wang H., Kong L. Phylogenetic relationships of Thinopyrum and Triticum species revealed by SCoT and CDDP markers. Plant Syst. Evol. 2016;302:1301-1309. DOI 10.1007/s00606-016-1332-4; Guo X., Huang Y., Wang J., Fu S., Wang C., Wang M., Zhou C., Hu X., Wang T., Yang W., Han F. Development and cytological characterization of wheat–Thinopyrum intermedium translocation lines with novel stripe rust resistance gene. Front. Plant Sci. 2023;14:1135321. DOI 10.3389/fpls.2023.1135321; Han H., Ma X., Wang Z., Qi K., Yang W., Liu W., Zhang J., Zhou S., Lu Y., Yang X., Li X., Li L. Chromosome 5P of Agropyron cristatum induces chromosomal translocation by disturbing homologous chromosome pairing in a common wheat background. Crop J. 2023;11(1):228-237. DOI 10.1016/j.cj.2022.06.002; Hang A., Bockelman H.E., Burton C.S. Cytological and seed morphological investigation of 250 accessions from the W.J. Sando collection. Agronomy Society of America, Crop Science Society of America, Soil Science Society of America meeting, November 6−10, 2005. Salt Lake City, Utah, 2005; Hao M., Zhang L., Ning S., Huang L., Yuan Z., Wu B., Yan Z., Dai S., Jiang B., Zheng Y., Liu D. The resurgence of introgression breeding, as exemplified in wheat improvement. Front. Plant Sci. 2020;11: 252. DOI 10.3389/fpls.2020.00252; Hassani H.S., King I.P., Reader S.M., Caligari P.D.S., Miller T.E. Can tritipyrum, a new salt tolerant potential amphiploid, be a successful cereal like triticale? J. Agric. Sci. Technol. 2000;2(3):177-195; He F., Wang Y.H., Bao Y.G., Ma Y.X., Wang X., Li X.F., Wang X. Chromosomal constitutions of five wheat-Elytrigia elongata partial amphiploids as revealed by GISH, multicolor GISH and FISH. Comp. Cyogen. 2017;11(3):525-540. DOI 10.3897/CompCytogen.v11i3.11883; He R.L., Chang Z.J., Yang Z.J., Yuan Z.Y., Zhan H.X., Zhang X.J., Liu J.X. Inheritance and mapping of powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. Theor. Appl. Genet. 2009;118(6):1173-1180. DOI 10.1007/s00122-009-0971-z; Hohmann U., Badaeva K., Busch W., Friebe B., Gill B.S. Molecular cytogenetic analysis of Agropyron chromatin specifying resistance to barley yellow dwarf virus in wheat. Genome. 1996;39(2):336-347. DOI 10.1139/g96-044; Hou L., Jia J., Zhang X., Li X., Yang Z., Ma J., Guo H., Zhan H., Qiao L., Chang Z. Molecular mapping of the stripe rust resistance gene Yr69 on wheat chromosome 2AS. Plant Dis. 2016;100(8):1717-1724. DOI 10.1094/PDIS-05-15-0555-RE; Huang Q., Li X., Chen W., Xiang Z., Zhong S., Chang Z., Zhang M., Zhang H.Y., Tan F.Q., Ren Z.L., Luo P.G. Genetic mapping of a putative Thinopyrum intermedium-derived stripe rust resistance gene on wheat chromosome 1B. Theor. Appl. Genet. 2014;127(4):843-853. DOI 10.1007/s00122-014-2261-7; Huerta-Espino J., Singh R.P. First report on virulence in wheat with leaf rust resistance gene Lr19 in Mexico. Plant Dis. 1994;78:640. DOI 10.1094/PD-78-0640C; Jiang B., Liu T., Li H., Han H., Li L., Zhang J., Yang X., Zhou S., Li X., Liu W. Physical mapping of a novel locus conferring leaf rust resistance on the long arm of Agropyron cristatum chromosome 2P. Front. Plant Sci. 2018;9:817. DOI 10.3389/fpls.2018.00817; Jin Y., Szabo L.J., Pretorius Z.A., Singh R.P., Ward R., Fetch T., Jr. Detection of virulence to resistance gene Sr24 with in race TTKS of Puccinia graminis f. sp. tritici. Plant Dis. 2008;92(6):923-926. DOI 10.1094/PDIS-92-6-0923; Johnson R. Genetic background of durable resistance. In: Lamberti F., Waller J.M., Vander Graaff N.A. (Eds.) Durable Resistance in Crops. New York: Plenum Press, 1983;152-163; Knott D.R. Translocations involving Triticum chromosomes and Agropyron chromosomes carrying rust resistance. Can. J. Genet. Cytol. 1968;10(3):695-696. DOI 10.1139/g68-087; Kocheshkova A.A., Kroupin P.Y., Bazhenov M.S., Karlov G.I., Pochtovyy A.A., Upelniek V.P., Belov V.I., Divashuk M.G. Pre-harvest sprouting resistance and haplotype variation of ThVp-1 gene in the collection of wheat-wheatgrass hybrids. PLoS One. 2017;12(11): e0188049. DOI 10.1371/journal.pone.0188049; Kolmer J. Leaf rust of wheat: pathogen biology, variation and host resistance. Forests. 2013;4(1):70-84. DOI 10.3390/f4010070; Kolmer J.A., Jin Y., Long D.L. Wheat leaf and stem rust in the United States. Aust. J. Agric. Res. 2007;58(6):631-638. DOI 10.1071/AR07057; Kosová K., Vítámvás P., Urban M.O., Kholová J., Prášil I.T. Breeding for enhanced drought resistance in barley and wheat – drought-associated traits, genetic resources and their potential utilization in breeding programmes. Czech J. Gen. Pl. Breed. 2014;50(4):247-261. DOI 10.17221/118/2014-CJGPB; Kroupin P.Y., Kuznetsova V.M., Nikitina E.A., Martirosyan Y.T., Karlov G.I., Divashuk M.G. Development of new cytogenetic markers for Thinopyrum ponticum (Podp.) Z.-W. Liu & R.-C. Wang. Comp. Cytogenet. 2019;13(3):231-243. DOI 10.3897/CompCytogen.v13i3.36112; Kumar A., Choudhary A., Kaur H., Mehta S. A walk towards wild grasses to unlock the clandestine of gene pools for wheat improvement: a review. Plant Stress. 2022;3:100048. DOI 10.1016/j.stress.2021.100048; Kuzmanović L., Ruggeri R., Virili M.E., Rossini F., Ceoloni C. Effects of Thinopyrum ponticum chromosome segments transferred into durum wheat on yield components and related morpho-physiological traits in Mediterranean rain-fed conditions. Field Crops Res. 2016; 186:86-98. DOI 10.1016/j.fcr.2015.11.007; Kuzmanović L., Rossini F., Ruggeri R., Pagnotta M.A., Ceoloni C. Engineered durum wheat germplasm with multiple alien introgressions: agronomic and quality performance agronomy. Agronomy. 2020;10(4):486. DOI 10.3390/agronomy10040486; Lammer D., Cai X.W., Li H., Arterburn M., Chatelain J., Greco A., Lyon S., Gollnick M., Murrar T.D., Jones S.S. Utilization of Thynopyrum spp. in breeding winter wheat for disease resistance, stress tolerance, and perennial habit. In: Increasing Wheat Production in Central Asia through Science and International Cooperation. Proc. 1st Central Asian Wheat Conf. Almaty, Kazakhstan, 10–13 June, 2003. Almaty, 2005;147-151; Lang T., La S., Li B., Yu Z., Chen Q., Li J., Yang E., Li G., Yang Z. Precise identification of wheat-Thinopyrum intermedium translocation chromosomes carrying resistance to wheat stripe rust in line Z4 and its derived progenies. Genome. 2018;61(3):177-185. DOI 10.1139/gen-2017-0229; Leonova I.N. Influence of alien genetic material on the manifestation of agronomically important traits of common wheat (T. aestivum L.). Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2018;22(3):321-328. DOI 10.18699/VJ18.367 (in Russian); Li H., Wang X. Thinopyrum ponticum and Th. intermedium: the promising source of resistance to fungal and viral diseases of wheat. J. Genet. Genomics. 2009;36(9):557-565. DOI 10.1016/S1673-8527(08)60147-2; Li H., Boshoff W.H.P., Pretorius Z.A., Zheng Q., Li B., Li Z. Establishment of wheat-Thinopyrum ponticum translocation lines with resistance to Puccinia graminis f. sp. tritici Ug99. J. Genet. Genom. 2019;46(8):405-407. DOI 10.1016/j.jgg.2019.07.005; Li M.Z., Wang Y.Z., Liu X.J., Li X.F., Wang H.G., Bao Y.G. Molecular cytogenetic identification of a novel wheat–Th. ponticum 1Js (1B) substitution line resistant to powdery mildew and leaf rust. Front. Plant Sci. 2021;12:727734. DOI 10.3389/fpls.2021.727734; Li M.Z., Yuan Y.Y., Ni F., Li X.F., Wang H.G., Bao Y.G. Characterization of two wheat-Thinopyrum ponticum introgression lines with pyramiding resistance to powdery mildew. Front. Plant Sci. 2022; 13:943669. DOI 10.3389/fpls.2022.943669; Li W., Zhang Q., Wang S., Langham M.A., Singh D., Bowden R.L., Xu S.S. Development and characterization of wheat–sea wheatgrass (Thinopyrum junceiforme) amphiploids for biotic stress resistance and abiotic stress tolerance. Theor. Appl. Gen. 2019;132(1):163-175. DOI 10.1007/s00122-018-3205-4; Li X., Jiang X., Chen X., Song J., Ren C., Xiao Y., Gao X., Ru Z. Molecular cytogenetic identification of a novel wheat-Agropyron elongatum chromosome translocation line with powdery mildew resistance. PLoS One. 2017;12(9):e0184462. DOI 10.1371/journal.pone.0184462; Li Z.S., Li B., Tong Y.P. The contribution of distant hybridization with decaploid Agropyron elongatum to wheat improvement in China. J. Genet. Genomics. 2008;35(8):451-456. DOI 10.1016/S1673-8527; (08)60062-4 Liu J., Chang Z., Zhang X., Yang Z., Li X., Jia J., Zhan H., Guo H., Wang J. Putative Thinopyrum intermedium-derived stripe rust resistance gene Yr50 maps on wheat chromosome arm 4BL. Theor. Appl. Genet. 2013;126(1):265-274. DOI 10.1007/s00122-012-1979-3; Liu L.Q., Luo Q.L., Li H.W., Li B., Li Z.S., Zheng Q. Physical mapping of the blue-grained gene from Thinopyrum ponticum chromosome 4Ag and development of blue-grain-related molecular markers and a FISH probe based on SLAF-seq technology. Theor. Appl. Genet. 2018;131(11):2359-2370. DOI 10.1007/s00122-018-3158-7; Liu W., Jin Y., Rouse M., Friebe B., Gill B., Pumphrey M.O. Development and characterization of wheat-Ae. searsii Robertsonian translocations and a recombinant chromosome conferring resistance to stem rust. Theor. Appl. Genet. 2011a;122(8):1537-1545. DOI 10.1007/s00122-011-1553-4; Liu W., Rouse M., Friebe B., Jin Y., Gill B., Pumphrey M.O. Discovery and molecular mapping of a new gene conferring resistance to stem rust, Sr53, derived from Aegilops geniculata and characterization of spontaneous translocation stocks with reduced alien chromatin. Chromosome Res. 2011b;19(5):669-682. DOI 10.1007/s10577-011-9226-3; Liu W., Danilova T.V., Rouse M.N., Bowden R.L., Friebe B., Gill B.S., Pumphrey M.O. Development and characterization of a compensating wheat-Thinopyrum intermedium Robertsonian translocation with Sr44 resistance to stem rust (Ug99). Theor. Appl. Genet. 2013;126(5):1167-1177. DOI 10.1007/s00122-013-2044-6; Liu X., Ao K., Yao J., Zhang Y., Li X. Engineering plant disease resistance against biotrophic pathogens. Curr. Opin. Plant Biol. 2021;60: 101987. DOI 10.1016/j.pbi.2020.101987; Luo P., Hu X., Chang Z., Zhang M., Zhang H., Ren Z. A new stripe rust resistance gene transferred from Thinopyrum intermedium to hexaploid wheat (Triticum aestivum). Phytoprotection. 2009a;90(2): 57-63. DOI 10.7202/044023ar; Luo P.G., Luo H.Y., Chang Z.J., Zhang H.Y., Zhang M., Ren Z.L. Characterization and chromosomal location of Pm40 in common wheat: a new gene for resistance to powdery mildew derived from Elytrigia intermedium. Theor. Appl. Genet. 2009b;118(6):1059-1064. DOI 10.1007/s00122-009-0962-0; Ma F.F., Xu Y.F., Ma Z.Q., Li L.H., An D.G. Genome-wide association and validation of key loci for yield-related traits in wheat founder parent Xiaoyan 6. Mol. Breed. 2018;38:91. DOI 10.1007/s11032-018-0837-7158; Martynov S.P., Dobrotvorskaya T.V., Krupnov V.A. Genealogical analysis of the use of two wheatgrass (Agropyron) species in common wheat (Triticum aestivum L.) breeding for disease resistance. Russ. J. Genet. 2016;52(2):154-163. DOI 10.1134/S1022795416020071; McDonald B.A., Stukenbrock E.H. Rapid emergence of pathogens in agro-ecosystems: global threats to agricultural sustainability and food security. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016; 371(1709):20160026. DOI 10.1098/rstb.2016.0026; McIntosh R.A., Wellings C.R., Park R.F. (Eds.) Wheat Rusts. An Atlas of Resistance Genes. Springer Dordrecht, 1995. DOI 10.1071/9780643101463; McIntosh R.A., Dubcovsky J., Rogers W.J., Xia X.C., Raupp W.J. Catalogue of gene symbols for wheat: 2018 Supplement. Ann. Wheat Newslett. 2018;64:73-93; Melotto M., Zhang L., Oblessuc P.R., He S.Y. Stomatal defense a decade later. Plant Physiol. 2017;174(2):561-571. DOI 10.1104/pp.16.01853; Meshkova L.V., Rosseeva L.P., Korenyuk E.A., Belan I.A. Dynamics of distribution of the wheat leaf rust pathotypes virulent to the cultivars with Lr9 gene in Omsk region. Mikologiya i Fitopatologiya = Mycology and Phytopathology. 2012;46(6):397-400 (in Russian); Mo Q., Wang C.Y., Chen C.H., Wang Y.J., Zhang H., Liu X.L., Ji W.Q. Molecular cytogenetic identification of a wheat Thinopyrum ponticum substitution line with stripe rust resistance. Cereal Res. Com-mun. 2017;45(4):564-573. DOI 10.1556/0806.45.2017.037; Niks R.E. How specific is non-hypersensitive host and nonhost resistance of barley to rust and mildew fungi? J. Integr. Agric. 2014; 13(2):244-254. DOI 10.1016/S2095-3119(13)60648-6; Niu Z., Klindworth D.L., Yu G., Friessen T.L., Chao S., Jin Y., Cai X., Ohm J.-B., Rasmussen J.B., Xu S.S. Development and characterization of wheat lines carrying stem rust resistance gene Sr43 derived from Thinopyrum ponticum. Theor. Appl. Genet. 2014;127(4):969-980. DOI 10.1007/s00122-014-2272-4; O’Driscoll A., Kildea S., Doohan F., Spink J., Mullins E. The wheat–Septoria conflict: a new front opening up? Trends Plant Sci. 2014; 19(9):602-610. DOI 10.1016/j.tplants.2014.04.011; Ohm H.W., Anderson J.M., Sharma H.C., Ayala L., Thompson N., Uphaus J.J. Registration of yellow dwarf viruses resistant wheat germplasm line P961341. Crop Sci. 2005;45(2):805-806. DOI 10.2135/cropsci2005.0805; Oliver R.E., Xu S.S., Stack R.W., Friesen T.L., Jin Y., Cai X. Molecular cytogenetic characterization of four partial wheat–Thinopyrum ponticum amphiploids and their reactions to Fusarium head blight, tan spot, and Stagonospora nodorum blotch. Theor. Appl. Genet. 2006;112(8):1473-1479. DOI 10.1007/s00122-006-0250-1; Park R.F., Bariana H.S., Wellings C.R., Wallwork H. Detection and occurrence of a new pathotype of Puccinia triticina with virulence for Lr24 in Australia. Aust. J. Agric. Res. 2002;53(9):1069-1076. DOI 10.1071/AR02018; Pathotype Tracker – Where is Ug99? 2023. Available at: https://rusttracker.cimmyt.org/?page_id=22; Patpour M., Hovmøller M.S., Rodriguez-Algaba J., Randazzo B., Villegas D., Shamanin V.P., Berlin A., Flath K., Czembor P., Hanzalova A., Sliková S., Skolotneva E.S., Jin Y., Szabo L., Meyer K.J.G., Valade R., Thach T., Hansen J.G., Justesen A.F. Wheat stem rust back in Europe: diversity, prevalence and impact on host resistance. Front. Plant Sci. 2022;13:882440. DOI 10.3389/fpls.2022.882440; Peng Y., Wersch R., Zhang Y. Convergent and divergent signaling in pamp-triggered immunity and effector-triggered immunity. Mol. Plant Microbe Interact. 2018;31(4):403-409. DOI 10.1094/MPMI-06-17-0145-CR; Peto F.H. Hybridization of Triticum and Agropyron. II. Cytology of the male parents and F1 generation. Can. J. Res. 1936;14(5):203-214. DOI 10.1139/cjr36c-017; Phuke R.M., He X., Juliana P., Bishnoi S.K., Singh G.P., Kabir M.R., Roy K.K., Joshi A.K., Singh R.P., Singh P.K. Association mapping of seedling resistance to tan spot (Pyrenophora tritici¬repentis Race 1) in CIMMYT and South Asian wheat germplasm. Front. Plant Sci. 2020;11:1309. DOI 10.3389/fpls.2020.01309; Plotnikova L.Ya. Influence of the surface features and physiological reactions of non-host species on the development of cellular structures of rust fungi. Tsitologiya = Cytology. 2008;50(5):439-446 (in Russian); Plotnikova L.Ya. The involvement of reactive oxygen species in defense of wheat lines with the genes introgressed from Agropyron species contributing the resistance against brown rust. Russ. J. Plant Physiol. 2009;56(2):181-189. DOI 10.1134/S102144370902006X; Plotnikova L.Ya., Aidosova A.T., Rispekova A.N., Myasnikov A.Yu. Introgressive lines of common wheat with genes of wheat grass Agropyron elongatum resistant to leaf diseases in the South West Siberia. Vestnik OmGAU = OmskSAU Bull. 2014;4(16):3-7 (in Russian); Plotnikova L.Ya., Meshkova L.V., Gultyaeva E.I., Mitrofanova O.P., Lapochkina I.F. A tendency towards leaf rust resistance decrease in common wheat introgression lines with genetic material from Aegilops speltoides Tausch. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2018;22(5):560-567. DOI 10.18699/VJ18.395 (in Russian); Plotnikova L.Ya., Sagendykova A.T., Ignatyeva E.Y. Defence of bread wheat with the tall wheatgrass genes while accelerating the physiological specialization of the causative agent of stem rust. Vestnik OmGAU = OmskSAU Bull. 2021;4:35-44. DOI 10.48136/2222-0364_2021_4_35 (in Russian); Plotnikova L.Ya., Pozherukova V., Knaub V., Kashuba Y. What was the reason for the durable effect of Sr31 against wheat stem rust? Agriculture. 2022;12(12):2116. DOI 10.3390/agriculture12122116; Plotnikova L.Ya., Knaub V., Pozherukova V. Nonhost resistance of Thinopyrum ponticum to Puccinia graminis f. sp. tritici and the effects of the Sr24, Sr25, and Sr26 genes introgressed to wheat. Int. J. Plant Biol. 2023a;14(2):435-457. DOI 10.3390/ijpb14020034; Plotnikova L.Ya., Sagendykova A., Pozherukova V. The use of genetic material of tall wheatgrass to protect common wheat from Septoria blotch in Western Siberia. Agriculture. 2023b;13(1):203. DOI 10.3390/agriculture13010203; Plotnikova L.Ya., Sagendykova A.T., Kuzmina S.P. Drought resistance of introgressive spring common wheat lines with genetic material of tall wheatgrass. Proceedings on Applied Botany, Genetics and Breeding. 2023c;184(2):38-50. DOI 10.30901/2227-8834-2023-2-38-50; Pototskaya I.V., Shamanin V.P., Aydarov A.N., Morgounov A.I. The use of wheatgrass (Thinopyrum intermedium) in breeding. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2022;26(5):413-421. DOI 10.18699/VJGB-22-51 (in Russian); Pugliese J.Y., Culman S.W., Sprunger C.D. Harvesting forage of the perennial grain crop Kernza (Thinopyrum intermedium) increases root biomass and soil nitrogen cycling. Plant Soil. 2019;437(2):241-254. DOI 10.1007/s11104-019-03974-6; Qi Z.J., Du P., Qian B.L., Zhuang L., Chen H., Chen T., Shen J., Guo J., Feng Y., Pei Z. Characterization of a wheat–Thinopyrum bessarabicum (T2JS-2BS·2BL) translocation line. Theor. Appl. Genet. 2010; 121(3):589-597. DOI 10.1007/s00122-010-1332-7; Salina E.A., Adonina I.G., Badaeva E.D., Kroupin P.Yu., Stasyuk A.I., Leonova I.N., Shishkina A.A., Divashuk M.G., Starikova E.V., Khuat T.M.L., Syukov V.V., Karlov G.I. A Thinopyrum intermedium chromosome in bread wheat cultivars as a source of gene conferring resistance to fungal diseases. Euphytica. 2015;204:91-101. DOI 10.1007/s10681-014-1344-5; Savari S., Willocquet L., Pethybridge S.J., Esker P., McRoberts N., Nelson A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019;3(3):430-439. DOI 10.1038/s41559-018-0793-y; Sears E.R. The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Broohaven Sympos. Biol. 1956;9:1-21; Sears E.R. Genetic control of chromosome pairing in wheat. Annu. Rev. Genet. 1976;10:31-51. DOI 10.1146/annurev.ge.10.120176.000335; Sears E.R. Analysis of wheat-Agropyron recombinant chromosomes. In: Proceedings of the 8th Eucarpia Congress, Madrid, Spain, 23– 25 May 1977. 1978;63-72; Sepsi A., Molnar I., Szalay D., Molnar-Lang M. Characterization of a leaf rust resistant wheat-Thinopyrum ponticum partial amphiploid BE-1, using sequential multicolor GISH and FISH. Theor. Appl. Genet. 2008;116(6):825-834. DOI 10.1007/s00122-008-0716-4; Shamanin V.P., Salina E., Wanyera R., Zelenskiy Y., Olivera P., Morgunov A. Genetic diversity of spring wheat from Kazakhstan and Russia for resistance to stem rust Ug99. Euphytica. 2016;212:287-296. DOI 10.1007/s10681-016-1769-0; Shi Q., Guo X., Su H., Zhang Y., Hu Z., Zhang J., Han F. Autoploid origin and rapid diploidization of the tetraploid Thinopyrum elongatum revealed by genome differentiation and chromosome pairing in meiosis. Plant J. 2023;113(3):536-545. DOI 10.1111/tpj.16066; Sibikeev S.N., Markelova T.S., Baukenova E.A., Druzhin A.E. Likely threat of the spread of race Ug99 of Puccinia graminis f. sp. tritici on wheat in Southeastern Russia. Russ. Agric. Sci. 2016; 42(2):145-148. DOI 10.3103/S1068367416020154; Sibikeev S.N., Badaeva E.D., Gultyaeva E.I., Druzhin A.E., Shishkina A.A., Dragovich A.Y., Kroupin P.Y., Karlov G.I., Khuat T.M., Divashuk M.G. Comparative analysis of Agropyron intermedium (Host) Beauv 6Agi and 6Agi2 chromosomes in bread wheat cultivars and lines with wheat–wheatgrass substitutions. Russ. J. Genet. 2017;53(3):314-324. DOI 10.1134/S1022795417030115; Sibikeev S.N., Baranova O.A., Druzhin A.E. A prebreeding study of introgression spring bread wheat lines carrying combinations of stem rust resistance genes, Sr22+Sr25 and Sr35+Sr25. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2021;25(7):713-722. DOI 10.18699/VJ21.081; Singh D. Development and Characterization of Wheat-Thinopyrum Junceiforme chromosome addition lines. Thesis. South Dakota State Univ., 2019 https://openprairie.sdstate.edu/etd/3368; Singh R.P., Hodson D.P., Jin Y., Ldaaguh E.S., Ayliffe M.A., Bhavani S., Rouse M.N., Pretorius Z.A., Szabo L.J., Huerta-Espino J., Basnet B.R., Lan C., Hovmøller M.S. Emergence and spread of new races of wheat stem rust fungus: continued threat to food security and prospects of genetic control. Phytopathology. 2015;105(7):872-884. DOI 10.1094/PHYTO-01-15-0030-FI; Singh R.P., Singh P.K., Rutkoski J., Hodson D.P., He X., Jørgensen L.N., Hovmøller M.S., Huerta-Espino J. Disease impact on wheat yield potential and prospects of genetic control. Annu. Rev. Phytopathol. 2016;54:303-322. DOI 10.1146/annurev-phyto-080615-095835; Skolotneva E.S., Kelbin V.N., Morgunov A.I., Boiko N.I., Shamanin V.P., Salina E.A. Races composition of the Novosibirsk population of Puccinia graminis f. sp. tritici. Biol. Bull. Rev. 2023;13(1): S114-S122. DOI 10.1134/S2079086423070125; Smith D.C. Intergeneric hybridization of Triticum and other grasses, principally Agropyron. J. Hered. 1943;34(7):219-224. DOI 10.1093/oxfordjournals.jhered.a105291; Smith E.L., Schlehuber A.M., Young H.C., Edwards L.H. Registration of Agent wheat. (Reg. No. 471). Crop Sci. 1968;8(4):511-512. DOI 10.2135/cropsci1968.0011183X000800040039x; Sun S.C. The approach and methods of breeding new varieties and new species from Agrotriticum hybrids. Acta Agron. Sin. 1981;7(1): 51-58; Tadesse Y., Chala A., Kassa B. Yield loss due to Septoria tritici blotch (Septoria tritici) of bread wheat (Triticum aestivum L.) in the central highlands of Ethiopia. J. Biol. Agric. Healthc. 2020;10(10):1-7. DOI 10.7176/JBAH/10-10-01; Toropova E.Yu., Kazakova O.A., Piskarev V.V. Septoria blotch epidemic process on spring wheat varieties. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2020; 24(2):139-148. DOI 10.18699/VJ20.609; Tsitsin N.V. Problems of distant hybridization. In: Problems of Distant Hybridization. Moscow: Kolos Publ., 1979;5-20 (in Russian); Tsvelev N.N. Grasses of the Soviet Union (Russian translations series, 8). Abingdon, UK: Routledge, 1984 Upelniek V.P., Belov V.I., Ivanova L.P., Dolgova S.P., Demidov A.S. Heritage of academician N.V. Tsitsin: state-of-the-art and potential of the collection of intermediate wheat × couch grass hybrids. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2012;16(3):667-674 (in Russian); Wang H.W., Sun S.L., Ge W.Y., Zhao L.F., Hou B.Q., Wang K., Lyu Z.F., Chen L.Y., Xu S.S., Guo J., … Li A.F., Xu S.S., Bai G.H., Nevo E., Gao C.X., Ohm H., Kong L.R. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science. 2020;368(6493):eaba5435. DOI 10.1126/science.aba5435; Wang L., Shi Q., Su H., Wang Y., Sha L., Fan X., Kang H., Zhang H., Zhou Y. St2-80: a new FISH marker for St genome and genome analysis in Triticeae. Genome. 2017;60(7):553-563. DOI 10.1139/gen-2016-0228; Wang R.R.-C. Agropyron and Psathyrostachys. In: Kole C. (Ed.) Wild Crop Relatives: Genomic and Breeding Resources. Berlin, Heidelberg: Springer, 2011;77-108. DOI 10.1007/978-3-642-14228-4_2; Wang S., Wang C., Feng X., Zhao J., Deng P., Wang Y., Zhang H., Liu X., Li T., Chen C., Wang B., Ji W. Molecular cytogenetics and development of St-chromosome-specific molecular markers of novel stripe rust resistant wheat-Thinopyrum intermedium and wheat-Thinopyrum ponticum substitution lines. BMC Plant Biol. 2022; 22(1):111. DOI 10.1186/s12870-022-03496-x; Wang Y.Z., Cao Q., Zhang J.J., Wang S.W., Chen C.H., Wang C.Y., Zhang H., Wang Y., Ji W. Cytogenetic analysis and molecular marker development for a new wheat–Thinopyrum ponticum 1Js (1D) disomic substitution line with resistance to stripe rust and powdery mildew. Front. Plant Sci. 2020;11:1282. DOI 10.3389/fpls.2020.01282; Wells D.G., Kota R.S., Sandhu H.S., Gardner W.A.S., Finney K.F. Registration of one disomic substitution line and five translocation lines of winter wheat germ plasm resistant to wheat streak mosaic virus. Crop Sci. 1982;22(6):1277-1278. DOI 10.2135/cropsci1982.0011183X002200060083x; Wu X., Zang C., Zhang Y., Xu Y., Wang S., Li T., Gao L. Characterization of wheat monogenic lines with known Sr genes and wheat cultivars for resistance to three new races of Puccinia graminis f. sp. tritici in China. J. Integr. Agric. 2023;22(6):1740-1749. DOI 10.1016/j.jia.2022.08.125; Wulff B.B.H., Moscou M.J. Strategies for transferring resistance into wheat: from wide crosses to GM cassettes. Front Plant Sci. 2014;5: 692. DOI 10.3389/fpls.2014.00692; Xu S., Jiang B., Han H., Ji X., Zhang J., Zhou S., Yang X., Li X., Li L., Liu W. Genetic effects of Agropyron cristatum 2P chromosome translocation fragments in a wheat background. J. Integr Agr. 2023; 22(1):52-62. DOI 10.1016/j.jia.2022.08.094; Xu X., Yuan D., Li D., Gao Y., Wang Z., Liu Y., Wang S., Xuan Y., Zhao H., Li T., Wu Y. Identification of stem rust resistance genes in wheat cultivars in China using molecular markers. PeerJ. 2018;6: e4882. DOI 10.7717/peerj.4882; Yang G., Boshoff W., Li H., Pretorius Z., Luo Q., Li B., Li Z., Zheng Q. Chromosomal composition analysis and molecular marker development for the novel Ug99‐resistant wheat–Thinopyrum ponticum translocation line WTT34. Theor. Appl. Genet. 2021;134(5):1587-1599. DOI 10.1007/s00122‐021‐03796‐0; Yang G., Deng P., Ji W., Fu S., Li H., Li B., Li Z., Zheng Q. Physical mapping of a new powdery mildew resistance locus from Thinopyrum ponticum chromosome 4AgS. Front. Plant Sci. 2023;14: 1131205. DOI 10.3389/fpls.2023.1131205; Yang Z., Mu Y., Wang Y., He F., Shi L., Fang Z., Zhang J., Zhang Q., Geng G., Zhang S. Characterization of a novel TtLEA2 gene from Tritipyrum and its transformation in wheat to enhance salt tolerance. Front. Plant Sci. 2022;13:830848. DOI 10.3389/fpls.2022.830848; Yin X., Shang X., Pang B., Song J., Cao S., Li J., Zhang X. Molecular mapping of two novel stripe rust resistant genes YrTp1 and YrTp2 in A-3 derived from Triticum aestivum × Thinopyrum ponticum. Agric. Sci. China. 2006;5(7):483-490. DOI 10.1016/S1671-2927(06)60081-3; Zeng W., He S.Y. A prominent role of the flagellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to Pseudomonas syringae pv tomato DC3000 in Arabidopsis. Plant Physiol. 2010;153(3):1188-1198. DOI 10.1104/pp.110.157016; Zhan H.X., Li G.R., Zhang X.J., Li X., Guo H.J., Gong W.P., Jia J., Qiao L., Ren Y., Yang Z., Chang Z. Chromosomal location and comparative genomics analysis of powdery mildew resistance gene Pm51 in a putative wheat–Thinopyrum ponticum introgression line. PloS One. 2014;9:e113455. DOI 10.1371/journal.pone.0113455; Zhan H., Zhang X., Li G., Pan Z., Hu J., Li X., Qiao L., Jia J., Guo H., Chang Z., Yang Z. Molecular characterization of a new wheat–Thinopyrum intermedium translocation line with resistance to powdery mildew and stripe rust. Int. J. Mol. Sci. 2015;16(1):2162-2173. DOI 10.3390/ijms16012162; Zhan J., McDonald B.A. Experimental measures of pathogen competition and relative fitness. Annu. Rev. Phytopathol. 2013;51:131-153. DOI 10.1146/annurev-phyto-082712-102302; Zhang J., Hewitt T.C., Boshoff W.H.P., Dundas I., Upadhyaya N., Li J., Patpour M., Chandramohan S., Pretorius Z.A., Hovmøller M., Schnippenkoetter W., Park R.F., Mago R., Periyannan S., Bhatt D., Hoxha S., Chakraborty S., Luo M., Dodds P., Steuernagel B., Wulff B.B.H., Ayliffe M., McIntosh R.A., Zhang P., Lagudah E.S. A recombined Sr26 and Sr61 disease resistance gene stack in wheat encodes unrelated NLR genes. Nat. Commun. 2021;12:3378. DOI 10.1038/s41467-021-23738-0; Zhang R.Q., Xiong C.X., Mu H.Q., Yao R.N., Meng X.R., Kong L.N., Xing L., Wu J., Feng Y., Cao A. Pm67, a new powdery mildew resistance gene transferred from Dasypyrum villosum chromosome 1V to common wheat (Triticum aestivum L.). Crop J. 2020;9(4):882-888. DOI 10.1016/j.cj.2020.09.012; Zhang W., Lukaszewski A.J., Kolmer J., Soria M.A., Goyal S., Dubcovsky J. Molecular characterization of durum and common wheat recombinant lines carrying leaf rust resistance (Lr19) and yellow pigment (Y) genes from Lophopyrum ponticum. Theor. Appl. Genet. 2005;111(3):573-582. DOI 10.1007/s00122-005-2048-y; Zhang X., Dong Y., Wang R.R.C. Characterization of genomes and chromosomes in partial amphiploids of the hybrid Triticum aestivum × Thinopyrum ponticum by in situ hybridization, isozyme analysis, and RAPD. Genome. 1996;39(6):1062-1071. DOI 10.1139/g96-133; Zhang X., Shen X., Hao Y., Cai J., Ohm H.W., Kong L. A genetic map of Lophopyrum ponticum chromosome 7E, harboring resistance genes to Fusarium head blight and leaf rust. Theor. Appl. Genet. 2011;122(2):263-270. DOI 10.1007/s00122-010-1441-3; Zhang Z., Song L., Han H., Zhou S., Zhang J., Yang X., Li X., Liu W., Li L. Physical localization of a locus from Agropyron cristatum conferring resistance to stripe rust in common wheat. Int. J. Mol. Sci. 2017;18(11):2403. DOI 10.3390/ijms18112403; Zheng Q., Klindworth D.L., Friesen T.L., Liu A., Li Z., Zhong S., Jin Y., Xu S.S. Characterization of Thinopyrum species for wheat stem rust resistance and ploidy level. Crop Sci. 2014а;54(6):2663-2672. DOI 10.2135/CROPSCI2014.02.0093; Zheng Q., Lv Z., Niu Z., Li B., Li H., Xu S.S., Han F., Li Z. Molecular cytogenetic characterization and stem rust resistance of five wheat–Thinopyrum ponticum partial amphiploids. J. Genet. Genomics. 2014b;41(11):591-599. DOI 10.1016/j.jgg.2014.06.003; Zheng X., Tang C., Han R., Zhao J., Qiao L., Zhang S., Qiao L., Ge C., Zheng J., Liu C. Identification, characterization, and evaluation of novel stripe rust resistant wheat–Thinopyrum intermedium chromosome translocation lines. Plant Dis. Publ. 2020;104(3):875-881. DOI 10.1094/PDIS-01-19-0001-RE; Zhu Z., Hao Y., Mergoum M., Bai G., Humphreys G., Cloutier S., Xia X., He Z. Breeding wheat for resistance to Fusarium head blight in the global north: China, USA, and Canada. Crop J. 2019;7(6): 730-738. DOI 10.1016/j.cj.2019.06.003; https://vavilov.elpub.ru/jour/article/view/4235

  5. 5
    Academic Journal

    Συγγραφείς: T. E. Zhigadlo, Т. Э. Жигадло

    Πηγή: Vegetable crops of Russia; № 3 (2024); 30-35 ; Овощи России; № 3 (2024); 30-35 ; 2618-7132 ; 2072-9146

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.vegetables.su/jour/article/view/2414/1553; Зыкин А.Г. Как обеспечить себя семенным картофелем (Советы огороднику и фермеру). СПб.: ВИР. 1993. 25 с.; Костюк В.И., Травина С.Н., Абакшина С.В., Ахтулова Е.М. Северный картофель: советы огородникам. Апатиты: изд-во Кольского научного центра РАН. 2013. 116 с.; Костюк В.И., Травина С.Н., Вихман М.Н. Влияние солнечной активности, инсоляции, температуры воздуха и атмосферных осадков на продуктивность культурных растений в условиях Кольского Севера. Апатиты: изд-во Кольского научного центра РАН. 2013. 79 с. – ISBN 978-5-91137-254-5. https://elibrary.ru/wgopgb; Елькина Г.Я. Высокий уровень агротехники уменьшает отрицательное влияние погодных условий на урожай. Картофель и овощи. 2012;(8):9-10. https://elibrary.ru/pycngj; Фатыхов И.Ш., Мухаметшин И.Г. Реакция сортов картофеля на абиотические условия и предпосадочную обработку клубней в Среднем Предуралье. Ижевск: ФГБОУ ВО Ижевская ГСХА, 2020. 128 с. ISBN 978-5-9620-0364-1.; Сапега В.А. Урожайность, параметры адаптивности сортов картофеля и их корреляционная зависимость. Аграрная Россия. 2016;(3):21-24. https://elibrary.ru/vubugl; Доспехов Б.А. Методика полевого опыта (c основами статистической обработки резкльтатов исследований). Москва: Агропромиздат. 1985. 336 с.; Аникина С.А., Арчакова Л.И., Бишов Э.А. и др. Система ведения сельского хозяйства в Мурманской области. Под ред. Чемисова И.А. Мурманск. 1983. 232 с.; Киру С.Д. и др. Методические указания по поддержанию и изучению мировой коллекции картофеля. Санкт-Петербург: ВИР. 2010. 30 с. https://elibrary.ru/dluncd; Коровин А.И. Растения и экстремальные температуры. Л.: Гидрометеоиздат. 1984. 271 с.; Жигадло Т.Э. Биологические особенности ранних сортов картофеля в условиях Мурманского региона. Овощи России. 2022;(4):40-45. https://doi.org/10.18619/2072-9146-2022-4-40-45 https://elibrary.ru/cwetfs; Аникина С.А. Изучение коллекционных образцов картофеля в Хибинах. Труды по прикладной ботанике, генетике и селекции. 1983;(82):91-96.; Опыт прогнозирования урожайности сельскохозяйственных культур с использованием имитационных моделей. Фетодова Е.В., Маглинец Ю.А., Брежнев Р.В. и др. Вестник КрасГАУ. 2020;8(161):43-48. https://doi.org/10.36718/1819-4036-2020-8-43-48 https://elibrary.ru/bkjxlm; Мельничук Г.Д., Костюк В.И., Куликова Н.Т. Физиология и биохимия картофеля на Кольском Севере. Апатиты. 1997. 162 с.; Коломейченко В.В. Растениеводство. М.: Агробизнесцентр. 2007. 600 с.; https://www.vegetables.su/jour/article/view/2414

  6. 6
    Academic Journal

    Συγγραφείς: E. М. Chebotok, Е. М. Чеботок

    Συνεισφορές: the research was carried out under the support of the Ministry of Science and Higher Education of the Russian Federation within the state assignment of Ural Federal Agrarian Scientific Research Centre (theme No. 0532-2023-0003)., работа выполнена при поддержке Минобрнауки РФ в рамках Государственного задания ФГБНУ «Уральский федеральный аграрный научно-исследовательский центр Уральского отделения Российской академии наук» (тема № 0532-2023-0003).

    Πηγή: Agricultural Science Euro-North-East; Том 25, № 4 (2024); 616–622 ; Аграрная наука Евро-Северо-Востока; Том 25, № 4 (2024); 616–622 ; 2500-1396 ; 2072-9081

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.agronauka-sv.ru/jour/article/view/1720/794; Куликов И. М., Евдокименко С. Н., Тумаева Т. А., Келина А. В., Сазонов Ф. Ф., Андронова Н. В., Подгаецкий М. А. Научное обеспечение ягодоводства России и перспективы его развития. Вавиловский журнал генетики и селекции. 2021;25(4):414–419. DOI: https://doi.org/10.18699/VJ21.046 EDN: ASGGAN; Сазонов Ф. Ф. Оценка интродуцированных сортов смородины черной для использования в производстве и селекции. Садоводство и виноградарство. 2022;(4):16–26. DOI: https://doi.org/10.31676/0235-2591-2022-4-16-26 EDN: NISRYU; Таранов А. А., Полубятко И. Г., Фролова Л. В. Источники хозяйственно ценных признаков плодовых, ягодных, орехоплодных культур и винограда в РУП «Институт плодоводства» (Беларусь). Плодоводство и виноградарство Юга России. 2022:(6):149–161. DOI: https://doi.org/10.30679/2219-5335-2022-6-78-149-161 EDN: EWKZPY; Чеботок Е. М. Итоги сортоизучения коллекции смородины черной на Среднем Урале. Плодоводство и ягодоводство России. 2020;60(1):136–143. DOI: https://doi.org/10.31676/2073-4948-2020-60-136-143 EDN: BOICYI; Салтыкова Т. И., Вахрушева Н. С., Софронов А. П. Предварительная оценка сортов смородины черной на пригодность к механизированной уборке в условиях Северо-Востока Европейской части России. Методы и технологии в селекции растений и растениеводстве: мат-лы VIII Междунар. научн.-практ. конф. Киров: ФГБНУ «ФАНЦ Северо-Востока им. Н. В. Рудницкого», 2022. С. 90–93. Режим доступа: https://www.elibrary.ru/item.asp?id=49397440 EDN: PCJCJT; Сироткина Е. Н. Влияние абиотических факторов на сроки созревания сортов черной смородины в условиях Орловской области. Научный журнал молодых ученых. 2021;(2):38–44. Режим доступа: https://elibrary.ru/item.asp?id=46230623 EDN: PAGRSF; Даньшина О. В. Селекционная оценка сортов и форм чёрной смородины по ширине основания в связи с механизированной уборкой урожая. Агроэкологические аспекты устойчивого развития АПК: мат-лы XVI Междунар. научн. конф. Кокино: Брянский ГАУ, 2019. С. 599–603. Режим доступа: https://www.elibrary.ru/item.asp?id=41120198 EDN: AJKGFK; Якименко О. Ф. Производство ягод черной смородины на индустриальной основе. Садоводство и виноградарство. 2001;(3):21–24. Режим доступа: http://asprus.ru/blog/proizvodstvo-yagod-chernoj-smorodiny-na-industrialnoj-osnove/; Зазулин А. Г., Фролова Л. В., Платонова А. Р. Оценка сортов смородины черной в качестве исходного материала для селекции. Плодоводство. 2019;31:126–133. Режим доступа: https://elibrary.ru/item.asp?id=46452876 EDN: NFCIKP; Шавыркина М. А., Товарницкая М. В., Князев С. Д. Оценка сортов черной смородины селекции ВНИИСПК на пригодность к механизированной уборке урожая. Современное садоводство. 2015;(4):22–25. Режим доступа: https://www.elibrary.ru/item.asp?id=25024501 EDN: SYWCLG; Панфилова О. В. О технологии возделывания ягодных культур, пригодных для механизированной уборки. Вестник Российской сельскохозяйственной науки. 2018;(5):85–90. DOI: https://doi.org/10.30850/vrsn/2018/5/85-90 EDN: YLERAL; Краюшкина Н. С., Егорова К. И. Формирование сортимента смородины черной для региональноадаптивной машинной технологии производства ягод. Технологии и технические средства механизированного производства продукции растениеводства и животноводства. 2018;(96):145–155. DOI: https://doi.org/10.24411/0131-5226-2018-100568 EDN: YNRYST; Суслина И. В. Экологически безопасные методы защиты смородины черной от вредителей и болезней. Современное состояние культур смородины и крыжовника: сб. науч. тр. Мичуринск: ВНИИ садоводства им. И. В. Мичурина, 2007. С. 298–311. Режим доступа: https://elibrary.ru/item.asp?id=26359508 EDN: WEVLOH; Якименко О. Ф. Индустриальная технология производства черной смородины. Пути повышения устойчивости садоводства: сб. науч. тр. Мичуринск: ВНИИ садоводства им. И. В. Мичурина, 1998. С. 170–172.; Якименко О. Ф., Суслина И. В. Ресурсосберегающая технология возделывания смородины черной. Научные основы эффективного садоводства: тр. ВНИИС им. И. В. Мичурина. 75 лет со дня основания. Воронеж: изд-во Кварта, 2006. С. 284–298.

  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
    Academic Journal

    Συγγραφείς: T. E. Zhigadlo, Т. Э. Жигадло

    Πηγή: Vegetable crops of Russia; № 5 (2023); 102-105 ; Овощи России; № 5 (2023); 102-105 ; 2618-7132 ; 2072-9146

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.vegetables.su/jour/article/view/2247/1500; Шестеперов А.А., Грибоедова О.Г., Колесова Е.А., Володин А.И. Возделывание нематодоустойчивых сортов картофеля в очагах глободероза в фермерских и личных подсобных хозяйствах. Защита и карантин растений. 2019;(12):35-38. EDN RBRNPK.; Костюк В.И., Травина С.Н., Абакшина С.В., Ахтулова Е.М. Северный картофель: советы огородникам. Апатиты: Изд-во Кольского научного центра РАН. 2013. 116 с.; Шанина Е.П., Клюкина Е.М., Кокшаров В.П. Нематодоустойчивые сорта картофеля Уральской селекции. Достижения науки и техники АПК. 2011;(6):27-28. EDN NXACRT.; Доспехов Б.А. Методика полевого опыта (c основами статистической обработки резкльтатов исследований). Москва: Агропромиздат. 1985. 336 с.; Аникина С.А., Арчакова Л.И., Бишов Э.А. и др. Система ведения сельского хозяйства в Мурманской области. Мурманск. 1983. 232 с.; Киру С.Д. и др. Методические указания по поддержанию и изучению мировой коллекции картофеля. Санкт-Петербург: ВИР. 2010. 27 с.; https://www.vegetables.su/jour/article/view/2247

  13. 13
  14. 14
  15. 15
  16. 16
    Academic Journal

    Συνεισφορές: The work was financially supported by the project of the Ministry of Science and Higher Education of the Russian Federation National Network Collection of Plant Genetic Resources for Effective Scientific and Technological Development of the Russian Federation in the Field of Genetic Technologies under Agreement No. 075-15-2021-1050 dated September 28, 2021.

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 26, № 6 (2022); 524-536 ; Вавиловский журнал генетики и селекции; Том 26, № 6 (2022); 524-536 ; 2500-3259 ; 10.18699/VJGB-22-6

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/3473/1641; Agarwal M., Shrivastava N., Padh H. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep. 2008;27(4):617-631. DOI 10.1007/s00299-008-0507-z.; Alpateva N.V., Abdullaev R.A., Anisimova I.N., Gubareva N.K., Kovaleva O.N., Radchenko E.E. Local barley accessions from Ethiopia resistant to powdery mildew. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 2016;177(4):70-78. DOI 10.30901/2227-8834-2016-4-70-78. (in Russian); Aniskov N.I., Popolzukhin P.V., Nikolayev P.N., Safonova I.V. Agrobiological value of Omskiy Golozerny 1 and Omskiy Golozerny 2 cultivars of spring barley. Sibirskiy Vestnik Selskokhozyaystvennoy Nauki = Siberian Herald of Agricultural Sciences. 2015;6:24-29. (in Russian); Atanasova-Penichon V., Barreau C., Richard-Forget F. Antioxidant secondary metabolites in cereals: potential involvement in resistance to Fusarium and mycotoxin accumulation. Front. Microbiol. 2016;7:566. DOI 10.3389/fmicb.2016.00566.; Avdeichik O., Guretskaya B., Semenova T., Shishlov M., Shishlova A. Naked barley: creation, prospects and use. Nauka i Innovatsii = Science and Innovation. 2009;3:15-19. (in Russian); Badr A., Muller K., Schafer-Pregl R., El Rabey H., Effgen S., Ibrahim H.H., Pozzi C., Rohde W., Salamini F. On the origin and domestication history of barley (Hordeum vulgare L.). Mol. Biol. Evol. 2000;17(4):499-510. DOI 10.1093/oxfordjournals.molbev. a026330.; Bakhteev F.Kh. Barley. Moscow; Leningrad: Sel’khozgiz Publ., 1955. (in Russian); Bekhtol’d N.P., Orlova E.A. Injuriousness of the barley smut agent under conditions of the forest-steppe of the Ob region. Dostizheniya Nauki i Tekhniki APK = Achievements of Science and Technology of AIC. 2018;32(7):36-39. DOI 10.24411/0235-2451-2018-10708. (in Russian); Bhatty R.S. Production of food malt from hull-less barley. Cereal Chem. 1996;73(1):75-80.; Blake T., Blake V., Bowman J., Abdel-Haleem H. Barley feed uses and quality improvement. In: Ullrich S.E. (Ed.). Barley: Production, Improvement and Uses. Oxford: Wiley-Blackwell, 2011; 522-531.; Bogdanova T.M., Terent’eva I.A., Khokhlova A.P., Ivanova N.N. Breeding value of naked barley. In: Abstracts from the international scientific and practical conference “Genetic resources of cultivated plants”, St.-Petersburg: VIR Publ., 2001;215-217. (in Russian); Borisonik Z.B. Features of the technology of barley cultivation. In: Breeding of Barley and Oats. Moscow: Kolos Publ., 1971;218-230. (in Russian); Bozbulut R., Sanlier N. Promising effects of β-glucans on glyceamic control in diabetes. Trends Food Sci. Technol. 2019;83(1): 159-166. DOI 10.1016/j.tifs.2018.11.018.; Buerstmayr H., Legzdina L., Steiner B., Lemmens M. Variation for resistance to Fusarium head blight in spring barley. Euphytica. 2004;137:279-290.; Characteristics of Plant Varieties Included for the First Time in 2020 in the State Register of Selection Achievements Authorized for Use for Production Purposes (official publication). Moscow: Rosinformagrotekh Publ., 2020. (in Russian); Chen W., Turkington T.K., Levesque C.A., Bamforth J.M., Patrick S.K., Lewis C.T., Chapados J.T., Gaba D., Tittlemier S., Macleod A., Grafenhan T. Geography and agronomical practices drive diversification of the epiphytic mycoflora associated with barley and its malt end product in western Canada. Agric. Ecosyst. Environ. 2016;226:43-55. DOI 10.1016/j.agee.2016.03.030.; Chen X., Long H., Gao P., Deng G., Pan Z., Liang J., Tang Y., Tashi N., Yu M. Transcriptome assembly and analysis of Tibetan hulless barley (Hordeum vulgare L. var. nudum) developing grains, with emphasis on quality properties. PLoS One. 2014; 9(5):e98144. DOI 10.1371/journal.pone.0098144.; Dadashko V.V., Romashko A.K., Zinkevich L.V. Productive qualities of hens with the use of hulless barley variety in mixed fodders. Izvestiya Natsionalnoj Akademii Nauk Belarusi. Seriya Agrarnykh Nauk = Proceedings of the National Academy of Sciences of Belarus. Agrarian Series. 2010;2:94-97. (in Russian); Doroshenko E.S., Doroshenko Ed.S. Immunological assessment of the hulled barley collection according to its resistance to leaf diseases in the southern part of the Rostov region. Zernovoe Khozyajstvo Rossii = Grain Economy of Russia. 2018;4(58):66-69. DOI 10.31367/2079-8725-2018-58-4-66-69. (in Russian); Doroshenko Ed.S., Filippov E.G., Doncova A.A., Sidorenko V.S. Study of naked spring barley varieties under the conditions of the North Caucasus. Zernobobovye i Krupyanye Kul’tury = Legumes and Groat Crops. 2019;2(30):131-139. DOI 10.24411/2309-348X-2019-11103. (in Russian); Fernandes G.C., Sonawane K.S., Arya S.S. Cereal based functional beverages: a review. J. Microbiol. Biotechnol. Food Sci. 2018/19; 8(3):914-919. DOI 10.15414/jmbfs.2018-19.8.3.914-919.; Gagkaeva T.Yu., Gavrilova O.P. Fusarial head blight of barley ear and grain. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 2009; 165:39-44. (in Russian); Gasparis S., Kała M., Przyborowski M., Łyżnik L.A., Orczyk W., Nadolska-Orczyk A. A simple and efficient CRISPR/Cas9 platform for induction of single and multiple, heritable mutations in barley (Hordeum vulgare L.). Plant Methods. 2018;14:111. DOI 10.1186/s13007-018-0382-8.; Gauthier L., Atanasova-Penichon V., Chéreau S., Richard-Forget F. Metabolomics to decipher the chemical defense of cereals against Fusarium graminearum and deoxynivalenol accumulation. Int. J. Mol. Sci. 2015;16(10):24839-24872. DOI 10.3390/ijms161024839.; Ge X., Jing L., Zhao K., Su C., Zhang B., Zhang Q., Han L., Yu X., Li W. The phenolic compounds profile, quantitative analysis and antioxidant activity of four naked barley grains with different color. Food Chem. 2021;335:127655. DOI 10.1016/j.foodchem. 2020.127655.; Gerasimova S.V., Hertig C., Korotkova A.M., Kolosovskaya E.V., Otto I., Hiekel S., Kochetov A.V., Khlestkina E.K., Kumlehn J. Conversion of hulled into naked barley by Cas endonucleasemediated knockout of the NUD gene. BMC Plant Biol. 2020; 20(Suppl. 1):255. DOI 10.1186/s12870-020-02454-9.; Gladkikh A.V., Rendov N.A., Nekrasova E.V., Mozyleva S.I. Influence of elements of cultivation technology on the yielding capacity of hulless barley grain. Vestnik Omskogo Gosudarstvennogo Agrarnogo Universiteta = Bulletin of the Omsk State Agrarian University. 2019;2(34):19-23. (in Russian); Gryaznov A.A. Naked Barley under Conditions of Unstable Moisture. Kurtamysh: Kurtamyshskaya Tipografiya Publ., 2014. (in Russian); Gryaznov A.A. Nudum 95: a high-protein variety of naked barley. APK Rossii = The Russian Agroindustrial Complex. 2016;75(1): 175-180. (in Russian); Gryaznov A.A., Letyago J.A., Belkina R.I., Ponomareva E.I. Production of bread with the use of mixtures of wheat flour of the highest grade and wholemeal from pigmented barley variety Granal 32. Vestnik Voronezhskogo Gosudarstvennogo Universiteta Inzhenernykh Tekhnologij = Proceedings of the Voronezh State University of Engineering Technologies. 2019;81(1): 196-200. DOI 10.20914/2310-1202-2019-1-196-200. (in Russian); Harlan J.R. The origin of barley. In: Barley: Botany, Culture, Winter Hardiness, Genetics, Utilization, Pests. Agricultural Handbook No. 338. Washington: Agricultural Research Service, U.S. Dept. of Agriculture, 1979;10-36.; Helback H. Domestication of food plants in the old world. Science. 1959;153:365-372.; Helbaek H. Commentary on the phylogenesis of Triticum and Hordeum. Econ. Bot. 1966;20:350-360.; Hernandez J., Meints B., Hayes P. Introgression breeding in barley: Perspectives and case studies. Front. Plant Sci. 2020;11:761. DOI 10.3389/fpls.2020.00761.; Hoad S.P., Brennan M., Wilson G.W., Cochrane P.M. Hull to caryopsis adhesion and grain skinning in malting barley: identification of key growth stages in the adhesion process. J. Cereal Sci. 2016;68:8-15. DOI 10.1016/j.jcs.2015.10.007.; Huth M., Dongowski G., Gebhart E., Flamme W. Functional properties of dietary fibre enriched exudates from barley. J. Cereal Sci. 2002;32:115-117.; Ingledew W.M., Jones A.M., Bhatty R.S., Rossnagel B.G. Fuel alcohol production from hull-less barley. Cereal Chem. 1995;72(2): 147-150.; Jaganathan D., Bohra A., Thudi M., Varshney R.K. Fine mapping and gene cloning in the post-NGS era: advances and prospects. Theor. Appl. Genet. 2020;133(5):1791-1810. DOI 10.1007/s00122-020-03560-w.; Khlestkina E.K. Molecular markers in genetic studies and breeding. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2013;17(4/2):1044-1054. (in Russian); Khod’kov L.E. Naked and Awnless Barley. Leningrad, 1985. (in Russian); Kikuchi S., Taketa S., Ichii M., Kawasaki S. Efficient fine mapping of naked caryopsis gene (nud ) by HEGS (High Efficiency Genome Scanning)/AFLP in barley. Theor. Appl. Genet. 2003; 108(1):73-78. DOI 10.1007/s00122-003-1413-y.; Kusch S., Panstruga R. mlo-based resistance: An apparently universal “weapon” to defeat powdery mildew disease. Mol. Plant Microbe Interact. 2017;30(3):179-189. DOI 10.1094/MPMI-12-16-0255-CR.; Kyrdoglo E.K., Polyshchuk S.S., Chervonis M.V. Methodology and results of breeding barley for food end-use. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 2013;171:240-253. (in Russian); Letyago Yu.A., Belkina R.I. The development of bread recipes with the addition of the flour from barley and triticale grain. Vestnik KrasGAU = Bulletin of the Krasnoyarsk State Agrarian University. 2019;12:176-182. DOI 10.36718/1819-4036-2019-12-176-182. (in Russian); Loskutov I.G., Khlestkina E.K. Wheat, barley, and oat breeding for health benefit components in grain. Plants. 2021;10(1):86. DOI 10.3390/plants10010086.; Luk’yanova M.V., Trofimovskaya A.Ya., Gudkova G.N., Terent’eva I.A., Yarosh N.P. Flora of Cultivated Plants of the USSR. Vol. 2. Part 2. Barley. Leningrad: Agropromizdat Publ., 1990. (in Russian); Madakemohekar A.H., Talekar N.S., Kamboj A.D., Thakur G. Scope of hulless barley (Hordeum vulgare L.) as a nutritious and medicinal food: a review. Acta Sci. Agric. 2018;2(12):11-13.; Malashkina M.S. Morphological parameters, biochemical and technological properties of naked barley for breeding in the Kemerovo region: Cand. Sci. (Agric.) Dissertation. St. Petersburg, 2008. (in Russian); Martin C., Schöneberg T., Vogelgsang S., Morisoli R., Bertossa M., Mauch-Mani B., Mascher F. Resistance against Fusarium graminearum and the relationship to β-glucan content in barley grains. Eur. J. Plant Pathol. 2018;152:621-634. DOI 10.1007/ s10658-018-1506-8.; Martin C., Schöneberg T., Vogelgsang S., Vincenti J., Bertossa M., Mauch-Mani B., Mascher F. Factors of wheat grain resistance to fusarium head blight. Phytopathol. Mediterr. 2017;56:154-166. DOI 10.14601/Phytopathol.; Martínez-Subirà M., Romero M.P., Puig E., Macià A., Romagosa I., Moralejo M . Purple, high β-glucan, hulless barley as valuable ingredient for functional food. LWT Food Sci. Technol. 2020; 131(9):109582. DOI 10.1016/j.lwt.2020.109582.; Meints B., Vallejos C., Hayes P. Multi-use naked barley: A new frontier. J. Cereal Sci. 2021;102:103370. DOI 10.1016/j.jcs.2021.103370.; Meshkova L.V., Sabaeva O.B. Resistance to fungous diseases in barley in the Irtysh river area of the Omsk region. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 2009;165:159-163. (in Russian); Moreau R.A., Flores R.A., Hicks K.B. Composition of functional lipids in hulled and hulless barley in fractions obtained by scarification and in barley oil. Cereal Chem. 2007;84(1):1-5.; Moza J., Gujral H.S. Starch digestibility and bioactivity of high altitude hulless barley. Food Chem. 2016;194:561-568. DOI 10.1016/ j.foodchem.2015.07.149.; Nevo E. Origin, evolution, population genetics and resources for breeding of wild barley, Hordeum spontaneum, in the Fertile Crescent. In: Barley: Biochemistry, Molecular Biology and Biotechnology. Wallingford: C.A.B. International, 1992; 19-43.; Omarov D.S. Genetic resources of barley in Dagestan. In: Botanical and Genetic Resources of Dagestan Flora. Makhachkala: Dag. FAN SSSR Publ., 1981;104-115. (in Russian); Orlov A.A. Barley. In: Flora of Cultivated Plants of the USSR. Vol. 2. Moscow; Leningrad: Gossel’khozizdat Publ., 1936;97-332. (in Russian); Polisenska I., Jirsa O., Vaculova K., Pospichalova M., Wawroszova S., Frydrych J. Fusarium mycotoxins in two hulless oat and barley cultivars used for food purposes. Foods. 2020;9(8):1037. DOI 10.3390/foods9081037.; Polonskiy V.I., Surin N.A., Gerasimov S.A., Lipshin A.G., Sumina A.V., Zute S.A. Evaluation of barley genotypes for the content of β-glucans in grain and other valuable features in Eastern Siberia. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 2021; 182(1):48-58. DOI 10.30901/2227-8834-2021-1-48-58. (in Russian); Pomortsev A.A., Kalabushkin B.A., Blank M.L., Bakhronov A. Investigation of natural selection in artificial hybrid populations of spring barley. Russ. J. Genet. 1996;32(11):1333-1341.; Radchеnko E.E., Abdullaev R.A., Anisimova I.N. Genetic diversity of cereal crops for powdery mildew resistance. Ekologicheskaya Genetika = Ecological Genetics. 2020;18(1):59-78. DOI 10.17816/ecogen14530. (in Russian); Rozanova I.V., Khlestkina E.K. NGS sequencing in barley breeding and genetic studies. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2020;24(4):348-355. DOI 10.18699/VJ20.627. (in Russian); Shakib M.-C.R., Gabrial S.G.N. Post-prandial responses to different bread products based on wheat, barley and fenugreek or ginger or both in healthy volunteers and their effect on the glycemic index of such products. J. Am. Sci. 2010;6(10):89-96.; Shen Y., Zhang H., Cheng L., Wang L., Qian H., Qi X. In vitro and in vivo antioxidant activity of polyphenols extracted from black highland barley. Food Chem. 2016;194(1):1003-1012. DOI 10.1016/j.foodchem.2015.08.083.; Siranidou E., Kang Z., Buchenauer H. Studies on symptom development, phenolic compounds and morphological defence responses in wheat cultivars differing in resistance to fusarium head blight. J. Phytopathol. 2002;150:200-208.; State Register of Selection Achievements Authorized for Use for Production Purposes. Vol. 1. Plant Varieties (official publication). Moscow: Rosinformagrotekh Publ., 2021. (in Russian); Surin N.A. Adaptive Potential of Varieties of Grain Crops Bred in Siberia and Ways of Improving it (Wheat, Barley, Oats). Novosibirsk, 2011. (in Russian); Taketa S., Amano S., Tsujino Y., Sato T., Saisho D., Kakeda K., Nomura M., Suzuki T., Matsumoto T., Sato K., Kanamori H., Kawasaki S., Takeda K. Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proc. Natl. Acad. Sci. 2008;105:4062-4067. DOI 10.1073/pnas.0711034105.; Taketa S., Kikuchi S., Awayama T., Yamamoto S., Ichii M., Kawasaki S. Monophyletic origin of naked barley inferred from molecular analyses of a marker closely linked to the naked caryopsis gene (nud ). Theor. Appl. Genet. 2004;108:1236-1242. DOI 10.1007/s00122-003-1560-1.; Tatarkina N.I. Use of nutritional substances of rations by young repair large white breed of pigs. Vestnik Kurganskoj GSKHA = Bulletin of the Kurgan State Agricultural Academy. 2019;2: 55-57. (in Russian); Teimouri H., Zarghi H., Golian A. Evaluation of Hull-Less Barley with or without enzyme cocktail in the finisher diets of broiler chickens. J. Agric. Sci. Technol. 2018;20:469-483.; Tetyannikov N.V., Bome N.A. Sources of characters useful for breeding in hulless barley. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 2020;181(3):49-55. DOI 10.30901/2227-8834-2020-3-49-55. (in Russian); Toropova N.A., Sukhanova S.F. The use of hull-less barley for feeding geese broilers. Vestnik Kurganskoy GSKHA = Bulletin of the Kurgan State Agricultural Academy. 2013;1:36-39. (in Russian); Trofimovskaya A.Ya. Barley: Evolution, Classification, and Breeding. Leningrad: Kolos Publ., 1972. (in Russian); Tyaglyi S.V. Resistant to lodging in naked barley. In: Modern Approaches and Methods in Barley Breeding. Krasnodar: Prosveshchenie-Yug Publ., 2007;162-164. (in Russian); Vavilov N.I. World Resources of Cereals and Flax. Moscow; Leningrad: AN SSSR Publ., 1957. (in Russian); Vavilov N.I. Centers of Origin of Cultivated Plants. Selected Works. Moscow; Leningrad: Nauka Publ., 1965. (in Russian); Warzecha T., Adamski T., Kaczmarek Z., Surma M., Goliński P., Perkowski J., Chełkowski J., Wiśniewska H., Krystkowiak K., Kuczyńska A. Susceptibility of hulled and hulless barley doubled haploids to Fusarium culmorum head blight. Cereal Res. Commun. 2010;38(2):220-232. DOI 10.1556/CRC.38.2010.2.8.; Wirkijowska A., Rzedzicki Z., Kasprzak M., Błaszczak W. Distribution of (1-3)(1-4)-β-d-glucans in kernels of selected cultivars of naked and hulled barley. J. Cereal Sci. 2012;56(2):496-503. DOI 10.1016/j.jcs.2012.05.002.; Xifeng R., Eviatar N., Dongfa S., Genlou S. Tibet as a potential domestication center of cultivated barley of China. PLoS One. 2013;8(5):e62700. DOI 10.1371/journal.pone.0062700.; Yu S., Long H., Deng G., Pan Z., Liang J., Zeng X., Tang Y., Tashi Y., Yu M. A single nucleotide polymorphism of nud converts the caryopsis type of barley (Hordeum vulgare L.). Plant Mol. Biol. Rep. 2016;34:242-248. DOI 10.1007/s11105-015-0911-9.; Zaushintsena A.V., Chernova E.V., Malashkina M.S. Comparative characteristics of two-row and six-row varieties of naked barley. Vestnik KrasGAU = Bulletin of the Krasnoyarsk State Agrarian University. 2007;6:72-75. (in Russian); Zeng X., Guo Y., Xu Q., Mascher M., Guo G., Li S., Mao L., Liu Q., Xia Z., Zhou J., Yuan H., Tai S., Wang Y., Wei Z., Song L., Zha S., Li S., Tang Y., Bai L., Zhuang Z., He W., Zhao S., Fang X., Gao Q., Yin Y., Wang J., Yang H., Zhang J., Henry R.J., Stein N., Tashi N. Origin and evolution of qingke barley in Tibet. Nat. Commun. 2018; 9:5433. DOI 10.1038/s41467-018-07920-5.; Zheleznov A.V., Kukoeva T.V., Zheleznova N.B. Naked barley: origin, distribution and prospects of utilisation. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2013;17(2):286-297. (in Russian); Zhichkina L.N., Stolpivskaya E.V. Resistance of spring barley varieties to loose smut. Izvestiya Samarskoj Gosudarstvennoj Sel’skokhozyaistvennoj Akademii = Bulletin of the Samara State Agricultural Academy. 2015;4:49-52. (in Russian); Zveinek I.A., Kovaleva O.N. Genetic control of ultra-earliness in Chinese barley landraces. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 2017;178(3):91-96. DOI 10.30901/2227-8834-2017-3-91-96. (in Russian); https://vavilov.elpub.ru/jour/article/view/3473

  17. 17
    Academic Journal

    Συνεισφορές: The authors thank the reviewers for their contribution to the expert evaluation of this article.

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 26, № 7 (2022); 609-621 ; Вавиловский журнал генетики и селекции; Том 26, № 7 (2022); 609-621 ; 2500-3259 ; 10.18699/VJGB-22-72

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/3523/1651; Dorokhova D.P., Kopus M.M. The initial material and the achievements in winter durum wheat breeding in a content of carotenoids in the grain of FSBSI “ARC “Donskoy”. Zernovoe Khozjaistvo Rossii = Grain Economy of Russia. 2018;1:1-5. DOI:10.31367/2079-8725-2018-55-1-3-5. (in Russian); Dospekhov B.A. Methodology of Field Experiments with the Fundamentals of Statistical Processing of Results. Moscow: Kniga po trebovaniyu Publ., 2012. (in Russian); Evdokimov M.G. Breeding of Spring Durum Wheat in the Irtysh region, Siberia. Omsk: Sphera Publ., 2006. (in Russian); Evdokimov M.G., Yusov V.S., Morgunov A.I., Zelensky Yu.I. Drought tolerance gene pool in developing adaptive varieties of durum wheat identified in study nurseries under the Kazakhstan-Siberian program. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017;21(5):515-522. DOI:10.18699/VJ17.23-o. (in Russian); Flaksberger K.A. Wheat taxonomy and crossing of geographically distant forms. Priroda = Nature. 1934;4:85-90. (in Russian); Gultyaeva E., Yusov V., Rosova M., Malchikov P., Shaydayuk E., Kovalenko N., Wanyera R., Morgounov A., Yskakova G., Rsaliev A. Evaluation of resistance of spring durum wheat germplasm from Russia and Kazakhstan to fungal foliar pathogens. Cereal Res. Commun. 2020;48:71-79. DOI:10.1007/s42976-019-00009-9.; Hovmøller M.S. GRRC report: samples of stem rust infected wheat from Russia. 01/2017. Aarhus: Aarhus University, 2017. https://agro.au.dk/fileadmin/Country_report_Russia_-_August2017.pdf (Accessed July 14, 2020).; Kan M., Küçükçongar M., Keser M., Morgounov A., Muminjanov H., Özdemir F., Qualset C. Wheat landraces inventory of Turkey. https://arastirma.tarimorman.gov.tr/bahridagdas/Belgeler/TurkeyWheat-Landrace-Report-2014.pdf (Accessed August 1, 2022).; Koishybaev M. Wheat Diseases. Ankara: FAO, 2018. (in Russian); Kolmakov Yu.V. Evaluation of Wheat Material in Breeding and Increase the Potential of its Quality in Grain Production and Bakery. Omsk: OmGAU Publ., 2007. (in Russian); Kumar S., Fetch T.G., Knox R.E., Singh A.K., Clarke J.M., Depauw R.M., Cuthbert R.D., Campbell H.L., Singh D., Bhavani S., Pozniak C.J., Meyer B., Clarke R. Mapping of Ug99 stem rust resistance in Canadian durum wheat. Can. J. Plant Pathol. 2021;43(4): 599-611. DOI:10.1080/07060661.2020.1843073.; Laido G., Panio G., Marone D., Russo M.A., Ficco D.B.M., Giovanniello V., Cativelli L., Stefenson B., de Vita P., Mastrangelo A. Identification of new resistance loci to African stem rust race TTKSK in tetraploid wheats based on lincage and genome-wide association mapping. Front. Plant Sci. 2015;6:1033. DOI:10.3389/fpls.2015.01033.; Li H., Hua L., Rouse M.N., Li T., Pang S., Bai S., Shen T., Luo J., Li H., Zhang W., Wang X., Dubcovsky J., Chen S. Mapping and characterization of a wheat stem rust resistance gene in durum wheat “Kronos.” Front. Plant Sci. 2021;12:751398. DOI:10.3389/fpls.2021.751398.; Likhenko I.E., Stasyuk A.I., Shcherban A.B., Zyryanova A.F., Likhenko N.I., Salina E.A. Study of allelic composition of Vrn-1 and Ppd-1 genes in early-ripening and middle-early varieties of spring soft wheat in Siberia. Russ. J. Genet.: Appl. Res. 2015;5(3):198-207. DOI:10.1134/S2079059715030107.; Lyapunova O.A., Andreeva A.S. Cultivars and lines added to the gene pool of VIR’s durum wheat collection in 2000–2019. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 2020;181(1):7-16. DOI:10.30901/2227-8834-2020-1-7-16. (in Russian); Makarov A.A., Kovalenko E.D., Solomatin D.A., Matorina N.M. Methods for field and laboratory assessment of nonspecific plant resistance to diseases. In: Types of Plant Resistance to Diseases. RAAS, VIZR, 2003;17-24. (in Russian); Malchikov P.N., Myasnikova M.G. Initial material for breeding durum wheat in the Middle Volga region. Rossiyskaya Selskokhozyaystvennaya Nauka = Russian Agricultural Sciences. 2021;6:38-45. DOI:10.31857/S2500262721060077. (in Russian); Malchikov P.N., Rozova M.A., Morgunov A.I., Myasnikova M.G., Zelensky Yu.I. Yield performance and stability of modern breeding stock of spring durum wheat (Triticum durum Desf.) from Russia and Kazakhstan. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2018;22(8):939-950. DOI:10.18699/VJ18.436. (in Russian); McIntosh R.A., Devos K.M., Dubcovsky J., Rogers W.J., Morris C.F., Appels R., Somers D.J., Anderson O.A. Catalogue of Gene Symbols for Wheat: 2008 Supplement. https://wheat.pw.usda.gov/GG3/Wheat_Gene_Catalog_Documents (Accessed July 14, 2022).; Merezhko A.F., Udachin R.A., Zuev E.V., Filatenko A.A. Serbin A.A., Lyapunova O.A., Kosov V.Yu., Kurkiev U.K., Okhotnikova T.V., Navruzbekov N.A., Boguslavskiy R.L., Abdulaeva A.K., Chikida N.N., Mitrofanova O.P., Potokina S.A. Guidelines for the development, preservation, and study of the world collection of wheat, goat grass, and triticale. A.F. Merezhko (Ed.). St. Petersburg: VIR Publ., 1999. (in Russian); Methodology of State Variety Testing of Agricultural Crops. Moscow: More Publ., 2019. (in Russian); Mukhitov L.A., Timoshenkova T.A. Initial material for spring hard wheat selection for grain quality in the steppes of Orenburg Preduralye. Izvestiya Orenburgskogo Gosudarstvennogo Agrarnogo Universiteta = Izvestiya Orenburg State Agrarian University. 2018; 4(72):66-69. (in Russian); Pagnotta M.A., Impiglia A., Oronzo A., Tanzarella O.A., Nachit M.M. Genetic variation of the durum wheat landrace Haurani from different agro-ecological regions. Genet. Resour. Crop Evol. 2005; 51(8):863-869. DOI:10.1007/s10722-005-0775-1.; Peneva T.I., Lyapunova O.A. Electrophoretic patterns of gliadin as markers of genotypes in the analysis of the durum wheat landrace Kubanka. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 2020;181(4): 127-135. DOI:10.30901/2227-8834-2020-4-127-135. (in Russian); Rosseeva L.P., Belan I.A., Meshkova L.V., Blokhina N.P., Lozhnikova L.F., Osadchaya T.S., Trubacheeva N.V., Parshina L.A. Breeding spring soft wheat for resistance to stem rust in West Siberia. Vestnik Altayskogo Gosudarstvennogo Agrarnogo Universiteta = Bulletin of the Altai State Agricultural University. 2017;7(153):5-12. (in Russian); Rosseeva L.P., Meshkova L.V., Belan I.A., Popolzukhin P.V., Vasilevsky V.D., Gaidar A.A., Parshutkin Yu.Yu. Resistance of soft spring wheat varieties to leafy pathogens in West Siberia. Vestnik Altayskogo Gosudarstvennogo Agrarnogo Universiteta = Bulletin of the Altai State Agricultural University. 2019;5(175):5-11. (in Russian); Rozova M.A., Egiazaryan E.E., Ziborov A.I. The results of the study of the yield and grain quality of spring durum wheat varieties approved for use in Russia under environment of the Altai Territory. Dostizheniya Nauki i Tekhniki APK = Achievements of Science and Technology of AIC. 2020;34(7):56-61. DOI:10.24411/0235-2451-2020-10709. (in Russian); Rsaliev A.S., Rsaliev Sh.S. Principal approaches and achievements in studying race composition of wheat stem rust. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2018;22(8):967-977. DOI:10.18699/VJ18.439.; Rustamov Kh.N., Akparov Z.I., Abbasov M.A. Adaptive potential of durum wheat (Triticum durum Desf.) varieties of Azerbaijan. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 2020;181(4):22-28. DOI:10.30901/2227-8834-2020-4-22-28. (in Russian); Samofalova N.E., Derova T.G., Dubinina O.V., Ilichkina N.P., Kostylenko O.A., Kameneva A.S. Tolerance of the selection material of winter durum wheat to leaf diseases. Zernovoe Khozjaistvo Rossii = Grain Economy of Russia. 2018;2:64-70. DOI:10.31367/2079-8725-2018-56-2-64-70. (in Russian); Shamanin V.P., Morgunov A.I., Petukhovsky S.L., Likhenko I.E., Levshunov M.A., Salina E.A., Pototskaya I.V., Trushchenko A.Yu. Breeding of Spring Soft Wheat for Resistance to Stem Rust in West Siberia. Omsk: OmGAU Publ., 2015. (in Russian); Shamanin V.P., Pototskaya I.V., Shepelev S.S., Pozherukova V.E., Salina E.A., Skolotneva E.S., Hodson D., Hovmøller M., Patpour M., Morgounov A.I. Stem rust in Western Siberia – race composition and effective resistance genes. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2020;24(2):131-138. DOI:10.18699/VJ20.608.; Simons K., Abate Z., Chao S., Zhang W., Rose M., Jin Y., Elias E., Dubcovsky J. Genetic mapping of stem rust resistance gene Sr13 in tetraploid wheat (Triticum turgidum ssp. durum L.). Theor. Appl. Genet. 2011;122:649-658. DOI:10.1007/s00122-010-1444-0.; Singh R.P., Hodson D.P., Jin Y., Lagudah E.S., Ayliffe M.A., Bhavani S. Emergence and spread of new races of wheat stem rust fungus: continued threat to food security and prospects of genetic control. Phytopathology. 2015;105:872-884. DOI:10.1094/PHYTO-01-15-0030-FI.; Sochalova L.P., Likhenko I.E. The gene pool of the sources of resistance of the spring wheat to the leaf diseases. Dostizheniya Nauki i Tekhniki APK = Achievements of Science and Technology of AIC. 2013;6:3-6. (in Russian); Vavilov N.I. Scientific Foundations of Plant Breeding. Moscow, Leningrad: Selkhozgiz Publ., 1935. (in Russian); Yusov V.S., Evdokimov M.G., Meshkova L.V., Glushakov D.A. Development of spring durum wheat cultivars resistant to stem rust in Western Siberia. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 2021;182(2):131-138. DOI:10.30901/2227-8834-2021-2-131-138. (in Russian); Yusov V.S., Evdokimov M.G., Meshkova L.V., Kiryakova M.N., Glushakov D.A. The characteristic of resistance entries of the durum wheat from nurseries KASIB to the brown rust in the conditions of Western Siberia. Trudy Kubanskogo Gosudarstvennogo Agrarnogo Universiteta = Works of the Kuban State Agrarian University. 2018;3(72):366-370. DOI:10.21515/1999-1703-72-386-390. (in Russian); Zhang W., Chen S., Abate Z., Nirmala J., Rouse M.N., Dubcovsky J. Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group. Proc. Natl. Acad. Sci. USA. 2017;114:E9483-E9492. DOI:10.1073/pnas.1706277114.; Ziborov A.I., Rozova M.A. Original material for spring durum wheat breeding for ecological plasticity under forest-steppe environments of the Ob River region of Altai Territory. Sibirskiy Vestnik Selskokhozyaystvennoy Nauki = Siberian Herald of Agricultural Sciences. 2012;1(224):44-52. (in Russian); Zykin V.A., Belan I.A., Yusov V.S. Ecological plasticity of agricultural plants: methodology and evaluation. Ufa, 2011. (in Russian); https://vavilov.elpub.ru/jour/article/view/3523

  18. 18
  19. 19
    Academic Journal

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 25, № 7 (2021); 770-777 ; Вавиловский журнал генетики и селекции; Том 25, № 7 (2021); 770-777 ; 2500-3259 ; 10.18699/VJ21.078

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/3181/1559; Adonina I.G., Petrash N.V., Timonova E.M., Khristov Y.A., Salina E.A. Construction and study of leaf rust resistant common wheat lines with translocations of Aegilops speltoides Tausch. Genetic material. Russ. J. Genet. 2012;48(4):404-409. DOI 10.1134/S10227954120 20020.; Badaeva E.D., Badaev N.S., Gill B.S., Filatenko A.A. Interspecific karyotype divergence in Triticum araraticum. Plant Syst. Evol. 1994;192(1):117-145. DOI 10.1007/BF00985912.; Brevis J.C., Chicaiza O., Khan I.A., Jackson L., Morris C.F., Dubcovsky J. Agronomic and quality evaluation of common wheat nearisogenic lines carrying the leaf rust resistance gene Lr47. Crop Sci. 2008;48:1441-1451. DOI 10.2135/cropsci2007.09.0537.; Cherukuri D.P., Gupta S.K., Charpe A., Koul S., Prabhu K.V., Singh R.B., Haq Q.M.R. Molecular mapping of Aegilops speltoides derived leaf rust resistance gene Lr28 in wheat. Euphytica. 2005; 143:19-26. DOI 10.1007/s10681-005-1680-6.; Davoyan E.R., Davoyan R.O., Bebyakina I.V., Davoyan O.R., Zubanova Yu.S., Kravchenko A.M., Zinchenko A.N. Identification of a leaf rust-resistance gene in species of Aegilops L., synthetic forms, and introgression lines of common wheat. Russ. J. Genet. Appl. Res. 2012;2(4):325-329. DOI 10.1134/S2079059712040041.; Davoyan E.R., Mikov D.S., Zubanova Y.S., Boldakov D.M., Davoyan R.O., Bebyakina I.V., Bibishev V.A. Study of introgressive lines of common wheat with Aegilops tauschii genetic material for resistance to leaf rust. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2018;22(1):97-101. DOI 10.18699/VJ18.336. (in Russian); Davoyan R.O., Bebyakina I.V., Davoyan E.R., Mikov D.S., Badaeva E.D., Adonina I.G., Salina E.A., Zinchenko A.N., Zubanova Y.S. Use of a synthetic form Avrodes for transfer of leaf rust resistance from Aegilops speltoides to common wheat. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017;21(6):663-670. DOI 10.18699/VJ17.284. (in Russian); Davoyan R.O., Bebyakina I.V., Davoyan O.R., Zinchenko A.N., Davoyan E.R., Kravchenko A.M., Zubanova Y.S. The use of synthetic forms in preservation and exploitation of the gene pool of wild common wheat relatives. Russ. J. Genet. Appl. Res. 2012;2(6):480-485. DOI 10.1134/S2079059712060044.; Friebe B., Jiang J., Raupp W.J., McIntosh R.A., Gill B.S. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica. 1996;91:59-87. DOI 10.1007/BF00035277.; Gasner G., Straib U.W. Weitere Untersuchungen uber die Spezialisierung sverhaltnissedes Gelbrostes Puccinia glumarum (Schm.) Erikss. u. Henn. Arb. Boil. Reichsanstalt. 1934;21:121-145.; Helguera M., Khan I.A., Dubcovsky J. Development of PCR markers for wheat leaf rust resistance gene Lr47. Theor. Appl. Genet. 2000; 100:1137-1143. DOI 10.1007/s001220051397.; Helguera M., Vanzetti L., Soria M., Khan I.A., Kolmer J., Dubcovsky J. PCR markers for Triticum speltoides leaf rust resistance gene Lr51 and their use to develop isogenic hard red spring wheat lines. Crop Sci. 2005;45(2):728-734. DOI 10.2135/cropsci2005.0728.; Knott D.R. The effect of transfers of alien genes for leaf rust resistance on the agronomic and quality characteristics of wheat. Euphytica. 1989;44(1-2):65-72. DOI 10.1007/BF00022601.; Leonova I.N., Budashkina E.B. The study of agronomical traits determining the productivity of the Triticum aestivum/Triticum timopheevii introgression lines with resistance to fungal diseases. Russ. J. Genet. Appl. Res. 2017;7(3):299-307. DOI 10.1134/S2079059717030091.; Mains E.B., Jakson H.S. Physiologic specialization in leaf rust of wheat, Puccinia triticiana Erikss. Phytopatology. 1926;16:89-120.; Marais G.F., Bekker T.A., Eksteen A., Mccallum B., Fetch T., Marais A.S. Attempts to remove gametocidal genes co-transferred to common wheat with rust resistance from Aegilops speltoides. Euphytica. 2010;171(1):71-85. DOI 10.1007/s10681-009-9996-2.; McIntosh R.A., Dubcovsky J., Rogers W.J., Morris C.F., Appels R., Xia X.C. Catalogue of Gene Symbols for Wheat: 2013–2014 Supplement. KOMUGI Integrated Wheat Science Database, 2015. Available at: https://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2013.pdf; Methods of State Crop Variety Trial. Moscow, 1988. (in Russian); Pausheva Z.P. Laboratory Manual on Plant Cytology. Moscow: Kolos Publ., 1974. (in Russian); Peresipkin V.F. Diseases of Grain Cultures. Moscow: Kolos Publ., 1979;251-260. (in Russian); Plaschke J., Ganal M.W., Röder M.S. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor. Appl. Genet. 1995;91:1001-1007. DOI 10.1007/BF00223912.; Rasheed A., Mujeeb-Kazi A., Ogbonnaya F.C., He Z., Rajaram S. Wheat genetic resources in the post-genomics era: promise and challenges. Ann. Bot. 2018;121:603-616. DOI 10.1093/aob/mcx148.; Seyfarth R., Feuillet C., Schachermayr G., Winzeler M., Keller B. Development of molecular mapping of the adult-plant leaf rust resistance gene Lr35 in wheat. Theor. Appl. Genet. 1999;99:554-560. DOI 10.1007/s001220051268.; Singh S., Franks C.D., Huang L., Brown-Guedira G.L., Marshall D.S., Gill B.S., Fritz A. Lr41, Lr39 and a leaf rust resistance gene from Aegilops cylindrica may be allelic and are located on wheat chromosome 2DS. Theor. Appl. Genet. 2004;108:586-591. DOI 10.1007/ s00122-003-1477-8.; Timonova E.M., Leonova I.N., Belan I.A., Rosseeva L.P., Salina E.A. The influence of particular chromosome regions of Triticum timopheevii on the formation of resistance to diseases and quantitative traits in common wheat. Russ. J. Genet. Appl. Res. 2012;2(4):330343.; Tsatsenco L.V., Zhirov E.G., Davoyan R.O. Hybrids between wheat and genome-substituted form Avrodes. Cytogenetics and agronomy investigations. Cereal Res. Commun. 1993;21(1):45-50.; Zhirov E.G., Ternovskaya T.K. Genome engineering in wheat. Vestnik Selskokhozyaystvennoy Nauki = Herald of Agricultural Science. 1984;10:58-66. (in Russian); https://vavilov.elpub.ru/jour/article/view/3181

  20. 20
    Academic Journal

    Συγγραφείς: Borzykh, O., Krut , M.

    Πηγή: Interdepartmental Thematic Scientific Collection of Phytosanitary safety; No. 67 (2021): Interdepartmental Thematic Scientific Collection of Plant Protection and Quarantine; 30-41 ; Межведомственный тематический научный сборник "Защита и карантин растений"; № 67 (2021): Межведомственный тематический научный сборник "Защита и карантин растений"; 30-41 ; Міжвідомчий тематичний науковий збірник "Фітосанітарна безпека"; № 67 (2021): Міжвідомчий тематичний науковий збірник "Захист і карантин рослин"; 30-41 ; 2786-796X ; 2786-7951 ; 10.36495/1606-9773.2021.67

    Περιγραφή αρχείου: application/pdf