Showing 1 - 20 results of 145 for search '"урожайность сельскохозяйственных культур"', query time: 0.79s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
    Academic Journal

    Source: Наукові вісті КПІ; № 1 (2017): ; 24-36
    Научные вести КПИ; № 1 (2017): ; 24-36
    Research Bulletin of the National Technical University of Ukraine "Kyiv Politechnic Institute"; № 1 (2017): Engineering; 24-36

    File Description: application/pdf

  20. 20
    Academic Journal

    Contributors: This research was funded by the RFBR grant No. 18-010-00564 «Current trends and socio-economic consequences of the development of digital technologies in Russia», Исследование выполнено при поддержке гранта РФФИ №18-010-00564 «Современные тенденции и социально-экономические последствия развития цифровых технологий в России»

    Source: Voprosy statistiki; Том 27, № 5 (2020); 65-75 ; Вопросы статистики; Том 27, № 5 (2020); 65-75 ; 2658-5499 ; 2313-6383

    File Description: application/pdf

    Relation: https://voprstat.elpub.ru/jour/article/view/1198/794; Basso F. et al. Evaluating environmental sensitivity at the basin scale through the use of geographic information systems and remotely sensed data: an example covering the Agri basin (Southern Italy) // Catena. 2000. Vol. 40. No. 1. P. 19-35.; Salvati L. et al. Exploring the relationship between agricultural productivity and land degradation in a dry region of Southern Europe // New Medit. 2010. Vol. 9. No. 1. P. 35-40.; Pantazi X.E. et al. Wheat yield prediction using machine learning and advanced sensing techniques // Computers and Electronics in Agriculture. 2016. Vol. 121. P. 57-65.; Anders U., Korn O. Model selection in neural networks // Neural networks. 1999. Vol. 12. No. 2. P. 309-323.; De la Casa A. et al. Soybean crop coverage estimation from NDVI images with diff erent spatial resolution to evaluate yield variability in a plot // I SPRS journal of photogrammetry and remote sensing. 2018. Vol. 146. P. 531-547.; Bajracharya D. Econometric Modeling Vs Artifi cial Neural Networks: A Sales Forecasting Comparison. 2011.; Demuth H.B. et al. Neural network design. Martin Hagan. 2014.; Dharmadhikari N.L. Economic Modeling of Agricultural Production in North Dakota Using Transportation Analysis and Forecasting: дис. - North Dakota State University. 2018.; Haghverdi A., Washington-Allen R.A., Leib B.G. Prediction of cotton lint yield from phenology of crop indices using artifi cial neural networks // Computers and Electronics in Agriculture. 2018. Vol. 152. P. 186-197.; Jordanova N. Soil magnetism: Applications in pedology, environmental science and agriculture. Academic Press. 2016.; Molnar C. Interpretable Machine Learning-A Guide for Making Black Box Models Explainable. Leanpub, np. 2018.; Moshiri S., Cameron N. Neural network versus econometric models in forecasting infl ation // Journal of forecasting. 2000. Vol. 19. No. 3. P. 201-217.; Pхldaru R., Roots J., Viira A.H. Estimating econometric model of average total milk cost: A support vector machine regression approach // Economics and rural development. 2005. Vol. 1. No. 1. P. 23-31.; Ranjan R. et al. Irrigated pinto bean crop stress and yield assessment using ground based low altitude remote sensing technology // Information Processing in Agriculture. 2019. Vol. 6. No. 4. Р. 502-514.; Zhang C. et al. Machine-learned prediction of annual crop planting in the US Corn Belt based on historical crop planting maps //Computers and Electronics in Agriculture. 2019. Vol. 166. Р. 104989.; Zhang L., Lei L., Yan D. Comparison of two regression models for predicting crop yield // 2010 IEEE International Geoscience and Remote Sensing Symposium. Ieee, 2010. Р. 1521-1524.; Архипова М.Ю., Александрова Е.А. Исследование характера связи инновационной и экспортной активности российских предприятий // Прикладная эконометрика. 2014. № 38 (4). С. 88-101; Мхитарян В.С. и др. Анализ данных: учебник для академического бакалавриата. Сер. 58 Бакалавр. Академический курс (1-е изд.). М.: Изд-во Юрайт, 2017. 490 с.; Ширяев В.И. Финансовые рынки. Нейронные сети, хаос и нелинейная динамика: Учебное пособие / В.И. Ширяев. М.: Либроком, 2013. 232 с.; https://voprstat.elpub.ru/jour/article/view/1198