-
1Academic Journal
Contributors: This work was supported by Russian fund of basic researches, project No 16-01-00437., Работа выполнена при финансовой поддержке гранта РФФИ, проект №16-01-00437.
Source: Modeling and Analysis of Information Systems; Том 25, № 1 (2018); 125-132 ; Моделирование и анализ информационных систем; Том 25, № 1 (2018); 125-132 ; 2313-5417 ; 1818-1015
Subject Terms: асимптотическая устойчивость по Ляпунову, periodic problems, weak advection, reactionadvection-diffusion equations, contrast structures, internal layers, fronts, asymptotic methods, differential inequalities, Lyapunov asymptotical stability, периодические задачи, слабая адвекция, уравнения реакция-адвекция-диффузия, контрастные структуры, внутренние слои, фронты, асимптотические методы, дифференциальные неравенства
File Description: application/pdf
Relation: https://www.mais-journal.ru/jour/article/view/637/496; Нефедов Н.Н., Давыдова М.А., “Периодические контрастные структуры в системах типа реакция-диффузия-адвекция”, Дифференциальные уравнения, 46:9 (2010), 1300– 1312; Васильева А.Б., Давыдова М.А., “О контрастной структуре типа ступеньки для одного класса нелинейных сингулярно возмущенных уравнений второго порядка”, Журнал вычислительной математики и математической физики, 38:6 (1998), 938– 947; Васильева А.Б., “О периодических решениях параболической задачи с малым параметром при производных”, Журнал вычислительной математики и математической физики, 43:7 (2003), 975–986; Nefedov N.N., Nikulin E.I., “Existence and stability of periodic contrast structures in the reaction-advection-diffusion problem”, Russian Journal of Mathematical Physics, 22:2 (2015), 215–226.; Нефедов Н.Н., Никулин Е.И., “Существование и устойчивость периодических контрастных структур в задаче реакция-адвекция-диффузия в случае сбалансированной нелинейности”, Дифференциальные уравнения, 53:4 (2017), 524–537