-
1Academic Journal
Authors: M. L. Madzhugin, A. S. Bolotskov, M. S. Firsov, A. R. Dadayan, М. Л. Маджугин, А. С. Болоцков, М. С. Фирсов, А. Р. Дадаян
Source: Medical Visualization; Том 29, № 1 (2025); 80-91 ; Медицинская визуализация; Том 29, № 1 (2025); 80-91 ; 2408-9516 ; 1607-0763
Subject Terms: ультразвуковая эластография почек, renal stiffness, ultrasound elastography of the kidneys, оценка жесткости почек
File Description: application/pdf
Relation: https://medvis.vidar.ru/jour/article/view/1501/918; Nie P., Chen R., Luo M. et al. Clinical and Pathological Analysis of 4910 Patients Who Received Renal Biopsies at a Single Center in Northeast China. Biomed. Res. Int. 2019; 1: 6869179. http://doi.org/10.1155/2019/6869179; Zhang Q.L., Rothenbacher D. Prevalence of chronic kidney disease in population-based studies: systemic review. BMC Public Health. 2008; 8: 117. http://doi.org/10.1186/1471-2458-8-117; Ophir J., Céspedes I., Ponnekanti H. et al. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason. Imaging. 1991; 13 (1): 111–134. http://doi.org/10.1177/016173469101300201; Wang L. Acoustic Radiation Force Based Ultrasound Elasticity Imaging for Biomedical Applications. Sensors (Basel). 2018; 18 (7): 2252. http://doi.org/10.3390/s18072252.; Sigrist R.M.S., Liau J., Kaffas A.E. et al. Ultrasound Elastography: Review of Techniques and Clinical Applications. Theranostics. 2017; 7 (5): 1303–1329. http://doi.org/10.7150/thno.18650.; Ozturk A., Grajo J.R., Dhyani M. et al. Principles of ultrasound elastography. Abdom. Radiol. (NY). 2018; 43 (4): 773–785. http://doi.org/10.1007/s00261-018-1475-6; Dietrich C.F., Bamber J., Berzigotti A. et al. EFSUMB Guidelines and Recommendations on the Clinical Use of Liver Ultrasound Elastography, Update 2017 (Long Version). Ultraschall. Med. 2017; 38 (4): e16–e47. http://doi.org/10.1055/s-0043-103952; European Association for Study of Liver. EASL Clinical Practice Guidelines: management of hepatitis C virus infection. J. Hepatol. 2014; 60 (1): 392–420. http://doi.org/10.1016/j.jhep.2013.11.003; Mathew G.G., Gunda K.C., Prakash K.C. et al. Correlation of Acoustic Radiation Force Impulse Imaging with Chronicity Markers in Native Renal Biopsy. G. Ital. Nefrol. 2023; 40 (4): 4.; Demin I.Y., Rykhtik P.I., Spivak А.E., Safonov D.V. A New Criterion for Shear Wave Elastometric Assessment Using Modulus of Stiffness Difference between Object and Environment. Sovrem. Tekhnologii Med. 2022; 14 (5): 5–13. http://doi.org/10.17691/stm2022.14.5.01; Cosgrove D., Barr R., Bojunga J. et al. WFUMB Guidelines and Recommendations on the Clinical Use of Ultrasound Elastography: Part 4. Thyroid. Ultrasound Med. Biol. 2017; 43 (1): 4–26. http://doi.org/10.1016/j.ultrasmedbio.2016.06.022; Barr R.G., Wilson S.R., Rubens D. et al. Update to the Society of Radiologists in Ultrasound Liver Elastography Consensus Statement. Radiology. 2020; 296 (2): 263–274. http://doi.org/10.1148/radiol.2020192437; Grenier N., Gennisson J.L., Cornelis F. et al. Renal ultrasound elastography. Diagn. Interv. Imaging. 2013; 94: 545–550. http://doi.org/10.1016/j.diii.2013.02.003; Arda K., Ciledag N., Aktas E. et al. Quantita-tive assessment of normal soft-tissue elasticity using shear-wave ultrasound elastography. Am. J. Roentgenol. 2011; 197 (1): 532–536. http://doi.org/10.2214/AJR.10.5449; Gennisson J.L., Grenier N., Combe C., Tanter M. Supersonic shear wave elastography of in vivo pig kidney: influence of blood pressure, urinary pressure and tissue anisotropy. Ultrasound Med. Biol. 2012; 38 (1): 1559–1567. http://doi.org/10.1016/j.ultrasmedbio.2012.04.013; Guo L.H., Xu H.X., Fu H.J. et al. Acoustic radiation force impulse imaging for noninvasive evaluation of renal parenchyma elasticity: preliminary findings. PLoS One. 2013; 8 (1): e68925. http://doi.org/10.1371/journal.pone.0068925; Bruno C., Caliari G., Zaffanello M. et al. Acoustic radiation force impulse (ARFI) in the evaluation of the renal parenchymal stiffness in pediatric patients with vesicoureteral reflux: preliminary results. Eur. Radiol. 2013; 23 (1): 3477–3484. http://doi.org/10.1007/s00330-013-2959-y; Cui G., Yang Z., Zhang W. et al. Evaluation of acoustic radiation force impulse imaging for the clinicopathological typing of renal fibrosis. Exp. Ther. Med. 2014; 7 (1): 233–235. http://doi.org/10.3892/etm.2013.1377; Sohn B., Kim M.J., Han S.W. et al. Shear wave velocity measurements using acoustic radiation force im-pulse in young children with normal kidneys versus hydro-nephrotic kidneys. Ultrasonography. 2014; 33 (1): 116–121. http://doi.org/10.14366/usg.14002; Bob F., Bota S., Sporea I. et al. Kidney shear wave speed values in subjects with and without renal pathology and interoperator reproducibility of acoustic radiation force impulse elastography (ARFI) – preliminary results. PLoS One. 2014; 9 (1): e113761. http://doi.org/10.1371/journal.pone.0113761; Asano K., Ogata A., Tanaka K. et al. Acoustic radiation force impulse elastography of the kidneys: is shear wave velocity affected by tissue fibrosis or renal blood flow? J. Ultrasound Med. 2014; 33 (1): 793–801. http://doi.org/10.7863/ultra.33.5.793; Hu Q., Wang X.Y., He H.G. et al. Acoustic radiation force impulse imaging for noninvasive assessment of renal histopathology in chronic kidney disease. PLoS One. 2014; 9 (1): e115051. http://doi.org/10.1371/journal.pone.0115051; Yu N., Zhang Y., Xu Y. Value of virtual touch tissue quantification in stages of diabetic kidney disease. J. Ultrasound Med. 2014; 33 (1): 787–792. http://doi.org/10.7863/ultra.33.5.787; Tian F., Wang Z.B., Meng D.M. et al. Preliminary study on the role of virtual touch tissue quantification combined with a urinary β2-microglobulin test on the early diagnosis of gouty kidney damage. Ultrasound Med. Biol. 2014; 40 (1): 1394–1399. http://doi.org/10.1016/j.ultrasmedbio.2014.01.01; Samir A.E., Allegretti A.S., Zhu Q. et al. Shear wave elastography in chronic kidney disease: a pilot experience in native kidneys. BMC Nephrol. 2015; 16 (1): 119. http://doi.org/10.1186/s12882-015-0120-7; Goya C., Kilinc F., Hamidi C. et al. Acoustic radiation force impulse imaging for evaluation of renal parenchyma elasticity in diabetic nephropathy. Am. J. Roentgenol. 2015; 204 (1): 324–329. http://doi.org/10.2214/AJR.14.12493; Sommerer C., Scharf M., Seitz C. et al. Assessment of renal allograft fibrosis by transient elastography. Transpl. Int. 2013; 26 (1): 545–551. http://doi.org/10.1111/tri.12073; Bota S., Bob F., Sporea I. et al. Factors that influence kidney shear wave speed assessed by acoustic radiation force impulse elastography in patients without kidney pathology. Ultrasound Med. Biol. 2015; 41 (1): 1–6. http://doi.org/10.1016/j.ultrasmedbio.2014.07.023; Амосов А.В., Крупинов Г.Е., Сорокин Н.И., Кубанейшвили И.С., Семендяев Р.И. Ультразвуковая эластография сдвиговой волной в диагностике опухолей почек. Ультразвуковая и функциональная диагностика. 2015; 4: 17a.; Борсуков А.В., Бекезин В.В., Козлова Е.Ю., Пересецкая О.В. Диагностические возможности ультразвуковой эластографии почек у детей с метаболическим синдромом. Доктор.Ру. 2016; 6: 52–56.; Бекезин В.В., Борсуков А.В., Козлова Е.Ю. Влияние артериальной гипертензии у подростков с ожирением на состояние почек по данным эластографии сдвиговой волной. Российский кардиологический журнал. 2022; 27 (S6): 6.; Močnik M., Marčun Varda N. Ultrasound Elastography in Children. Children (Basel). 2023; 10 (8): 1296. http://doi.org/10.3390/children10081296; Zhang Y.Y., Meng Z.J. Definition and classification of acute-on-chronic liver diseases. Wld J. Clin. Cases. 2022; 10 (15): 4717–4725. http://doi.org/10.12998/wjcc.v10.i15.4717; Herrmann E., de Lédinghen V., Cassinotto C. et al. Assessment of biopsy-proven liver fibrosis by two-dimensional shear wave elastography: An individual patient data-based meta-analysis. Hepatology. 2018; 67 (1): 260–272. http://doi.org/10.1002/hep.29179; Magri F., Chytiris S., Chiovato L. The role of elastography in thyroid ultrasonography. Curr. Opin. Endocrinol. Diabetes Obes. 2016; 23 (5): 416–422. http://doi.org/10.1097/MED.0000000000000274; Ricci P., Maggini E., Mancuso E. et al. Clinical application of breast elastography: state of the art. Eur. J. Radiol. 2014; 83 (3): 429–437. http://doi.org/10.1016/j.ejrad.2013.05.007; Cui X.W., Li K.N., Yi A.J. et al. Ultrasound elastography. Endosc. Ultrasound. 2022; 11 (4): 252–274. http://doi.org/10.4103/EUS-D-21-00151; Zaffanello M., Bruno C. Clinical perspective on renal elasticity quantification by acoustic radiation force impulse: Where we are and where we are going. Wld J. Clin. Urol. 2015; 4 (1): 100–104. http://doi.org/10.5410/wjcu.v4.i3.100; Rizzo L., L'Abbate L., Attanasio M. et al. Depth effect on point shear wave velocity elastography: Evidence in a chronic hepatitis C patient cohort. Ultrasound. 2024; 32 (1): 53–61. http://doi.org/10.1177/1742271X231183370; Nery F., Szczepankiewicz F., Kerkelä L. et al. In vivo demonstration of microscopic anisotropy in the human kidney using multidimensional diffusion MRI. Magn. Reson. Med. 2019; 82 (6): 2160–2168. http://doi.org/10.1002/mrm.27869; Jiang B., Liu F., Fu H., Mao J. Advances in imaging techniques to assess kidney fibrosis. Ren. Fail. 2023; 45 (1): 2171887. http://doi.org/10.1080/0886022X.2023.2171887; Nishino T., Tomori S., Ono S. et al. Effect of proteinuria at relapse on shear wave velocity assessed using ultrasound elastography in children with idiopathic nephrotic syndrome. J. Med. Ultrason. 2024; 1 (1): 4. http://doi.org/10.1007/s10396-024-01455-7; Gonçalves L.M., Forte G.C., Holz T.G. et al. Shear wave elastography and Doppler ultrasound in kidney transplant recipients. Radiol. Bras. 2022; 55 (1): 19–23. http://doi.org/10.1590/0100-3984.2020.0148; Filipov T., Teutsch B., Szabó A. et al. Investigating the role of ultrasound-based shear wave elastography in kidney transplanted patients: correlation between non-invasive fibrosis detection, kidney dysfunction and biopsy results-a systematic review and meta-analysis. J. Nephrol. 2024; 1 (1): 8. http://doi.org/10.1007/s40620-023-01856-w; Kishimoto R., Kikuchi K., Koyama A. et al. Intra- and inter-operator reproducibility of US point shear-wave elastography in various organs: evaluation in phantoms and healthy volunteers. Eur. Radiol. 2019; 29 (11): 5999–6008. http://doi.org/10.1007/s00330-019-06195-8; Fang C., Konstantatou E., Romanos O. et al. Reproducibility of 2-Dimensional Shear Wave Elastography Assessment of the Liver: A Direct Comparison With Point Shear Wave Elastography in Healthy Volunteers. J. Ultrasound Med. 2017; 36 (8): 1563–1569. http://doi.org/10.7863/ultra.16.07018; Kim T.M., Ahn H., Cho J.Y. et al. Prediction of acute rejection in renal allografts using shear-wave dispersion slope. Eur. Radiol. 2023; 1 (1): 12. http://doi.org/10.1007/s00330-023-10492-8; Маджугин М.Л., Болоцков А.С., Дадаян А.Р., Фирсов М.С. Оценка жесткости паренхимы почек у практически здоровых пациентов методом эластографии сдвиговой волной. Современные проблемы науки и образования. 2024; 5: 2024. https://science-education.ru/article/view?id=33646 doi:10.17513/spno.33646; https://medvis.vidar.ru/jour/article/view/1501