Showing 1 - 1 results of 1 for search '"удаление микотоксинов"', query time: 0.47s Refine Results
  1. 1
    Academic Journal

    Contributors: The research was carried out within the state assignment of the Agricultural Research Centre Donskoy (theme No. 0706-2019-0006). The authors thank the reviewers for their contribution to the peer review of this work., Работа выполнена в рамках Государственного задания ФГБНУ «Аграрный научный центр «Донской» (тема № 0706-2019-0006). Авторы благодарят рецензентов за их вклад в экспертную оценку этой работы.

    Source: Agricultural Science Euro-North-East; Том 22, № 1 (2021); 32-46 ; Аграрная наука Евро-Северо-Востока; Том 22, № 1 (2021); 32-46 ; 2500-1396 ; 2072-9081

    File Description: application/pdf

    Relation: https://www.agronauka-sv.ru/jour/article/view/676/445; Haque M. A., Wang Y., Shen Z., Li X., Saleemi M. K., He C. Mycotoxin contamination and control strategy in human, domestic animal and poultry: A review. Microbial Pathogenesis. 2020;142:104095. DOI: http://doi.org/10.1016/j.micpath.2020.104095; Abdallah M. F., Girgin G., Baydar T. Occurrence, prevention and limitation of mycotoxins in feeds. Animal Nutrition and Feed Technology. 2015;15(3):471-490. DOI: http://doi.org/10.5958/0974-181x.2015.00048.7; Yang C., Song G., Lim W. Effects of mycotoxin-contaminated feed on farm animals. Journal of Hazardous Materials. 2020;389:122087. DOI: http://doi.org/10.1016/j.jhazmat.2020.122087; Magnoli A. P., Poloni V. L., Cavaglieri L. Impact of mycotoxin contamination in the animal feed industry. Current Opinion in Food Science. 2019;29:99-108. DOI: http://doi.org/10.1016/j.cofs.2019.08.009; Кононенко Г. П., Буркин А. А., Зотова Е. В. Микотоксикологический мониторинг. Сообщение 2. Зерно пшеницы, ячменя, овса, кукурузы. Ветеринария сегодня. 2020;2:139-145. DOI: http://doi.org/10.29326/2304-196X-2020-2-33-139-145; Bryden W. L. Mycotoxin contamination of the feed supply chain. Implications for animal productivity and feed security. Animal Feed Science and Technology. 2012;173(1-2):134-158. DOI: http://doi.org/10.1016/j.anifeedsci.2011.12.014; Richard J. L. Some major mycotoxins and their mycotoxicoses – an overview. International Journal of Food Microbiology. 2007;119(1-2):3-10. DOI: http://doi.org/10.1016/j.ijfoodmicro.2007.07.019; Кононенко Г. П., Буркин А. А., Зотова Е. В. Микотоксикологический мониторинг. Сообщение 1. Полнорационные комбикорма для свиней и птицы (2009-2018 гг.). Ветеринария сегодня. 2020;(1):60-65. DOI: http://doi.org/10.29326/2304-196X-2020-1-32-60-65; Кононенко Г. П., Буркин А. А., Зотова Е. В. Микотоксикологический мониторинг. Сообщение 3. Кормовая продукция от переработки зернового сырья. Ветеринария сегодня. 2020;(3):213-219. DOI: http://doi.org/10.29326/2304-196X-2020-3-34-213-219; Дробин Ю. Д., Солдатенко Н. А., Сухих Е. А., Коваленко А. В. Итоги мониторинга контаминации фуражного зерна пшеницы, ячменя и кукурузы на юге России. Российский журнал «Проблемы ветеринарной санитарии, гигиены и экологии». 2015;4:27-30. Режим доступа: https://elibrary.ru/item.asp?id=25020727; Čolović R., Puvača N., Cheli F., Avantaggiato G., Greco D., Duragić O., Kos J., Pinotti L. Decontamination of Mycotoxin-contaminated feedstuffs and compound feed. Toxins. 2019;11(11):617. DOI: http://doi.org/10.3390/toxins11110617; Peng W-X., Marchal J. L. M., van der Poel A. F. B. Strategies to prevent and reduce mycotoxins for compound feed manufacturing. Animal Feed Science and Technology. 2018;237:129-153. DOI: https://doi.org/10.1016/j.anifeedsci.2018.01.017; Oliveira M., Vasconcelos V. Occurrence of mycotoxins in fish feed and its effects – a review. Toxins. 2020;12(3):160. DOI: http://doi.org/10.3390/toxins12030160; Luo Y., Liu X., Li J. Updating techniques on controlling mycotoxins – A review. Food Control. 2018;89:123-132. DOI: http://doi.org/10.1016/j.foodcont.2018.01.016; Jard G., Liboz T., Mathieu F., Guyonvarc’h A., Lebrihi A. Review of mycotoxin reduction in food and feed: from prevention in the field to detoxification by adsorption or transformation. Food Additives & Contaminants: Part A. 2011;28(11):1590-1609. DOI: http://doi.org/10.1080/19440049.2011.595377; Попова С. А., Скопцова Т. И., Лосякова Е. В. Микотоксины в кормах: причины, последствия, профилактика. Известия Великолукской государственной сельскохозяйственной академии. 2017;(1):16-23. Режим доступа: https://cyberleninka.ru/article/n/17966566; Alberts J. F., Lilly M., Rheeder J. P., Burger H-M., Shephard G. S., Gelderblom W. C. A. Technological and community-based methods to reduce mycotoxin exposure. Food Control. 2017;73:101-109. DOI: https://doi.org/10.1016/j.foodcont.2016.05.029; Kabak B., Dobson A. D. W., Var I. Strategies to prevent mycotoxin contamination of food and animal feed: A review. Critical Reviews in Food Science and Nutrition. 2006;46(8):593-619. DOI: https://doi.org/10.1080/10408390500436185; Jouany J. P. Methods for preventing, decontaminating and minimizing the toxicity of mycotoxins in feeds. Animal Feed Science and Technology. 2007;137(3-4):342-362. DOI: https://doi.org/10.1016/j.anifeedsci.2007.06.009; Torraco R. J. Writing integrative literature reviews: Using the past and present to explore the future. Human Resource Development Review. 2016;15(4):404-428. DOI: http://dx.doi.org/10.1177/1534484316671606; Okoli C. A guide to conducting a standalone systematic literature review. Communications of the Association for Information Systems. 2015;37:879-910. DOI: http://dx.doi.org/10.17705/1cais.03743; Afolabi C. G., Bandyopadhyay R., Leslie J. F., Ekpo E. J. A. Effect of sorting on incidence and occurrence of fumonisins and Fusarium verticillioides on maize from Nigeria. Journal of Food Protection. 2006;69(8):2019-2023. DOI: https://doi.org/10.4315/0362-028x-69.8.2019; Visconti A., Haidukowski E. M., Pascale M., Silvestri M. Reduction of deoxynivalenol during durum wheat processing and spaghetti cooking. Toxicology Letters. 2004;153(1):181-189. DOI: https://doi.org/10.1016/j.toxlet.2004.04.032; Matumba L., Van Poucke C., Ediage E. N., Jacobs B., De Saeger S. Effectiveness of hand sorting, flotation/washing, dehulling and combinations thereof on the decontamination of mycotoxin-contaminated white maize. Food Additives & Contaminants: Part A. 2015;32(6):960-969. DOI: https://doi.org/10.1080/19440049.2015.1029535; Van der Westhuizen L., Shephard G. S., Rheeder J. P., Burger H. M., Gelderblom W. C. A., Wild C. P., Gong Y. Y. Optimising sorting and washing of home-grown maize to reduce fumonisin contamination under laboratory-controlled conditions. Food Control. 2011;22(3-4):396-400. DOI: https://doi.org/10.1016/j.foodcont.2010.09.009; Tibola C. S., Fernandes J. M. C., Guarienti E. M. Effect of cleaning, sorting and milling processes in wheat mycotoxin content. Food Control. 2016;60:174-179. DOI: https://doi.org/10.1016/j.foodcont.2015.07.031; Schwake-Anduschus C., Langenkämper G., Unbehend G., Dietrich R., Märtlbauer E., Münzing K. Occurrence of Fusarium T-2 and HT-2 toxins in oats from cultivar studies in Germany and degradation of the toxins during grain cleaning treatment and food processing. Food Additives & Contaminants: Part A. 2010;27(9):1253-1260. DOI: https://doi.org/10.1080/19440049.2010.487499; Lancova K., Hajslova J., Kostelanska M., Kohoutkova J., Nedelnik J., Moravcova H., Vanova M. Fate of trichothecene mycotoxins during the processing milling and baking. Food Additives & Contaminants: Part A. 2008;25(5):650-659. DOI: https://doi.org/10.1080/02652030701660536; Rios G., Pinson-Gadais L., Abecassis J., Zakhia-Rozis N., Lullien-Pellerin V. Assessment of dehulling efficiency to reduce deoxynivalenol and Fusarium level in durum wheat grains. Journal of Cereal Science. 2009;49(3):387-392. DOI: https://doi.org/10.1016/j.jcs.2009.01.003; Siwela A. H., Siwela M., Matindi G., Dube S., Nziramasanga N. Decontamination of aflatoxin-contaminated maize by dehulling. Journal of the Science of Food and Agriculture. 2005;85(15):2535-2538. DOI: https://doi.org/10.1002/jsfa.2288; House J. D., Nyachoti C. M., Abramson D. Deoxynivalenol removal from barley intended as swine feed through the use of an abrasive pearling procedure. Journal of Agricultural and Food Chemistry. 2003;51(17):5172-5175. DOI: https://doi.org/10.1021/jf034244p; Cheli F., Battaglia D., Gallo R., Dell’Orto V. EU legislation on cereal safety: an update with a focus on mycotoxins. Food Control. 2014;37:315-325. DOI: https://doi.org/10.1016/j.foodcont.2013.09.059; Rios G., Zakhia-Rozis N., Chaurand M., Richard-Forget F., Samson M. F., Abecassis J., Lullien-Pellerin V. Impact of durum wheat milling on deoxynivalenol distribution in the outcoming fractions. Food Additives & Contaminants: Part A. 2009;26(4):487-495. DOI: https://doi.org/10.1080/02652030802382717; Tibola C. S., Fernandes J. M. C., Guarienti E. M., Nicolau M. Distribution of Fusarium mycotoxins in wheat milling process. Food Control. 2015;53:91-95. DOI: https://doi.org/10.1016/j.foodcont.2015.01.012; Kabak B. The fate of mycotoxins during thermal food processing. Journal of the Science of Food and Agriculture. 2009;89(4):549-554. DOI: https://doi.org/10.1002/jsfa.3491; Yumbe-Guevara B. E., Imoto T., Yoshizawa T. Effects of heating procedures on deoxynivalenol, nivalenol and zearalenone levels in naturally contaminated barley and wheat. Food Additives & Contaminants. 2003;20(12):1132-1140. DOI: https://doi.org/10.1080/02652030310001620432; Pronyk C., Cenkowski S., Abramson D. Superheated steam reduction of deoxynivalenol in naturally contaminated wheat kernels. Food Control. 2006;17(10):789-796. DOI: https://doi.org/10.1016/j.foodcont.2005.05.004; Liu Y., Li M., Bian K., Guan E., Liu Y., Lu Y. Reduction of deoxynivalenol in wheat with superheated steam and its effects on wheat quality. Toxins. 2019;11(7):414. DOI: https://doi.org/10.3390/toxins11070414; Castells M., Marín S., Sanchis V., Ramos A. J. Fate of mycotoxins in cereals during extrusion cooking: a review. Food Additives & Contaminants. 2005;22(2):150-157. DOI: https://doi.org/10.1080/02652030500037969; Bullerman L. B., Bianchini A. Stability of mycotoxins during food processing. International Journal of Food Microbiology. 2007;119(1-2):140-146. DOI: https://doi.org/10.1016/j.ijfoodmicro.2007.07.035; Castells M., Marín S., Sanchis V., Ramos A. J. Reduction of aflatoxins by extrusion-cooking of rice meal. Journal of Food Science. 2006;71(7):369-377. DOI: https://doi.org/10.1111/j.1750-3841.2006.00122.x; Singh S., Gamlath S., Wakeling L. Nutritional aspects of food extrusion: a review. International Journal of Food Science & Technology. 2007;42(8):916-929. DOI: https://doi.org/10.1111/j.1365-2621.2006.01309.x; Elias-Orozco R., Castellanos-Nava A., Gaytan-Martinez M. Figueroa-Cardenas J. D., Loarca-Pina G. Comparison of nixtamalization and extrusion processes for a reduction in aflatoxin content. Food Additives & Contaminants. 2002;19(9):878-885. DOI: https://doi.org/10.1080/02652030210145054; Cazzaniga D., Basilico J. C., Gonzalez R. J., Torres R. L., de Greef D. M. Mycotoxins inactivation by extrusion cooking of corn flour. Letters in Applied Microbiology. 2001;33(2):144-147. DOI: https://doi.org/10.1046/j.1472-765x.2001.00968.x; Castells M., Pardo E., Ramos A. J., Sanchis V., Marin S. Reduction of ochratoxin A in extruded barley meal. Journal of Food Protection. 2006;69(5):1139-1143. DOI: https://doi.org/10.4315/0362-028X-69.5.1139; Pleadin J., Kudumija N., Šubarić D., Lolić M., Škrivanko M., Tkalec V. J., Kiš M., Aladić K., Vulić A., Babić J. The effect of thermal processing on the reduction of deoxynivalenol and zearalenone cereal content. Croatian Journal of Food Science and Technology. 2019;11(1):44-51. DOI: https://doi.org/10.17508/cjfst.2019.11.1.06; Schaich K. M. Free radical generation during extrusion: a critical contributor to texturization. ACS Symposium Series. 2002;807:35-48. DOI: https://doi.org/10.1021/bk-2002-0807.ch003; Herzallah S., Alshawabkeh K., Al Fataftah A. Aflatoxin decontamination of artificially contaminated feeds by sunlight, γ-radiation, and microwave heating. Journal of Applied Poultry Research. 2008;17(4):515-521. DOI: https://doi.org/10.3382/japr.2007-00107; Directive 1999/2/EC of The European Parliament and of the Council: on the approximation of the laws of the Member States concerning foods and food ingredients treated with ionising radiation. Official Journal of the European Communities. 1999;16-22. URL: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A31999L0002; Directive 1999/3/EC of The European Parliament and of the Council: on the establishment of a Community list of foods and food ingredients treated with ionising radiation. Official Journal of the European Communities. 1999;16-22. URL: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A31999L0003; Ghanem I., Orfi M., Shamma M. Effect of gamma radiation on the inactivation of aflatoxin B1 in food and feed crops. Brazilian Journal of Microbiology. 2008;39(4):787-791. DOI: https://doi.org/10.1590/s1517-83822008000400035; He J., Zhou T., Young J. C., Boland G. J., Scott P. M. Chemical and biological transformations for detoxification of trichothecene mycotoxins in human and animal food chains: a review. Trends in Food Science & Technology. 2010;21(2):67-76. DOI: https://doi.org/10.1016/j.tifs.2009.08.002; O’Neill K., Damoglou A. P., Patterson M. F. The stability of deoxynivalenol and 3-acetyl deoxynivalenol to gamma irradiation. Food Additives & Contaminants. 1993;10(2):209-215. DOI: https://doi.org/10.1080/02652039309374143; Stepanik T., Kost D., Nowicki T., Gaba D. Effects of electron beam irradiation on deoxynivalenol levels in distillers dried grain and solubles and in production intermediates. Food Additives & Contaminants 2007;24(9):1001-1006. DOI: https://doi.org/10.1080/02652030701329629; Calado T., Venancio A., Abrunhosa L. Irradiation for mold and mycotoxin control: A review. Comprehensive Reviews in Food Science and Food Safety. 2014;13(5):1049-1061. DOI: https://doi.org/10.1111/1541-4337.12095; Pankaj S. K., Shi H., Keener K. M. A review of novel physical and chemical decontamination technologies for aflatoxin in food. Trends in Food Science & Technology. 2018;71:73-83. DOI: https://doi.org/10.1016/j.tifs.2017.11.007; Mehrez A., Maatouk I., Romero-González R., Amara A. B., Kraiem M., Frenich A. G., Landoulsi A. Assessment of ochratoxin A stability following gamma irradiation: experimental approaches for feed detoxification perspectives. World Mycotoxin Journal. 2016;9(2):289-298. DOI: https://doi.org/10.3920/WMJ2013.1652; Calado T., Fernández-Cruz M. L., Verde S. C., Venâncio A., Abrunhosa L. Gamma irradiation effects on ochratoxin A: Degradation, cytotoxicity and application in food. Food chemistry. 2018;240:463-471. DOI: https://doi.org/10.1016/j.foodchem.2017.07.136; Мамедов Х. Ф. Фотолитическая и радиолитическая детоксикация и стерилизация комбикормов, зараженные кишечными палочками и грибками Aspergillus. Ученые записки Крымского федерального университета имени В. И. Вернадского. Биология. Химия. 2011;24(3):138-142. Режим доступа: https://www.elibrary.ru/item.asp?id=25383259; Мамедов Х. Ф. Радиолитические процессы во влажных зернах кукурузы, пшеницы и ячменя. Ученые записки Крымского федерального университета имени В. И. Вернадского. Биология. Химия. 2013;26(2):226-238. Режим доступа: https://www.elibrary.ru/item.asp?id=25005403; Pillai S. D., Shayanfar S. Electron beam technology and other irradiation technology applications in the food industry. In: Applications of Radiation Chemistry in the Fields of Industry, Biotechnology and Environment. Springer. 2017;375:249-268. DOI: https://doi.org/10.1007/978-3-319-54145-7_9; Khaneghah A. M., Moosavi M. H., Oliveira C. A., Vanin F., Sant'Ana A. S. Electron beam irradiation to reduce the mycotoxin and microbial contaminations of cereal-based products: An overview. Food and Chemical Toxicology. 2020;143:111557. DOI: https://doi.org/10.1016/j.fct.2020.111557; Luo X., Qi L., Liu Y., Wang R., Yang D., Li K., Wang L., Li Y., Zhang Y., Chen Z. Effects of electron beam irradiation on zearalenone and ochratoxin A in naturally contaminated corn and corn quality parameters. Toxins. 2017;9(3):84. DOI: https://doi.org/10.3390/toxins9030084; Shanakhat H., Sorrentino A., Raiola A., Romano A., Masi P., Cavella S. Current methods for mycotoxins analysis and innovative strategies for their reduction in cereals: an overview. Journal of the Science of Food and Agriculture. 2018;98(11):4003-4013. DOI: https://doi.org/10.1002/jsfa.8933; Atalla M. M., Hassanein N. M., El-Beih A. A., Youssef Y. A. Effect of fluorescent and UV light on mycotoxin production under different relative humidities in wheat grains. ACTA Pharmaceutica Sciencia. 2004;46(3):205-222. URL: http://www.actapharmsci.com/abstract.php?id=40; Jubeen F., Bhatti I. A., Khan M. Z., Hassan Z. U., Shahid M. Effect of UVC irradiation on aflatoxins in ground nut (Arachis hypogea) and tree nuts (Juglans regia, Prunus duclus and Pistachio vera). Journal of the Chemical Society of Pakistan. 2012;34(6):1366-1374. URL: https://jcsp.org.pk/ArticleUpload/4443-20822-1-CE.pdf; García-Cela E., Marin S., Sanchis V., Crespo-Sempere A., Ramos A. J. Effect of ultraviolet radiation A and B on growth and mycotoxin production by Aspergillus carbonarius and Aspergillus parasiticus in grape and pistachio media. Fungal Biology. 2015;119(1):67-78. DOI: https://doi.org/10.1016/j.funbio.2014.11.004; Vearasilp S., Thobunluepop P., Thanapornpoonpong S., Pawelzik E., von Hörsten D. Radio frequency heating on lipid peroxidation, decreasing oxidative stress and aflatoxin B1 reduction in Perilla frutescens L. highland oil seed. Agriculture and Agricultural Science Procedia. 2015;5:177-183. DOI: https://doi.org/10.1016/j.aaspro.2015.08.027; Numanoglu E., Gökmen V., Uygun U., Koksel H. Thermal degradation of deoxynivalenol during maize bread baking. Food Additives & Contaminants: Part A. 2012;29(3):423-430. DOI: https://doi.org/10.1080/19440049.2011.644812; Юсупова Г. Г. Влияние СВЧ-энергии на микроскопические грибы и микотоксины. Вестник КрасГАУ. 2003;3:236-238. Режим доступа: https://elibrary.ru/item.asp?id=41543548 Yusupova G. G. Vliyanie SVCh-energii na mikroskopicheskie griby i mikotoksiny. [Influence of microwave energy on microscopic fungi and mycotoxins]. Vestnik KrasGAU = The Bulletin of KrasGAU. 2003;3:236-238. (In Russ.). URL: https://elibrary.ru/item.asp?id=41543548; Толмачева Т. А. Афлатоксины, их влияние на продовольственное сырье и методы обеззараживания. Вестник Южно-Уральского государственного университета. Серия: Пищевые и биотехнологии. 2013;1(2):40-44. Режим доступа: https://www.elibrary.ru/item.asp?id=20936071; Соболева О. М., Колосова М. М., Филипович Л. А. Электрофизический способ снижения количества микотоксинов в концентрированных кормах. Достижения науки и техники АПК. 2019;33(4):64-66. DOI: https://doi.org/10.24411/0235-2451-2019-10416; Hojnik N., Cvelbar U., Tavčar-Kalcher G., Walsh J. L., Križaj I. Mycotoxin decontamination of food: cold atmospheric pressure plasma versus «classic» decontamination. Toxins. 2017;9(5):151. DOI: https://doi.org/10.3390/toxins9050151; Annor G. A. Cold plasma effects on the nutritional, textural and sensory characteristics of fruits and vegetables, meat, and dairy products. Effect of Emerging Processing Methods on the Food Quality. Springer, Cham. 2019;163-171. DOI: https://doi.org/10.1007/978-3-030-18191-8_7; Ten Bosch L., Pfohl K., Avramidis G., Wieneke S., Viöl W., Karlovsky P. Plasma-based degradation of mycotoxins produced by Fusarium Aspergillus and Alternaria species. Toxins. 2017;9(3):97. DOI: https://doi.org/10.3390/toxins9030097; Ouf S. A., Basher A. H., Mohamed A. A. Inhibitory effect of double atmospheric pressure argon cold plasma on spores and mycotoxin production of Aspergillus niger contaminating date palm fruits. Journal of the Science of Food and Agriculture. 2015;95(15):3204-3210. DOI: https://doi.org/10.1002/jsfa.7060; Devi Y., Thirumdas R., Sarangapani C., Deshmukh R. R., Annapure U. S. Influence of cold plasma on fungal growth and aflatoxins production on groundnuts. Food Control. 2017;77:187-191. DOI: https://doi.org/10.1016/j.foodcont.2017.02.019; Wang X., Wang S., Yan Y., Wang W., Zhang L., Zong W. The degradation of Alternaria mycotoxins by dielectric barrier discharge cold plasma. Food Control. 2020;117:107333. DOI: https://doi.org/10.1016/j.foodcont.2020.107333