-
1Academic Journal
Συγγραφείς: M. S. Kotliarova, V. A. Zhuikov, Y. V. Chudinova, D. D. Khaidapova, A. M. Moisenovich, A. S. Kon’kov, L. A. Safonova, M. M. Bobrova, A. Y. Arkhipova, A. V. Goncharenko, K. V. Shaitan, М. С. Котлярова, В. А. Жуйков, Ю. В. Чудинова, Д. Д. Хайдапова, А. М. Мойсенович, А. С. Коньков, Л. А. Сафонова, М. М. Боброва, А. Ю. Архипова, А. В. Гончаренко, К. В. Шайтан
Πηγή: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; № 4 (2016); 34-40 ; Вестник Московского университета. Серия 16. Биология; № 4 (2016); 34-40 ; 0137-0952
Θεματικοί όροι: микроноситель, osteogenic differentiation, mineralization, three-dimensional culture, microcarrier, остеогенная дифференцировка, минерализация, трёхмерное культивирование
Περιγραφή αρχείου: application/pdf
Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/387/362; Justice B.A., Badr N.A., Felder R.A. 3D cell culture opens new dimensions in cell-based assays // Drug Discov. Today. 2009. Vol. 14. N 1. P. 102–107.; Sun L.Y., Lin S.Z., Li Y.S., Harn H.J., Chiou T.W. Functional cells cultured on microcarriers for use in regenerative medicine research // Cell Transplant. 2011. Vol. 20. N 1. P. 49–62.; Costa A.R., Withers J., Rodrigues M.E., McLoughlin N., Henriques M., Oliveira R., Rudd P.M., Azeredo J. The impact of microcarrier culture optimization on the glycosylation profile of a monoclonal antibody // Springerplus. 2013. Vol. 2. N 1. P. 25.; Chen A.K.-L., Reuveny S., Oh S.K.W. Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: achievements and future direction // Biotechnol. Adv. 2013. Vol. 31. N 7. P. 1032–1046.; Bonartsev A.P., Yakovlev S.G., Filatova E.V., Soboleva G.M., Makhina T.K., Bonartseva G.A., Shaĭtan K.V., Popov V.O., Kirpichnikov M.P. Sustained release of the antitumor drug paclitaxel from poly(3-hydroxybutyrate)-based microspheres // Biochem. (Mosc.), Suppl., Ser. B Biomed. Chem. 2012. Vol. 6. N 1. P. 42–47.; Yang Y., Rossi F.M.V., Putnins E.E. Ex vivo expansion of rat bone marrow mesenchymal stromal cells on microcarrier beads in spin culture // Biomaterials. 2007. Vol. 28. N 20. P. 3110–3120.; Chen M., Wang X., Ye Z., Zhang Y., Zhou Y., Tan W.-S. A modular approach to the engineering of a centimetersized bone tissue construct with human amniotic mesenchymal stem cells-laden microcarriers // Biomaterials. 2011. Vol. 32. N. 30. P. 7532–7542.; Müller P., Bulnheim U., Diener A., Lüthen F., Teller M., Klinkenberg E.-D., Neumann H.-G., Nebe B., Liebold A., Steinhoff G., Rychly J. Calcium phosphate surfaces promote osteogenic differentiation of mesenchymal stem cells // J. Cell. Mol. Med. 2007. Vol. 12. N 1. P. 281–291.; Moisenovich M.M., Pustovalova O., Shackelford J., Vasiljeva T.V, Druzhinina T.V., Kamenchuk Y.A., Guzeev V.V, Sokolova O.S., Bogush V.G., Debabov V.G., Kirpichnikov M.P., Agapov I.I. Tissue regeneration in vivo within recombinant spidroin 1 scaffolds // Biomaterials. 2012. Vol. 33. N 15. P. 3887–3898.; Arkhipova A.Y., Kotlyarova M.S., Novichkova S.G., Agapova O.I., Kulikov D.A., Kulikov A.V., Drutskaya M.S., Agapov I.I., Moisenovich M.M. New silk fibroin-based bioresorbable microcarriers // Bull. Exp. Biol. Med. 2016. Vol. 160. N 4. P. 491–494.; Moisenovich M.M., Kulikov D.A., Arkhipova A.Y., Malyuchenko N.V., Kotlyarova M.S., Goncharenko A.V., Kulikov A.V., Mashkov A.E., Agapov I.I., Paleev F.N., Svistunov A.A., Kirpichnikov M.P. Fundamental bases for the use of silk fibroin-based bioresorbable microvehicles as an example of skin regeneration in therapeutic practice // Ter. Arkh. 2015. Vol. 87. N 12. P. 66–72; Correia C., Bhumiratana S., Yan L.-P., Oliveira A.L., Gimble J. M., Rockwood D., Kaplan D.L., Sousa R.A., Reis R.L., Vunjak-Novakovic G. Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells // Acta Biomater. 2012. Vol. 8. N 7. P. 2483–2492.; Agapov I.I., Moisenovich M.M., Druzhinina T.V., Kamenchuk Y.A., Trofimov K.V., Vasilyeva T.V., Konkov A.S., Arhipova A.Y., Sokolova O.S., Guzeev V.V., Kirpichnikov M.P. Biocomposite scaffolds containing regenerated silk fibroin and nanohydroxyapatite for bone tissue regeneration // Dokl. Biochem. Biophys. 2011. Vol. 440. N 1. P. 228–230.; Yang L., Hedhammar M., Blom T., Leifer K., Johansson J., Habibovic. P, van Blitterswijk C.A. Biomimetic calcium phosphate coatings on recombinant spider silk fibres // Biomed. Mater. 2010. Vol. 5. N. 4. 045002.; Karpushkin E., Dušková-Smrčková M., Remmler T., Lapčíková M. Dušek K. Rheological properties of homogeneous and heterogeneous poly(2-hydroxyethyl methacrylate) hydrogels // Polym. Int. 2012. Vol. 61. N 2. P. 328–336.; Czekanska E.M., Stoddart M.J., Richards R.G., Hayes J.S. In search of an osteoblast cell model for in vitro research // Eur. Cell. Mater. 2012. Vol. 24. P. 1–17.; Moisenovich M.M., Arkhipova A.Y., Orlova A.A., Drutskaya M.S., Volkova S.V., Zacharov S.E., Agapov I.I., Kirpichnikov M.P. Composite Scaffolds containing silk fibroin, gelatin, and hydroxyapatite for bone tissue regeneration and 3D Cell Culturing // Acta Naturae. 2014. Vol. 6. N 1. P. 96–101.; Tseng P.C., Young T.H., Wang T.M., Peng H.W., Hou S.M., Yen M.L. Spontaneous osteogenesis of MSCs cultured on 3D microcarriers through alteration of cytoskeletal tension // Biomaterials. 2012. Vol. 33. N. 2. P. 556–564.; Al-Munajjed A.A., Plunkett N.A., Gleeson J.P., Weber T., Jungreuthmayer C., Levingstone T., Hammer J., O’Brien F.J. Development of a biomimetic collagen-hydroxyapatite scaffold for bone tissue engineering using a SBF immersion technique // J. Biomed. Mater. Res. Part B Appl. Biomater. 2009. Vol. 90B. N 2. P. 584–591.; Li X., Huang Y., Zheng L., Liu H., Niu X., Huang J., Zhao F., Fan Y. Effect of substrate stiffness on the functions of rat bone marrow and adipose tissue derived mesenchymal stem cells in vitro // J. Biomed. Mater. Res. A2014. Vol. 102. N 4. P. 1092–1101.; Cheng Q., Rutledge K., Jabbarzadeh E. Carbon nanotube-poly(lactide-co-glycolide) composite scaffolds for bone tissue engineering applications // Ann. Biomed. Eng. 2013. Vol. 41. N 5. P. 904–916.; Zaari N., Rajagopalan P., Kim S.K., Engler A.J., Wong J.Y. Photopolymerization in microfluidic gradient generators: microscale control of substrate compliance to manipulate cell response // Adv. Mater. 2004. Vol. 16. N 23–24. P. 2133–2137.; Dupont S., Morsut L., Aragona M., Enzo E., Giulitti S., M. Cordenonsi, Zanconato F., Le Digabel J., Forcato M., Bicciato S., Elvassore N., Piccolo S. Role of YAP/TAZ in mechanotransduction // Nature. 2011. Vol. 474. N 7350. P. 179–183.; Wang H.B., Dembo M., Wang Y.L. Substrate flexibility regulates growth and apoptosis of normal but not transformed cells // Am. J. Physiol. Cell Physiol. 2000. Vol. 279. N 5. P. C1345–1350.; Шрамм Г. Основы практической реологии и реометрии. М: КолосС, 2003. 312 c.
Διαθεσιμότητα: https://vestnik-bio-msu.elpub.ru/jour/article/view/387