Εμφανίζονται 1 - 1 Αποτελέσματα από 1 για την αναζήτηση '"тригонометрическое интерполирование"', χρόνος αναζήτησης: 0,43δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series; № 1 (2017); 14-28 ; Известия Национальной академии наук Беларуси. Серия физико-математических наук; № 1 (2017); 14-28 ; 2524-2415 ; 1561-2430 ; undefined

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestifm.belnauka.by/jour/article/view/228/224; Худяков, А. П. Интерполяционные многочлены типа Эрмита – Биркгофа относительно отдельных чебышевских систем функций / А. П. Худяков // Вес. Нац. акад. навук Беларусі. Сер. фіз.-мат. навук. – 2010. – № 4. – С. 29–36.; Худяков, А. П. Явные формулы погрешностей для одного случая эрмитова интерполирования / А. П. Худяков // Вес. Нац. акад. навук Беларусі. Сер. фіз.-мат. навук. – 2012. – № 1. – С. 13–21.; Худяков, А. П. Некоторые задачи теории интерполирования / А. П. Худяков. – Saarbrücken, Deutschland: LAP LAMBERT Acad. Publ., 2014. – 132 с.; Худяков, А. П. Обобщенные интерполяционные формулы Эрмита – Биркгофа для случая чебышевских систем функций / А. П. Худяков, Л. А. Янович // Вес. Нац. акад. навук Беларусі. Сер. фіз.-мат. навук. – 2015. – № 2. – С. 5–14.; Yanovich, L.A. On one class of interpolating formulas for functions of matrix variables / L. A. Yanovich, A. P. Hudyakov // Журнал обчислювальної та прикладної математики = J. Numer. Appl. Math. – 2011. – № 2 (105). – P. 136–147.; Худяков, А. П. Обобщенные интерполяционные эрмитова типа многочлены для функций матричной переменной / А. П. Худяков, Л. А. Янович // Тр. Ин-та математики. – 2011. – Т. 19, № 2. – С. 103–114.; Янович, Л. А. Интерполяционные формулы первых и вторых порядков для функций матричного аргумента / Л. А. Янович, А. П. Худяков // Докл. Нац. акад. наук Беларуси. – 2012. – Т. 56, № 1. – С. 16–22.; Shi, Y. G. Theory of Birkhoff Interpolation / Y. G. Shi. – New York: Nova Science Publ., 2003. – 252 p.; Nazarzadeh, A. Another case of incidence matrix for bivariate Birkhoff interpolation / A. Nazarzadeh, Kh. Rahsepar Fard, A. Mahmoodi // Журнал обчислювальної та прикладної математики = J. Comput. Appl. Math. – 2016. – № 2 (122). – P. 55–70.; Zhao, T. G. On two Birkhoff-type interploations with first- and second-order derivative / T. G. Zhao, Y. J. Li // J. Appl. Math. Phys. – 2016. – № 4. – P. 1269–1274.; Yanovich, L. A. Operator interpolation Hermite – Birkhoff formulas in spaces of smooth functions // L. A. Yanovich, M. V. Ignatenko // J. Numer. Appl. Math. – 2010. – Vol. 100, № 1. – P. 117–129.; Хаусхолдер, А. С. Основы численного анализа / А. С. Хаусхолдер; под ред. Л. А. Люстерника. – М.: Из-во иностр. лит., 1956. – 320 с.; Турецкий, А. Х. Теория интерполирования в задачах / А. Х. Турецкий. – Минск: Выш. шк., 1968. – 320 с.; Makarov, V. L. Methods of Operator Interpolation / V. L. Makarov, V. V. Khlobystov, L. A. Yanovich. – Київ: Ін-т математики Нац. акад. наук України, 2010. – T. 83. – 517 с.; Степанов, В. В. Курс дифференциальных уравнений / В. В. Степанов. – М.: ГИФМЛ, 1959. – 468 с.; Зорич, В. А. Математический анализ: в 2 ч. / В. А. Зорич. – 4-е изд. – М.: МЦНМО, 2002. – Ч. 1. – 664 с.; Гончаров, В. Л. Теория интерполирования и приближения функций / В. Л. Гончаров. – 2-е изд. – М.: ГИТТЛ, 1954. – 327 с.; https://vestifm.belnauka.by/jour/article/view/228; undefined