Showing 1 - 20 results of 37 for search '"трансплантация фекальной микробиоты"', query time: 0.79s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
    Academic Journal

    Source: Siberian journal of oncology; Том 22, № 2 (2023); 129-142 ; Сибирский онкологический журнал; Том 22, № 2 (2023); 129-142 ; 2312-3168 ; 1814-4861

    File Description: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/2542/1103; Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021; 71(3): 209–49. doi:10.3322/caac.21660.; de Martel C., Ferlay J., Franceschi S., Vignat J., Bray F., Forman D., Plummer M. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 2012; 13(6): 607–15. doi:10.1016/S1470-2045(12)70137-7.; Хланта Д.А., Генс Г.П. Взаимодействие вируса Эпштейна– Барр и вируса папилломы человека в канцерогенезе шейки матки. Возможности профилактики. Доктор.Ру. 2022; 21(1): 59–64. doi:10.31550/1727-2378-2022-21-1-59-64.; Tsilimigras M.C., Fodor A., Jobin C. Carcinogenesis and therapeutics: the microbiota perspective. Nat Microbiol. 2017; 2. doi:10.1038/nmicrobiol.2017.8.; Багирова Н.С., Петухов И.Н., Дмитриев Н.В., Григорьевская З.В. Микробиом и рак: есть ли связь? Обзор литературы. Злокачественные опухоли 2018; 8(3s1): 56–69.; Микробиота. Под ред. Е.Л. Никонова, Е.Н. Поповой. М., 2019. 256 с.; Сухина М.А., Лягина И.А., Сафин А.Л., Фролов С.А., Кашников В.Н. Роль кишечной микробиоты в колоректальном канцерогенезе (обзор литературы). Колопроктология. 2021; 20(1): 68–76. doi:10.33878/2073-7556-2021-20-1-68-76.; Карасев И.А., Малихова О.А., Давыдкина Т.С. Роль кишечной микробиоты в патогенезе колоректального рака. Обзор литературных данных. Злокачественные опухоли. 2020; 3s1: 60–62. doi:10.18027/2224-5057-2020-10-3s1-60-62.; Nejman D., Livyatan I., Fuks G., Gavert N., Zwang Y., Geller L.T., Rotter-Maskowitz A., Weiser R., Mallel G., Gigi E., Meltser A., Douglas G.M., Kamer I., Gopalakrishnan V., Dadosh T., Levin-Zaidman S., Avnet S., Atlan T., Cooper Z.A., Arora R., Cogdill A.P., Khan M.A.W., Ologun G., Bussi Y., Weinberger A., Lotan-Pompan M., Golani O., Perry G., Rokah M., Bahar-Shany K., Rozeman E.A., Blank C.U., Ronai A., Shaoul R., Amit A., Dorfman T., Kremer R., Cohen Z.R., Harnof S., Siegal T., YehudaShnaidman E., Gal-Yam E.N., Shapira H., Baldini N., Langille M.G.I., Ben-Nun A., Kaufman B., Nissan A., Golan T., Dadiani M., Levanon K., Bar J., Yust-Katz S., Barshack I., Peeper D.S., Raz D.J., Segal E., Wargo J.A., Sandbank J., Shental N., Straussman R. The human tumor microbiome is composed of tumor type-specifc intracellular bacteria. Science. 2020; 368(6494): 973–80. doi:10.1126/science.aay9189.; Kalaora S., Nagler A., Nejman D., Alon M., Barbolin C., Barnea E., Ketelaars S.L.C., Cheng K., Vervier K., Shental N., Bussi Y., Rotkopf R., Levy R., Benedek G., Trabish S., Dadosh T., Levin-Zaidman S., Geller L.T., Wang K., Greenberg P., Yagel G., Peri A., Fuks G., Bhardwaj N., Reuben A., Hermida L., Johnson S.B., Galloway-Peña J.R., Shropshire W.C., Bernatchez C., Haymaker C., Arora R., Roitman L., Eilam R., Weinberger A., Lotan-Pompan M., Lotem M., Admon A., Levin Y., Lawley T.D., Adams D.J., Levesque M.P., Besser M.J., Schachter J., Golani O., Segal E., GevaZatorsky N., Ruppin E., Kvistborg P., Peterson S.N., Wargo J.A., Straussman R., Samuels Y. Identifcation of bacteria-derived HLA-bound peptides in melanoma. Nature. 2021; 592(7852): 138–43. doi:10.1038/s41586-021-03368-8.; Liu J., Zhang Y. Intratumor microbiome in cancer progression: current developments, challenges and future trends. Biomark Res. 2022; 10(1): 37. doi:10.1186/s40364-022-00381-5.; Багирова Н.С., Дмитриева Н.В., Петухова И.Н., Григорьевская З.В., Терещенко И.В. Микобиота как часть микробиоты: особенности методов изучения на современном этапе. Вопросы биологической, медицинской и фармацевтической химии. 2019; 22(11): 3−8. doi:10.29296/25877313-2019-11-01.; Bhatt A.P., Redinbo M.R., Bultman S.J. The role of the microbiome in cancer development and therapy. CA Cancer J Clin. 2017; 67(4): 326–44. doi:10.3322/caac.21398.; Morkūnas E., Skiecevičienė J., Kupčinskas J. The impact of modulating the gastrointestinal microbiota in cancer patients. Best Pract Res Clin Gastroenterol. 2020; 48–49. doi:10.1016/j.bpg.2020.101700.; Lee M.H. Harness the functions of gut microbiome in tumorigenesis for cancer treatment. Cancer Commun (Lond). 2021; 41(10): 937–67. doi:10.1002/cac2.12200.; Dai Z., Zhang J., Wu Q., Chen J., Liu J., Wang L., Chen C., Xu J., Zhang H., Shi C., Li Z., Fang H., Lin C., Tang D., Wang D. The role of microbiota in the development of colorectal cancer. Int J Cancer. 2019; 145(8): 2032–41. doi:10.1002/ijc.32017.; Исаева А.В., Зима А.П., Шабалова И.П., Рязанцева Н.В., Васильева О.А., Касоян К.Т., Саприна Т.В., Латыпова В.Н., Березкина И.С., Новицкий В.В. β-Катенин: структура, функции и роль в опухолевой трансформации эпителиальных клеток. Вестник РАМН. 2015; 70(4): 475–83. doi:10.15690/vramn.v70.i4.1415.; Wu S., Rhee K.J., Zhang M., Franco A., Sears C.L. Bacteroides fragilis toxin stimulates intestinal epithelial cell shedding and gamma-secretasedependent E-cadherin cleavage. J Cell Sci. 2007; 120(Pt 11): 1944–52. doi:10.1242/jcs.03455. Erratum in: J Cell Sci. 2007; 120(Pt 20): 3713.; Gopalakrishnan V., Helmink B.A., Spencer C.N., Reuben A., Wargo J.A. The Infuence of the Gut Microbiome on Cancer, Immunity, and Cancer Immunotherapy. Cancer Cell. 2018; 33(4): 570–80. doi:10.1016/j.ccell.2018.03.015.; Belkaid Y., Harrison O.J. Homeostatic Immunity and the Microbiota. Immunity. 2017; 46(4): 562–76. doi:10.1016/j.immuni.2017.04.008.; Michaudel C., Sokol H. The Gut Microbiota at the Service of Immunometabolism. Cell Metab. 2020; 32(4): 514–23. doi:10.1016/j.cmet.2020.09.004.; Schulthess J., Pandey S., Capitani M., Rue-Albrecht K.C., Arnold I., Franchini F., Chomka A., Ilott N.E., Johnston D.G.W., Pires E., McCullagh J., Sansom S.N., Arancibia-Cárcamo C.V., Uhlig H.H., Powrie F. The Short Chain Fatty Acid Butyrate Imprints an Antimicrobial Program in Macrophages. Immunity. 2019; 50(2): 432–45. doi:10.1016/j.immuni.2018.12.018.; He Y., Fu L., Li Y., Wang W., Gong M., Zhang J., Dong X., Huang J., Wang Q., Mackay C.R., Fu Y.X., Chen Y., Guo X. Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8+ T cell immunity. Cell Metab. 2021; 33(5): 988–1000. doi:10.1016/j.cmet.2021.03.002.; Gao J., Xu K., Liu H., Liu G., Bai M., Peng C., Li T., Yin Y. Impact of the Gut Microbiota on Intestinal Immunity Mediated by Tryptophan Metabolism. Front Cell Infect Microbiol. 2018; 8: 13. doi:10.3389/fcimb.2018.00013.; Schirmer M., Smeekens S.P., Vlamakis H., Jaeger M., Oosting M., Franzosa E.A., Ter Horst R., Jansen T., Jacobs L., Bonder M.J., Kurilshikov A., Fu J., Joosten L.A.B., Zhernakova A., Huttenhower C., Wijmenga C., Netea M.G., Xavier R.J. Linking the Human Gut Microbiome to Infammatory Cytokine Production Capacity. Cell. 2016; 167(4): 1125–36. doi:10.1016/j.cell.2016.10.020. Erratum in: Cell. 2016; 167(7): 1897. Erratum in: Cell. 2016; 167(7): 1897.; Bellone M., Brevi A., Huber S. Microbiota-Propelled T Helper 17 Cells in Infammatory Diseases and Cancer. Microbiol Mol Biol Rev. 2020; 84(2). doi:10.1128/MMBR.00064-19.; Deleemans J.M., Chleilat F., Reimer R.A., Henning J.W., Baydoun M., Piedalue K.A., McLennan A., Carlson L.E. The chemo-gut study: investigating the long-term effects of chemotherapy on gut microbiota, metabolic, immune, psychological and cognitive parameters in young adult Cancer survivors; study protocol. BMC Cancer. 2019; 19(1): 1243. doi:10.1186/s12885-019-6473-8.; Yu T., Guo F., Yu Y., Sun T., Ma D., Han J., Qian Y., Kryczek I., Sun D., Nagarsheth N., Chen Y., Chen H., Hong J., Zou W., Fang J.Y. Fusobacterium nucleatum Promotes Chemoresistance to Colorectal Cancer by Modulating Autophagy. Cell. 2017; 170(3): 548–63. doi:10.1016/j.cell.2017.07.008.; Longhi G., van Sinderen D., Ventura M., Turroni F. Microbiota and Cancer: The Emerging Benefcial Role of Bifdobacteria in Cancer Immunotherapy. Front Microbiol. 2020; 11. doi:10.3389/fmicb.2020.575072.; Khan M.A.W., Ologun G., Arora R., McQuade J.L., Wargo J.A. Gut Microbiome Modulates Response to Cancer Immunotherapy. Dig Dis Sci. 2020; 65(3): 885–96. doi:10.1007/s10620-020-06111-x.; Vétizou M., Pitt J.M., Daillère R., Lepage P., Waldschmitt N., Flament C., Rusakiewicz S., Routy B., Roberti M.P., Duong C.P., PoirierColame V., Roux A., Becharef S., Formenti S., Golden E., Cording S., Eberl G., Schlitzer A., Ginhoux F., Mani S., Yamazaki T., Jacquelot N., Enot D.P., Bérard M., Nigou J., Opolon P., Eggermont A., Woerther P.L., Chachaty E., Chaput N., Robert C., Mateus C., Kroemer G., Raoult D., Boneca I.G., Carbonnel F., Chamaillard M., Zitvogel L. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015; 350(6264): 1079–84. doi:10.1126/science.aad1329.; Roy S., Trinchieri G. Microbiota: a key orchestrator of cancer therapy. Nat Rev Cancer. 2017; 17(5): 271–85. doi:10.1038/nrc.2017.13.; Rashidi A., Kaiser T., Graiziger C., Holtan S.G., Rehman T.U., Weisdorf D.J., Dunny G.M., Khoruts A., Staley C. Gut dysbiosis during antileukemia chemotherapy versus allogeneic hematopoietic cell transplantation. Cancer. 2020; 126(7): 1434–47. doi:10.1002/cncr.32641.; Buchta Rosean C., Feng T.Y., Azar F.N., Rutkowski M.R. Impact of the microbiome on cancer progression and response to anti-cancer therapies. Adv Cancer Res. 2019; 143: 255–94. doi:10.1016/bs.acr.2019.03.005.; Nguyen C.L., Docampo M.D., van den Brink M.R., Markey K.A. The role of the intestinal microbiota in allogeneic HCT: clinical associations and preclinical mechanisms. Curr Opin Genet Dev. 2021; 66: 25–35. doi:10.1016/j.gde.2020.11.007.; Nomura M., Nagatomo R., Doi K., Shimizu J., Baba K., Saito T., Matsumoto S., Inoue K., Muto M. Association of Short-Chain Fatty Acids in the Gut Microbiome With Clinical Response to Treatment With Nivolumab or Pembrolizumab in Patients With Solid Cancer Tumors. JAMA Netw Open. 2020; 3(4). doi:10.1001/jamanetworkopen.2020.2895.; Nelson M.H., Diven M.A., Huff L.W., Paulos C.M. Harnessing the Microbiome to Enhance Cancer Immunotherapy. J Immunol Res. 2015. doi:10.1155/2015/368736.; Jiang C., Wang H., Xia C., Dong Q., Chen E., Qiu Y., Su Y., Xie H., Zeng L., Kuang J., Ao F., Gong X., Li J., Chen T. A randomized, doubleblind, placebo-controlled trial of probiotics to reduce the severity of oral mucositis induced by chemoradiotherapy for patients with nasopharyngeal carcinoma. Cancer. 2019; 125(7): 1081–90. doi:10.1002/cncr.31907.; Bartsch B., Then C.K., Harriss E., Kartsonaki C., Kiltie A.E. The role of dietary supplements, including biotics, glutamine, polyunsaturated fatty acids and polyphenols, in reducing gastrointestinal side efects in patients undergoing pelvic radiotherapy: A systematic review and meta-analysis. Clin Transl Radiat Oncol. 2021; 29: 11–19. doi:10.1016/j.ctro.2021.04.006.; Li W., Deng X., Chen T. Exploring the Modulatory Efects of Gut Microbiota in Anti-Cancer Therapy. Front Oncol. 2021; 11. doi:10.3389/fonc.2021.644454.; Iida N., Dzutsev A., Stewart C.A., Smith L., Bouladoux N., Weingarten R.A., Molina D.A., Salcedo R., Back T., Cramer S., Dai R.M., Kiu H., Cardone M., Naik S., Patri A.K., Wang E., Marincola F.M., Frank K.M., Belkaid Y., Trinchieri G., Goldszmid R.S. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 2013; 342(6161): 967–70. doi:10.1126/science.1240527.; Bullman S., Pedamallu C.S., Sicinska E., Clancy T.E., Zhang X., Cai D., Neuberg D., Huang K., Guevara F., Nelson T., Chipashvili O., Hagan T., Walker M., Ramachandran A., Diosdado B., Serna G., Mulet N., Landolf S., Ramon Y Cajal S., Fasani R., Aguirre A.J., Ng K., Élez E., Ogino S., Tabernero J., Fuchs C.S., Hahn W.C., Nuciforo P., Meyerson M. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science. 2017; 358(6369): 1443–8. doi:10.1126/science. aal5240.; Johnson C.H., Dejea C.M., Edler D., Hoang L.T., Santidrian A.F., Felding B.H., Ivanisevic J., Cho K., Wick E.C., Hechenbleikner E.M., Uritboonthai W., Goetz L., Casero R.A. Jr., Pardoll D.M., White J.R., Patti G.J., Sears C.L., Siuzdak G. Metabolism links bacterial biofilms and colon carcinogenesis. Cell Metab. 2015; 21(6): 891–7. doi:10.1016/j.cmet.2015.04.011.; Kim J., Lee H.K. The Role of Gut Microbiota in Modulating Tumor Growth and Anticancer Agent Efcacy. Mol Cells. 2021; 44(5): 356–62. doi:10.14348/molcells.2021.0032.; Sethi V., Kurtom S., Tarique M., Lavania S., Malchiodi Z., Hellmund L., Zhang L., Sharma U., Giri B., Garg B., Ferrantella A., Vickers S.M., Banerjee S., Dawra R., Roy S., Ramakrishnan S., Saluja A., Dudeja V. Gut Microbiota Promotes Tumor Growth in Mice by Modulating Immune Response. Gastroenterology. 2018; 155(1): 33–7. doi:10.1053/j.gastro.2018.04.001.; Uribe-Herranz M., Rafail S., Beghi S., Gil-de-Gómez L., Verginadis I., Bittinger K., Pustylnikov S., Pierini S., Perales-Linares R., Blair I.A., Mesaros C.A., Snyder N.W., Bushman F., Koumenis C., Facciabene A. Gut microbiota modulate dendritic cell antigen presentation and radiotherapyinduced antitumor immune response. J Clin Invest. 2020; 130(1): 466–79. doi:10.1172/JCI124332.; Pfug N., Kluth S., Vehreschild J.J., Bahlo J., Tacke D., Biehl L., Eichhorst B., Fischer K., Cramer P., Fink A.M., von Bergwelt-Baildon M., Stilgenbauer S., Hallek M., Cornely O.A., Vehreschild M.J. Efcacy of antineoplastic treatment is associated with the use of antibiotics that modulate intestinal microbiota. Oncoimmunology. 2016; 5(6). doi:10.1080/2162402X.2016.1150399.; Laborda-Illanes A., Sanchez-Alcoholado L., Dominguez-Recio M.E., Jimenez-Rodriguez B., Lavado R., Comino-Méndez I., Alba E., QueipoOrtuño M.I. Breast and Gut Microbiota Action Mechanisms in Breast Cancer Pathogenesis and Treatment. Cancers (Basel). 2020; 12(9): 2465. doi:10.3390/cancers12092465.; Zitvogel L., Daillère R., Roberti M.P., Routy B., Kroemer G. Anticancer efects of the microbiome and its products. Nat Rev Microbiol. 2017; 15(8): 465–78. doi:10.1038/nrmicro.2017.44.; Li B., Gong T., Hao Y., Zhou X., Cheng L. Mining the Gut Microbiota for Microbial-Based Therapeutic Strategies in Cancer Immunotherapy. Front. Oncol. 2021; 11. doi:10.3389/fonc.2021.721249.; Spencer C.N., McQuade J.L., Gopalakrishnan V., McCulloch J.A., Vetizou M., Cogdill A.P., Khan M.A.W., Zhang X., White M.G., Peterson C.B., Wong M.C., Morad G., Rodgers T., Badger J.H., Helmink B.A., Andrews M.C., Rodrigues R.R., Morgun A., Kim Y.S., Roszik J., Hoffman K.L., Zheng J., Zhou Y., Medik Y.B., Kahn L.M., Johnson S., Hudgens C.W., Wani K., Gaudreau P.O., Harris A.L., Jamal M.A., Baruch E.N., Perez-Guijarro E., Day C.P., Merlino G., Pazdrak B., Lochmann B.S., Szczepaniak-Sloane R.A., Arora R., Anderson J., Zobniw C.M., Posada E., Sirmans E., Simon J., Haydu L.E., Burton E.M., Wang L., Dang M., CliseDwyer K., Schneider S., Chapman T., Anang N.A.S., Duncan S., Toker J., Malke J.C., Glitza I.C., Amaria R.N., Tawbi H.A., Diab A., Wong M.K., Patel S.P., Woodman S.E., Davies M.A., Ross M.I., Gershenwald J.E., Lee J.E., Hwu P., Jensen V., Samuels Y., Straussman R., Ajami N.J., Nelson K.C., Nezi L., Petrosino J.F., Futreal P.A., Lazar A.J., Hu J., Jenq R.R., Tetzlaff M.T., Yan Y., Garrett W.S., Huttenhower C., Sharma P., Watowich S.S., Allison J.P., Cohen L., Trinchieri G., Daniel C.R., Wargo J.A. Dietary fber and probiotics infuence the gut microbiome and melanoma immunotherapy response. Science. 2021; 374(6575): 1632–40. doi:10.1126/science.aaz7015.; Sivan A., Corrales L., Hubert N., Williams J.B., Aquino-Michaels K., Earley Z.M., Benyamin F.W., Lei Y.M., Jabri B., Alegre M.L., Chang E.B., Gajewski T.F. Commensal Bifdobacterium promotes antitumor immunity and facilitates anti-PD-L1 efcacy. Science. 2015; 350(6264): 1084–9. doi:10.1126/science.aac4255.; Matson V., Fessler J., Bao R., Chongsuwat T., Zha Y., Alegre M.L., Luke J.J., Gajewski T.F. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 2018; 359(6371): 104–8. doi:10.1126/science.aao3290.; Frankel A.E., Coughlin L.A., Kim J., Froehlich T.W., Xie Y., Frenkel E.P., Koh A.Y. Metagenomic Shotgun Sequencing and Unbiased Metabolomic Profling Identify Specifc Human Gut Microbiota and Metabolites Associated with Immune Checkpoint Therapy Efficacy in Melanoma Patients. Neoplasia. 2017; 19(10): 848–55. doi:10.1016/j.neo.2017.08.004.; Routy B., Le Chatelier E., Derosa L., Duong C.P.M., Alou M.T., Daillère R., Fluckiger A., Messaoudene M., Rauber C., Roberti M.P., Fidelle M., Flament C., Poirier-Colame V., Opolon P., Klein C., Iribarren K., Mondragón L., Jacquelot N., Qu B., Ferrere G., Clémenson C., Mezquita L., Masip J.R., Naltet C., Brosseau S., Kaderbhai C., Richard C., Rizvi H., Levenez F., Galleron N., Quinquis B., Pons N., Ryffel B., MinardColin V., Gonin P., Soria J.C., Deutsch E., Loriot Y., Ghiringhelli F., Zalcman G., Goldwasser F., Escudier B., Hellmann M.D., Eggermont A., Raoult D., Albiges L., Kroemer G., Zitvogel L. Gut microbiome infuences efcacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018; 359(6371): 91–7. doi:10.1126/science.aan3706.; Pinato D.J., Howlett S., Ottaviani D., Urus H., Patel A., Mineo T., Brock C., Power D., Hatcher O., Falconer A., Ingle M., Brown A., Gujral D., Partridge S., Sarwar N., Gonzalez M., Bendle M., Lewanski C., Newsom-Davis T., Allara E., Bower M. Association of Prior Antibiotic Treatment With Survival and Response to Immune Checkpoint Inhibitor Therapy in Patients With Cancer. JAMA Oncol. 2019; 5(12): 1774–8. doi:10.1001/jamaoncol.2019.2785. Erratum in: JAMA Oncol. 2020; 6(2): 302.; Chaput N., Lepage P., Coutzac C., Soularue E., Le Roux K., Monot C., Boselli L., Routier E., Cassard L., Collins M., Vaysse T., Marthey L., Eggermont A., Asvatourian V., Lanoy E., Mateus C., Robert C., Carbonnel F. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann Oncol. 2017; 28(6): 1368–79. doi:10.1093/annonc/mdx108. Erratum in: Ann Oncol. 2019; 30(12): 2012.; Abhyankar D., McKee K.T. Jr., Vukojevic P. Gut Microbiota and Response to Immunotherapeutic Drugs in Oncology: More Questions Than Answers. Clin Med Insights Oncol. 2020; 14. doi:10.1177/1179554920933868.; Robinson M., Vervier K., Popple A., Harris S., Hudson R., Adams D., Rabbie R., Milne D., Booth C., Welsh S.J., Bruce D., Corrie P.G., Lawley T. Using precision microbiome profling to develop a biomarker for immune checkpoint inhibitor response and a novel therapeutic. J Clin Oncol. 2021; 39(15s). https://doi.org/10.1200/JCO.2021.39.15_suppl.e21546.; Peters B.A., Wilson M., Moran U., Pavlick A., Izsak A., Wechter T., Weber J.S., Osman I., Ahn J. Relating the gut metagenome and metatranscriptome to immunotherapy responses in melanoma patients. Genome Med. 2019; 11(1): 61. doi:10.1186/s13073-019-0672-4.; Hendler R., Zhang Y. Probiotics in the Treatment of Colorectal Cancer. Medicines (Basel). 2018; 5(3): 101. doi:10.3390/medicines5030101.; Górska A., Przystupski D., Niemczura M.J., Kulbacka J. Probiotic Bacteria: A Promising Tool in Cancer Prevention and Therapy. Curr Microbiol. 2019; 76(8): 939–49. doi:10.1007/s00284-019-01679-8.; Kinross J.M., Markar S., Karthikesalingam A., Chow A., Penney N., Silk D., Darzi A. A meta-analysis of probiotic and synbiotic use in elective surgery: does nutrition modulation of the gut microbiome improve clinical outcome? JPEN J Parenter Enteral Nutr. 2013; 37(2): 243–53. doi:10.1177/0148607112452306.; Polakowski C.B., Kato M., Preti V.B., Schieferdecker M.E.M., Ligocki Campos A.C. Impact of the preoperative use of synbiotics in colorectal cancer patients: A prospective, randomized, double-blind, placebo-controlled study. Nutrition. 2019; 58: 40–6. doi:10.1016/j.nut.2018.06.004.; Zaharuddin L., Mokhtar N.M., Muhammad Nawawi K.N., Raja Ali R.A. A randomized double-blind placebo-controlled trial of probiotics in post-surgical colorectal cancer. BMC Gastroenterol. 2019; 19(1): 131. doi:10.1186/s12876-019-1047-4.; Веснина А.Д., Просеков А.Ю., Козлова О.В., Курбанова М.Г., Козленко Е.А., Голубцова Ю.В. Разработка пробиотического консорциума для людей с онкологическими заболеваниями. Вестник ВГУИТ. 2021; 83(1): 219–32. doi:10.20914/2310-1202-2021-1-219-232.; Neemann K., Eichele D.D., Smith P.W., Bociek R., Akhtari M., Freifeld A. Fecal microbiota transplantation for fulminant Clostridium difcile infection in an allogeneic stem cell transplant patient. Transpl Infect Dis. 2012; 14(6): 161–5. doi:10.1111/tid.12017.; Derosa L., Zitvogel L. Fecal microbiota transplantation: can it circumvent resistance to PD-1 blockade in melanoma? Signal Transduct Target Ther. 2021; 6(1): 178. doi:10.1038/s41392-021-00585-5.; Baruch E.N., Youngster I., Ben-Betzalel G., Ortenberg R., Lahat A., Katz L., Adler K., Dick-Necula D., Raskin S., Bloch N., Rotin D., Anaf L., Avivi C., Melnichenko J., Steinberg-Silman Y., Mamtani R., Harati H., Asher N., Shapira-Frommer R., Brosh-Nissimov T., Eshet Y., Ben-Simon S., Ziv O., Khan M.A.W., Amit M., Ajami N.J., Barshack I., Schachter J., Wargo J.A., Koren O., Markel G., Boursi B. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science. 2021; 371(6529): 602–9. doi:10.1126/science.abb5920.; Davar D., Dzutsev A.K., McCulloch J.A., Rodrigues R.R., Chauvin J.M., Morrison R.M., Deblasio R.N., Menna C., Ding Q., Pagliano O., Zidi B., Zhang S., Badger J.H., Vetizou M., Cole A.M., Fernandes M.R., Prescott S., Costa R.G.F., Balaji A.K., Morgun A., Vujkovic-Cvijin I., Wang H., Borhani A.A., Schwartz M.B., Dubner H.M., Ernst S.J., Rose A., Najjar Y.G., Belkaid Y., Kirkwood J.M., Trinchieri G, Zarour H.M. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science. 2021; 371(6529): 595–602. doi:10.1126/science.abf3363.; https://www.siboncoj.ru/jour/article/view/2542

  6. 6
  7. 7
  8. 8
  9. 9
    Academic Journal

    Source: The Russian Archives of Internal Medicine; Том 12, № 5 (2022); 352-362 ; Архивъ внутренней медицины; Том 12, № 5 (2022); 352-362 ; 2411-6564 ; 2226-6704

    File Description: application/pdf

    Relation: https://www.medarhive.ru/jour/article/view/1507/1156; https://www.medarhive.ru/jour/article/view/1507/1165; EASL Clinical Practice Guidelines: Management of alcohol-related liver disease. J Hepatol. 2018; 69(1): 154-181. https://doi.org/10.1016/j.jhep.2018.03.018; Parker R, Im G, Jones F, et al. Clinical and microbiological features of infection in alcoholic hepatitis: an international cohort study. J Gastroenterol. 2017; 52(11): 1192-1200. https://doi.org/10.1007/s00535-017-1336-z; Dugum M, McCullough A. Diagnosis and management of alcoholic liver disease. J Clin Transl Hepatol. 2015; 3(2): 109-116. https://doi.org/10.14218/JCTH.2015.00008; Ивашкин ВТ, Маевская МВ, Павлов ЧС и др. Клинические рекомендации Российского общества по изучению печени по ведению взрослых пациентов с алкогольной болезнью печени. Российский журнал гастроэнтерологии гепатологии колопроктологии. 2017; 27(6): 20-40. https://doi.org/10.22416/1382-4376-2017-27-6-20-40; Crabb DW, Im GY, Szabo G, et al. Diagnosis and Treatment of AlcoholAssociated Liver Diseases: 2019 Practice Guidance From the American Association for the Study of Liver Diseases. Hepatology. 2020; 71(1): 306-333. https://doi.org/10.1002/hep.30866; Павлов ЧС, Варганова ДЛ, Касаца Д и др. Глюкокортикостероиды в лечении алкогольного гепатита (Кокрейновский метаанализ). Терапевтический архив. 2019; 91(8): 52–66. https://doi.org/10.26442/00403660.2019.08.000354; Saberi B, Dadabhai AS, Jang YY, et al. Current Management of Alcoholic Hepatitis and Future Therapies. J Clin Transl Hepatol. 2016; 4(2): 113-122. https://doi.org/10.14218/JCTH.2016.00006; Im GY, Cameron AM, Lucey MR. Liver transplantation for alcoholic hepatitis. J Hepatol. 2019; 70(2): 328-334. https://10.1016/j.jhep.2018.11.007; Philips CA, Augustine P, Yerol PK, et al. Severe alcoholic hepatitis: current perspectives. Hepat Med. 2019; 11: 97-108. https://doi.org/10.2147/HMER.S197933; Eiseman B, Silen W, Bascom G, et al. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery. 1958; 44(5): 854-859. PMID:13592638; Shasthry SM. Fecal microbiota transplantation in alcohol related liver diseases. Clin Mol Hepatol. 2020; 26(3): 294-301. https://doi.org/10.3350/cmh.2020.0057; Waller KMJ, Leong RW, Paramsothy S. An update on fecal microbiota transplantation for the treatment of gastrointestinal diseases. J Gastroenterol Hepatol. 2022; 37(2): 246-255. https://doi.org/10.1111/jgh.15731; Sung JJY, Wong SH. What is unknown in using microbiota as a therapeutic? J Gastroenterol Hepatol. 2022; 37(1): 39-44. https://doi.org/10.1111/jgh.15716; Якупова АА, Абдулхаков СР, Сафин АГ и др. Трансплантация фекальной микробиоты: критерии выбора донора, подготовки и хранения биоматериала (обзор современных рекомендаций). Терапевтический архив. 2021; 93(2): 215–221. https://doi.org/10.26442/00403660.2021.02.200615; Tkach S, Dorofeyev A, Kuzenko I, et al. Current Status and Future Therapeutic Options for Fecal Microbiota Transplantation. Medicina (Kaunas). 2022; 58(1): 84. https://doi.org/10.3390/medicina58010084; Segal JP, Mullish BH, Quraishi MN, et al. Mechanisms underpinning the efficacy of faecal microbiota transplantation in treating gastrointestinal disease. Therap Adv Gastroenterol. 2020; 13: 1756284820946904. https://doi.org/10.1177/1756284820946904; Ивашкин ВТ, Ивашкин КВ. Микробиом человека в приложении к клинической практике. Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2017; 27(6): 4-13. https://doi.org/10.22416/1382-4376-2017-27-6-4-13; Liu ZZ, Sun JH, Wang WJ. Gut microbiota in gastrointestinal diseases during pregnancy. World J Clin Cases. 2022; 10(10): 2976-2989. https://doi.org/10.1111/jgh.15716; Singal AK, Louvet A, Shah VH, et al. Grand Rounds: Alcoholic Hepatitis. J Hepatol. 2018; 69(2): 534-543. https://doi.org/10.1016/j.jhep.2018.05.001; Fung P, Pyrsopoulos N. Emerging concepts in alcoholic hepatitis. World J Hepatol. 2017; 9(12): 567-585. https://doi.org/10.4254/wjh.v9.i12.567; Fairfield B, Schnabl B. Gut dysbiosis as a driver in alcohol-induced liver injury. JHEP Rep. 2020; 3(2): 100220. https://doi.org/10.1016/j.jhepr.2020.100220; Turroni F, Ventura M, Buttó LF, et al. Molecular dialogue between the human gut microbiota and the host: a Lactobacillus and Bifidobacterium perspective. Cell Mol Life Sci. 2014; 71(2): 183-203. https://doi.org/10.1007/s00018-013-1318-0; Llopis M, Cassard AM, Wrzosek L, et al. Intestinal microbiota contributes to individual susceptibility to alcoholic liver disease. Gut. 2016; 65(5): 830-839. https://doi.org/10.1136/gutjnl-2015-310585; Grander C, Adolph TE, Wieser V, et al. Recovery of ethanol-induced Akkermansia muciniphila depletion ameliorates alcoholic liver disease. Gut. 2018; 67(5): 891-901. https://doi.org/10.1136/gutjnl-2016-313432; Lang S, Fairfied B, Gao B, et al. Changes in the fecal bacterial microbiota associated with disease severity in alcoholic hepatitis patients. Gut Microbes. 2020;12(1): 1785251. https://doi.org/10.1080/19490976.2020.1785251; Smirnova E, Puri P, Muthiah MD, et al. Fecal Microbiome Distinguishes Alcohol Consumption From Alcoholic Hepatitis But Does Not Discriminate Disease Severity. Hepatology. 2020; 72(1): 271-286. https://doi.org/10.1002/hep.31178; Yan AW, Fouts DE, Brandl J, et al. Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology. 2011; 53(1): 96-105. https://doi.org/10.1002/hep.24018; Bjørkhaug ST, Aanes H, Neupane SP, et al. Characterization of gut microbiota composition and functions in patients with chronic alcohol overconsumption. Gut Microbes. 2019; 10(6): 663-675. https://doi.org/10.1080/19490976.2019.1580097; Duan Y, Llorente C, Lang S, et al. Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature. 2019; 575(7783): 505-511. https://doi.org/10.1038/s41586-019-1742-x; Sundaram V, May FP, Manne V, et al. Effects of Clostridium difficile infection in patients with alcoholic hepatitis. Clin Gastroenterol Hepatol. 2014; 12(10): 1745-1752. https://doi.org/10.1016/j.cgh.2014.02.041; Mendes BG, Schnabl B. From intestinal dysbiosis to alcohol-associated liver disease. Clin Mol Hepatol. 2020; 26(4): 595-605. https://doi.org/10.3350/cmh.2020.0086; Wang L, Fouts DE, Stärkel P, et al. Intestinal REG3 Lectins Protect against Alcoholic Steatohepatitis by Reducing MucosaAssociated Microbiota and Preventing Bacterial Translocation. Cell Host Microbe. 2016; 19(2): 227-239. https://doi.org/10.1016/j.chom.2016.01.003; Skinner C, Thompson AJ, Thursz MR, et al. Intestinal permeability and bacterial translocation in patients with liver disease, focusing on alcoholic aetiology: methods of assessment and therapeutic intervention. Therap Adv Gastroenterol. 2020; 13: 1756284820942616. https://doi:10.1177/1756284820942616.; Rao RK. Acetaldehyde-induced barrier disruption and paracellular permeability in Caco-2 cell monolayer. Methods Mol Biol. 2008; 447: 171-183. https://doi.org/10.1007/978-1-59745-242-7_13; Grewal RK, Mahmood A. Ethanol induced changes in glycosylation of mucins in rat intestine. Ann Gastroenterol. 2009; 22: 178-183.; Chen P, Stärkel P, Turner JR, et al. Dysbiosis-induced intestinal inflammation activates tumor necrosis factor receptor I and mediates alcoholic liver disease in mice. Hepatology. 2015; 61(3): 883-894. https://doi.org/10.1002/hep.27489; Xie G, Zhong W, Zheng X, et al. Chronic ethanol consumption alters mammalian gastrointestinal content metabolites. J Proteome Res. 2013; 12(7): 3297-3306. https://doi.org/10.1021/pr400362z; Cresci GA, Glueck B, McMullen MR, et al. Prophylactic tributyrin treatment mitigates chronic-binge ethanol-induced intestinal barrier and liver injury. J Gastroenterol Hepatol. 2017; 32(9): 1587-1597. https://doi.org/10.1111/jgh.13731; Meroni M, Longo M, Rametta R, et al. Genetic and Epigenetic Modifiers of Alcoholic Liver Disease. Int J Mol Sci. 2018; 19(12): 3857. https://doi.org/10.3390/ijms19123857; Stenman LK, Holma R, Forsgård R, et al. Higher fecal bile acid hydrophobicity is associated with exacerbation of dextran sodium sulfate colitis in mice. J Nutr. 2013; 143(11): 1691–1697. http://dx.doi.org/10.3945/jn.113.180810; Гарбузенко Д.В. Роль микрофлоры кишечника в развитии осложнений портальной гипертензии при циррозе печени. Клиническая медицина. 2007; 85(8): 15-19. PMID:17926483; Piñero P, Juanola O, Caparrós E, et al. Toll-like receptor polymorphisms compromise the inflammatory response against bacterial antigen translocation in cirrhosis. Sci Rep. 2017; 7: 46425. https://doi.org/10.1038/srep46425; Budai MM, Varga A, Milesz S, et al. Aloe vera downregulates LPS-induced inflammatory cytokine production and expression of NLRP3 inflammasome in human macrophages. Mol Immunol. 2013; 56(4): 471-479. https://doi.org/10.1016/j.molimm.2013.05.005; He Y, Franchi L, Núñez G. TLR agonists stimulate Nlrp3-dependent IL-1β production independently of the purinergic P2X7 receptor in dendritic cells and in vivo. J Immunol. 2013; 190(1): 334-339. https://doi.org/10.4049/jimmunol.1202737; Gehrke N, Hövelmeyer N, Waisman A, et al. Hepatocyte-specific deletion of IL1-RI attenuates liver injury by blocking IL-1 driven autoinflammation. J Hepatol. 2018; 68(5): 986-995. https://doi.org/10.1016/j.jhep.2018.01.008; Müller T, Hamm S, Bauer S. TLR9-mediated recognition of DNA. Handb Exp Pharmacol. 2008; 183: 51-70. https://doi.org/10.1007/978-3-540-72167-3_3; Nicoletti A, Ponziani FR, Biolato M, et al. Intestinal permeability in the pathogenesis of liver damage: From non-alcoholic fatty liver disease to liver transplantation. World J Gastroenterol. 2019; 25(33): 4814-4834. https://doi.org/10.3748/wjg.v25.i33.4814; Vassallo GA, Dionisi T, Tarli C, et al. Alcohol-related Liver Disease and sepsis. Eur Rev Med Pharmacol Sci. 2021; 25(13): 4563-4569. https://doi.org/10.26355/eurrev_202107_26249; Michelena J, Altamirano J, Abraldes JG, et al. Systemic inflammatory response and serum lipopolysaccharide levels predict multiple organ failure and death in alcoholic hepatitis. Hepatology. 2015; 62(3): 762-772. https://doi.org/10.1002/hep.27779; Singal AK, Shah VH, Kamath PS. Infection in Severe Alcoholic Hepatitis: Yet Another Piece in the Puzzle. Gastroenterology. 2017; 152(5): 938-940. https://doi.org/10.1053/j.gastro.2017.02.030; Riva A, Patel V, Kurioka A, et al. Mucosa-associated invariant T cells link intestinal immunity with antibacterial immune defects in alcoholic liver disease. Gut. 2018; 67(5): 918-930. https://doi.org/10.1136/gutjnl-2017-314458; Ferrere G, Wrzosek L, Cailleux F, et al. Fecal microbiota manipulation prevents dysbiosis and alcohol-induced liver injury in mice. J Hepatol. 2017; 66(4): 806-815. https://doi.org/10.1016/j.jhep.2016.11.008; Philips CA, Pande A, Shasthry SM, et al. Healthy Donor Fecal Microbiota Transplantation in Steroid-Ineligible Severe Alcoholic Hepatitis: A Pilot Study. Clin Gastroenterol Hepatol. 2017; 15(4): 600-602. https://doi.org/10.1016/j.cgh.2016.10.029; Philips CA, Ahamed R, Rajesh S, et al. Long-term Outcomes of Stool Transplant in Alcohol-associated Hepatitis — Analysis of Clinical Outcomes, Relapse, Gut Microbiota and Comparisons with Standard Care. J Clin Exp Hepatol. 2022 (In Press). https://doi.org/10.1016/j.jceh.2022.01.001; Dhiman R, Sharma A, Roy A, et al. Role of fecal microbiota transplantation in severe alcoholic hepatitis: assessment of impact on prognosis and short-term outcomes. J Hepatol. 2020; 73(Suppl 1): 179.; Sarin SK, Pande A, Schnabl B. Microbiome as a therapeutic target in alcohol-related liver disease. J Hepatol. 2019; 70(2): 260-272. https://doi.org/10.1016/j.jhep.2018.10.019; Link A, Lachmund T, Schulz C, et al. Endoscopic peroral jejunal fecal microbiota transplantation. Dig Liver Dis. 2016; 48(11): 1336-1339. https://doi.org/10.1016/j.dld.2016.08.110; Baxter M, Ahmad T, Colville A, et al. Fatal Aspiration Pneumonia as a Complication of Fecal Microbiota Transplant. Clin Infect Dis. 2015; 61(1): 136-137. https://doi.org/10.1093/cid/civ247; Cheng YW, Alhaffar D, Saha S, et al. Fecal Microbiota Transplantation Is Safe and Effective in Patients With Clostridioides difficile Infection and Cirrhosis. Clin Gastroenterol Hepatol. 2021; 19(8): 1627-1634. https://doi.org/10.1016/j.cgh.2020.06.051; Rapoport EA, Baig M, Puli SR. Adverse events in fecal microbiota transplantation: a systematic review and meta-analysis. Ann Gastroenterol. 2022; 35(2):150-163. https://doi.org/10.20524/aog.2022.0695; Baxter M, Colville A. Adverse events in faecal microbiota transplant: a review of the literature. J Hosp Infect. 2016; 92(2): 117-127. https://doi.org/10.1016/j.jhin.2015.10.024; Allegretti JR, Kassam Z, Fischer M, et al. Risk Factors for Gastrointestinal Symptoms Following Successful Eradication of Clostridium difficile by Fecal Microbiota Transplantation (FMT). J Clin Gastroenterol. 2019; 53(9): 405-408. https://doi.org/10.1097/MCG.0000000000001194; Wang S, Xu M, Wang W, et al. Systematic Review: Adverse Events of Fecal Microbiota Transplantation. PLoS One. 2016; 11(8): e0161174. https://doi.org/10.1371/journal.pone.0161174; Qazi T, Amaratunga T, Barnes EL, et al. The risk of inflammatory bowel disease flares after fecal microbiota transplantation: Systematic review and meta-analysis. Gut Microbes. 2017; 8(6): 574-588. https://doi.org/10.1080/19490976.2017.1353848; Allegretti JR, Kelly CR, Grinspan A, et al. Outcomes of Fecal Microbiota Transplantation in Patients With Inflammatory Bowel Diseases and Recurrent Clostridioides difficile Infection. Gastroenterology. 2020; 159(5): 1982-1984. https://doi.org/10.1053/j.gastro.2020.07.045; Gupta S, Mullish BH, Allegretti JR. Fecal Microbiota Transplantation: The Evolving Risk Landscape. Am J Gastroenterol. 2021; 116(4): 647-656. https://doi.org/10.14309/ajg.0000000000001075; Hohmann EL, Ananthakrishnan AN, Deshpande V. Case Records of the Massachusetts General Hospital. Case 25-2014. A 37-year-old man with ulcerative colitis and bloody diarrhea. N Engl J Med. 2014; 371(7): 668-675. https://doi.org/10.1056/NEJMcpc1400842; Rossen NG, Fuentes S, van der Spek MJ, et al. Findings From a Randomized Controlled Trial of Fecal Transplantation for Patients With Ulcerative Colitis. Gastroenterology. 2015; 149(1): 110-118. https://doi.org/10.1053/j.gastro.2015.03.045; DeFilipp Z, Bloom PP, Torres Soto M, et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N Engl J Med. 2019; 381(21): 2043–2050. https://doi.org/10.1056/NEJMoa1910437; Kassam Z, Dubois N, Ramakrishna B, et al. Donor Screening for Fecal Microbiota Transplantation. N Engl J Med. 2019; 381(21): 2070-2072. https://doi.org/10.1056/NEJMc1913670; US Food and Drug Administration. Information pertaining to additional safety protections regarding use of fecal microbiota for transplantation–screening and testing of stool donors for multi-drug resistant organisms [internet] (https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/information-pertaining-additionalsafety-protections-regarding-use-fecal-microbiota-transplantation) (2019). Accessed June 30, 2020.; Zellmer C, Sater MRA, Huntley MH, et al. Shiga Toxin-Producing Escherichia coli Transmission via Fecal Microbiota Transplant. Clin Infect Dis. 2021; 72(11): 876-880. https://doi.org/10.1093/cid/ciaa1486; Cammarota G, Ianiro G, Kelly CR, et al. International consensus conference on stool banking for faecal microbiota transplantation in clinical practice. Gut. 2019; 68(12): 2111-2121. https://doi.org/10.1136/gutjnl-2019-319548; US Food and Drug Administration. Information pertaining to additional safety protections regarding use of fecal microbiota for transplantation: Testing of stool donors for enteropathogenic Escherichia coli and Shigatoxin-producing Escherichia coli [internet] (https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/information-pertaining-additional-safety-protections-regarding-usefecal-microbiota-transplantation-0) (2020). Accessed June 30, 2020.; Han C, Duan C, Zhang S, et al. Digestive Symptoms in COVID-19 Patients With Mild Disease Severity: Clinical Presentation, Stool Viral RNA Testing, and Outcomes. Am J Gastroenterol. 2020; 115(6): 916-923. https://doi.org/10.14309/ajg.0000000000000664; Ianiro G, Mullish BH, Kelly CR, et al. Reorganisation of faecal microbiota transplant services during the COVID-19 pandemic. Gut. 2020; 69(9): 1555-1563. https://doi.org/10.1136/gutjnl-2020-321829; https://www.medarhive.ru/jour/article/view/1507

  10. 10
    Academic Journal

    Source: The Russian Archives of Internal Medicine; Том 12, № 5 (2022); 341-351 ; Архивъ внутренней медицины; Том 12, № 5 (2022); 341-351 ; 2411-6564 ; 2226-6704

    File Description: application/pdf

    Relation: https://www.medarhive.ru/jour/article/view/1506/1155; https://www.medarhive.ru/jour/article/view/1506/1164; Fassarella M., Blaak E.E., Penders J., et al. Gut microbiome stability and resilience: elucidating the response to perturbations in order to modulate gut health. Gut. 2021; 70(3): 595–605. https://doi.org/10.1136/gutjnl-2020-321747; Ситкин С.И., Ткаченко Е.И., Вахитов Т.Я. Метаболический дисбиоз кишечника и его биомаркеры. Экспериментальная и Клиническая Гастроэнтерология. 2015; 124(12): 6–29.; Стома И.О. Микробиом в медицине. Москва, ГЭОТАР-Медиа. 2020; 320 с.; Малаева, Е.Г. Инфекции мочевыводящих путей и микробиота. Проблемы здоровья и экологии. 2021; 18(3): 5–14. https://doi.org/10.51523/2708-6011.2021-18-3-1; Quigley E.M.М., Gajula P. Recent advances in modulating the microbiome. F1000Res. 2020; 27(9). https://doi.org/10.12688/f1000research.20204.1; Даниленко В.Н., Ильясов Р.А., Юнес Р.А. и др. Жебраковские чтения Х. Минск, Институт генетики и цитологии НАН Белару си. 2021; 68 с.; Kolodziejczyk A.A., Zheng D., Elinav E. Diet-microbiota interactions and personalized nutrition. Nature Reviews Microbiology. 2019; 17(12): 742–753. https://doi.org/10.1038/s41579-019-0256-8; Belzer C., Chia L.W., Aalvink S., et al. Microbial metabolic networks at the mucus layer lead to diet-independent butyrate and vitamin B12 production by intestinal symbionts. mBio. 2017; 8(5): e00770–00717. https://doi.org/10.1128/mBio.00770-17; Sassone-Corsi M., Nuccio S.-P., Liu H., et al. Microcins mediate competition among Enterobacteriaceae in the inflamed gut. Nature. 2016; 540: 280–283. https://doi.org/10.1038/nature20557; Papenfort K., Bassler B.L. Quorum sensing signal-response systems in gram-negative bacteria. Nature Reviews Microbiology. 2016; 14(9): 576–588. https://doi.org/10.1038/nrmicro.2016.89; Perez-Carrasco V., Soriano-Lerma A., Soriano M., et al. Urinary Microbiome: yin and yang of the urinary tract. Frontiers in Cellular and Infection Microbiology. 2021; 11: 617002. https://doi.org/10.3389/fcimb.2021.617002; Dubourg G., Morand A., Mekhalif F., et al. Deciphering the urinary microbiota repertoire by culturomics reveals mostly anaerobic bacteria from the gut. Frontiers in Microbiology. 2020; 11: 513305. https://doi.org/10.3389/fmicb.2020.513305; Tariq R., Pardi D.S., Tosh P.K., et al. Fecal microbiota transplantation for recurrent Clostridicum difficile infection reduces recurrent urinary tract infection frequency. Clinical Infectious Diseases. 2017; 65 (10): 1745–1747. https://doi.org/10.1093/cid/cix618; Dahl W.J., Rivero M.D., Lambert J.M. Diet, nutrients and the microbiome. Progress in Molecular Biology and Translational Science. 2020; 171: 237–263. https://doi.org/10.1016/bs.pmbts.2020.04.006; So D., Whelan K., Rossi M., et al. Dietary fiber intervention on gut microbiota composition in healthy adults: a systematic review and meta-analysis. American Journal of Clinical Nutrition. 2018; 107(6): 965–983. https://doi.org/10.1093/ajcn/nqy041; Costea P.I., Hildebrand F., Arumugam M., et al. Enterotypes in the landscape of gut microbial community composition. Nature Microbiology. 2018; 3(1): 8–16. https://doi.org/10.1038/s41564-017-0072-8; Ruiz-Ojeda F.J., Plaza-Diaz J., Saez-Lara M.J., et al. Effects of sweeteners on the gut microbiota: a review of experimental studies and clinical trials. Advances in Nutrition. 2019; 10: s31–s48. https://doi.org/10.1093/advances/nmy037; David L.A., Maurice C.F., Carmody R.N., et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014; 505: 559–563. https://doi.org/10.1038/nature12820; Wan Y., Wang F., Yuan J., et al. Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomized controlled-feeding trial. Gut. 2019; 68(8): 1417–1429. https://doi.org/10.1136/gutjnl-2018-317609; Palleja A., Mikkelsen K.H., Forslund S.K., et al. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nature Microbiology. 2018; 3: 1255–1265. https://doi.org/10.1038/s41564-018-0257-9; Tosti V., Bertozzi B., Fontana L. Health benefits of the mediterranean diet: metabolic and molecular mechanisms. The Journals of Gerontology Series A Biological Sciences and Medical Sciences. 2018; 73(3): 318–326. https://doi.org/10.1093/gerona/glx227; Kahleova H., Levin S., Barnard N. Cardio-metabolic benefits of plant-based diets. Nutrients. 2017; 9(8): 848. https://doi.org/10.3390/nu9080848; Shikany J.M., Demmer R.T., Johnson A.J., et al. Association of dietary patterns with the gut microbiota in older, community-dwelling men. American Journal of Clinical Nutrition. 2019; 110(4): 1003–1014. https://doi.org/10.1093/ajcn/nqz174; Tett A., Huang K.D., Asnicar F., et al. The Prevotella copri complex comprises four distinct clades underrepresented in Westernized populations. Cell Host Microbe. 2019; 26(5): 666–679. https://doi.org/10.1016/j.chom.2019.08.018; Meslier V., Laiola M., Roager H.M., et al. Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake. Gut. 2020; 69(7): 1258–1268. https://doi.org/10.1136/gutjnl-2019-320438; Barrett H.L., Gomez-Arango L.F., Wilkinson S.A., et al. A vegetarian diet is a major determinant of gut microbiota composition in early pregnancy. Nutrients. 2018; 10(7): 890. https://doi.org/10.3390/nu10070890; De Angelis M., Ferrocino I., Calabrese F.M., et al. Diet influences the functions of the human intestinal microbiome. Scientific Reports. 2020; 10(1): 4247. https://doi.org/10.1038/s41598-020-61192-y; Zhang Y., Zhou S., Zhou Y., et al. Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet. Epilepsy research. 2018; 145: 163–168. https://doi.org/10.1016/j.eplepsyres.2018.06.015; Murtaza N., Burke L.M., Vlahovich N., et al. The effects of dietary pattern during intensified training on stool microbiota of elite race walkers. Nutrients. 2019; 11(2): 261. https://doi.org/10.3390/nu11020261; Pedersini P., Turroni S., Villafañe J.H. Gut microbiota and physical activity: is there an evidence-based link? Science of the Total Environment. 2020; 727: 138648. https://doi.org/10.1016/j.scitotenv.2020.138648; Mailing L.J., Allen J.M., Buford T.W., et al. Exercise and the gut microbiome: a review of the evidence, potential mechanisms, and implications for human health. Exercise and sport sciences reviews. 2019; 47(2): 75–85. https://doi.org/10.1249/JES.0000000000000183; de Sire A., de Sire R., Petito V., et al. Gut-joint Axis: the role of physical exercise on gut microbiota modulation in older people with osteoarthritis. Nutrients. 2020; 12(2): 574. https://doi.org/10.3390/nu12020574; Rashid M.-U., Weintraub A., Nord C.E. Development of antimicrobial resistance in the normal anaerobic microbiota during one year after administration of clindamycin or ciprofloxacin. Anaerobe. 2015; 31: 72–77. https://doi.org/10.1016/j.anaerobe.2014.10.004; Panda S., El khader I., Casellas F., et al. Short-term effect of antibiotics on human gut microbiota. PLoS One. 2014; 9(4): e95476. https://doi.org/10.1371/journal.pone.0095476; Reijnders D., Goossens G.H., Hermes G.D., et al. Effects of gut microbiota manipulation by antibiotics on host metabolism in obese humans: a randomized double-blind placebo-controlled trial. Cell metabolism. 2016; 24: 63–74. https://doi.org/10.1016/j.cmet.2016.06.016; Kim S., Covington A., Pamer E.G. The intestinal microbiota: antibiotics, colonization resistance, and enteric pathogens. Immunological reviews. 2017; 279: 90–105. https://doi.org/10.1111/imr.12563; Willmann M., Vehreschild M.JGT., Biehl L.M., et al. Distinct impact of antibiotics on the gut microbiome and resistome: a longitudinal multicenter cohort study. BMC biology. 2019; 17: 76. https://doi.org/10.1186/s12915-019-0692-y; Kriss M., Hazleton K.Z., Nusbacher N.M., et al. Low diversity gut microbiota dysbiosis: drivers, functional implications and recovery. Current Opinion in Microbiology. 2018; 44: 34–40. https://doi.org/10.1016/j.mib.2018.07.003; Nataraj B.H., Shivanna S.K., Rao P., et al. Evolutionary concepts in the functional biotics arena: a mini-review. Food Science and Biotechnology. 2020; 16(30): 487–496. https://doi.org/10.1007/s10068-020-00818-3; Reid G., Gadir A.A., Dhir R. Probiotics: reiterating what they are and what they are not. Frontiers in microbiology. 2019; 12(10): P. 424. https://doi.org/10.3389/fmicb.2019.00424; Zendeboodi F., Khorshidian N., Mortazavian A.M., et al. Probiotic: conceptualization from a new approach. Current Opinion in Food Science. 2020; 32: 103–123. https://doi.org/10.1016/j.cofs.2020.03.009; Farup P.G., Jacobsen M., Ligaarden S.C., et al. Probiotics, symptoms, and gut microbiota: what are the relations? A randomized controlled trial in subjects with irritable bowel syndrome. Gastroenterology Research and Practice. 2012: 214102. https://doi.org/10.1155/2012/214102; Wang J.W., Kuo C.H., Kuo F.C., et al. Fecal microbiota transplantation: review and update. Journal of the Formosan Medical Association. 2019; 118: S23–S31. https://doi.org/10.1016/j.jfma.2018.08.011; Cammarota G., Ianiro G., Tilg H., et al. European consensus conference on faecal microbiota transplantation in clinical practice. Gut. 2017; 66(4): 569–580. https://doi.org/10.1136/gutjnl-2016-313017; Якупова А.А., Абдулхаков С.Р., Сафин А.Г. и др. Трансплантация фекальной микробиоты: критерии выбора донора, подготовки и хранения биоматериала (обзор современных рекомендаций). Терапевтический архив. 2021; 93(2): 215–221. https://doi.org/10.26442/00403660.2021.02.200615; Suvorov A., Karaseva A., Kotyleva M., et al. Autoprobiotics as an approach for restoration of personalised microbiota. Frontiers in Microbiology. 2018; 9: 1869. https://doi.org/10.3389/fmicb.2018.01869; Zheng D.W., Pan P., Chen K.W., et al. An orally delivered microbial cocktail for the removal of nitrogenous metabolic waste in animal models of kidney failure. Nature Biomedical Engineering. 2020; 4(9): 853–862. https://doi.org/10.1038/s41551-020-0582-1; Scheiman J., Luber J.M., Chavkin T.A., et al. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nature Medicine. 2019; 25(7): 1104–1109. https://doi.org/10.1038/s41591-019-0485-4; https://www.medarhive.ru/jour/article/view/1506

  11. 11
  12. 12
  13. 13
    Academic Journal

    Contributors: This paper prepared according to Research Project №№033802-0-000 “Study of intestinal microflora and methods of its correction in patients with kidney and urinary tract diseases”, Работа выполнена в рамках НИР №033802-0-000 «Исследование микрофлоры кишечника и методов ее коррекции у пациентов с заболеваниями почек и мочевыводящих путей»

    Source: Meditsinskiy sovet = Medical Council; № 4 (2021); 136-143 ; Медицинский Совет; № 4 (2021); 136-143 ; 2658-5790 ; 2079-701X

    File Description: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/6101/5561; Никонов Е.Л., Попова Е.Н. (ред.). Микробиота. М.: Медиа Сфера; 2019. 255 с. Режим доступа: https://endoexpert.ru/stati/monografiya_mikrobiota_pod_redaktsiey_e_l_nikonova_i_e_n_popovoy_2019/.; Sender R., Fuchs S., Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biology. 2016;14(8):e1002533. doi:10.1371/journal.pbio.1002533.3.; Tanaka M., Nakayama J. Development of the gut microbiota in infancy and its impact on health in later life. Allergol Int. 2017;66(4):515–522. doi:10.1016/j.alit.2017.07.010.; Dunn A.B., Jordan S., Baker B.J., Carlson N.S. The Maternal Infant Microbiome: Considerations for Labor and Birth. MCN Am J Matern Child Nurs. 2017;42(6):318–325. doi:10.1097/NMC.0000000000000373.; Bäckhed F., Roswall J., Peng Y., Feng Q., Jia H., Kovatcheva-Datchary P. et al. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe. 2015;17(6):852. doi:10.1016/j.chom.2015.04.004.; Matsuki T., Yahagi K., Mori H., Matsumoto H., Hara T., Tajima S. et al. A key genetic factor for fucosyllactose utilization affects infant gut microbiota development. Nat Commun. 2016;7:11939. doi:10.1038/ncomms11939.; Nuriel-Ohayon M., Neuman H., Koren O. Microbial Changes during Pregnancy, Birth, and Infancy. Front Microbiol. 2016;7:1031. doi:10.3389/fmicb.2016.01031.; Gensollen T., Iyer S.S., Kasper D.L., Blumberg R.S. How colonization by microbiota in early life shapes the immune system. Science. 2016;352(6285):539–544. doi:10.1126/science.aad9378.; Thursby E., Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474(11):1823–1836. doi:10.1042/BCJ20160510.; Adair K.L., Douglas A.E. Making a microbiome: the many determinants of host-associated microbial community composition. Curr Opin Microbiol. 2017;35:23–29. doi:10.1016/j.mib.2016.11.002.; Hall A.B., Tolonen A.C., Xavier R.J. Human genetic variation and the gut microbiome in disease. Nat Rev Genet. 2017;18(11):690–699. doi:10.1038/nrg.2017.63.; Abdul-Aziz M.A., Cooper A., Weyrich L.S. Exploring Relationships between Host Genome and Microbiome: New Insights from Genome-Wide Association Studies. Front Microbiol. 2016;7:1611. doi:10.3389/fmicb.2016.01611.; Harmsen H.J. M., de Goffau M.C. The Human Gut Microbiota. Adv Exp Med Biol. 2016;902:95–108. doi:10.1007/978-3-319-31248-4_7.; Jandhyala S.M., Talukdar R., Subramanyam C., Vuyyuru H., Sasikala M., Reddy D.N. Role of the normal gut microbiota. World J Gastroenterol. 2015;21(29):8787–803. doi:10.3748/wjg.v21.i29.8787.; Lloyd-Price J., Abu-Ali G., Huttenhower C. The healthy human microbiome. Genome Med. 2016;8(1):51. doi:10.1186/s13073-016-0307-y.; Shafquat A., Joice R., Simmons S.L., Huttenhower C. Functional and phylogenetic assembly of microbial communities in the human microbiome. Trends Microbiol. 2014;22(5):261–266. doi:10.1016/j.tim.2014.01.011.; Nagai M., Obata Y., Takahashi D., Hase K. Fine-tuning of the mucosal barrier and metabolic systems using the diet-microbial metabolite axis. Int Immunopharmacol. 2016;37:79–86. doi:10.1016/j.intimp.2016.04.001.; Flint H.J., Duncan S.H., Scott K.P., Louis P. Links between diet, gut microbiota composition and gut metabolism. Proc Nutr Soc. 2015;74(1):13–22. doi:10.1017/S0029665114001463.; Meng X., Zhang G., Cao H., Yu D., Fang X., Vos W.M., Wu H. Gut dysbacteriosis and intestinal disease: mechanism and treatment. J Appl Microbiol. 2020;129(4):787–805. doi:10.1111/jam.14661.; Gagliardi A., Totino V., Cacciotti F., Iebba V., Neroni B., Bonfiglio G. et al. Rebuilding the Gut Microbiota Ecosystem. Int J Environ Res Public Health. 2018;15(8):1679. doi:10.3390/ijerph15081679.; Bäumler A.J., Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature. 2016;535(7610):85–93. doi:10.1038/nature18849.; Amabebe E., Robert F.O., Agbalalah T., Orubu E.S. F. Microbial dysbiosisinduced obesity: role of gut microbiota in homoeostasis of energy metabolism. Br J Nutr. 2020;123(10):1127–1137. doi:10.1017/S0007114520000380.; Kwak M.J., Kwon S.K., Yoon J.K., Song J.Y., Seo J.G., Chung M.J., Kim JF. Evolutionary architecture of the infant-adapted group of Bifidobacterium species associated with the probiotic function. Syst Appl Microbiol. 2016;39(7):429–439. doi:10.1016/j.syapm.2016.07.004.; Shang M., Sun J. Vitamin D/VDR, probiotics, and gastrointestinal diseases. Curr Med Chem. 2017;24(9):876–887. doi:10.2174/0929867323666161202150008.; Yamamoto E.A., Jørgensen T.N. Relationships Between Vitamin D, Gut Microbiome, and Systemic Autoimmunity. Front Immunol. 2020;10:3141. doi:10.3389/fimmu.2019.03141.; Celiberto L.S., Bedani R., Rossi E.A., Cavallini D.C. U. Probiotics: The scientific evidence in the context of inflammatory bowel disease. Crit Rev Food Sci Nutr. 2017;57(9):1759–1768. doi:10.1080/10408398.2014.941457.; Tidjani Alou M., Lagier J.-C., Raoult D. Diet influence on the gut microbiota and dysbiosis related to nutritional disorders. Hum Microbiome J. 2016;1:3–11. doi:10.1016/j.humic.2016.09.001.; Magruder M., Sholi A.N., Gong C., Zhang L., Edusei E., Huang J. et al. Gut uropathogen abundance is a risk factor for development of bacteriuria and urinary tract infection. Nat Commun. 2019;10(1):5521. doi:10.1038/s41467-019-13467-w.; Forbes J.D., Van Domselaar G., Bernstein C.N. The Gut Microbiota in Immune-Mediated Inflammatory Diseases. Front Microbiol. 2016;7:1081. doi:10.3389/fmicb.2016.01081.; Simpson H.L., Campbell B.J. Review article: dietary fibre – microbiota interactions. Aliment Pharmacol Ther. 2015;42(2):158–179. doi:10.1111/apt.13248.; Filippis F.D., Pellegrini N., Vannini L., Jeffery I.B., Storia A.L., Laghi L. et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2016;65(11):1812–1821. doi:10.1136/gutjnl-2015-309957.; Sakkas H., Bozidis P., Touzios C., Kolios D., Athanasiou G., Athanasopoulou E. et al. Nutritional Status and the Influence of the Vegan Diet on the Gut Microbiota and Human Health. Medicina (Kaunas). 2020;56(2):88. doi:10.3390/medicina56020088.; David L.A., Maurice C.F., Carmody R.N., Gootenberg D.B., Button J.E., Wolfe B.E. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–563. doi:10.1038/nature12820.; Murphy E.A., Velazquez K.T., Herbert K.M. Influence of High-Fat-Diet on Gut Microbiota: A Driving Force for Chronic Disease Risk. Curr Opin Clin Nutr Metab Care. 2015;18(5):515–520. doi:10.1097/MCO.0000000000000209.; Smith-Brown P., Morrison M., Krause L., Davies P.S. W. Dairy and plant based food intakes are associated with altered faecal microbiota in 2 to 3 year old Australian children. Sci Rep. 2016;6:32385. doi:10.1038/srep32385.; Arrieta M.-C., Stiemsma L.T., Dimitriu P.A., Thorson L., Russell S., YuristDoutsch S. et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med. 2015;7(307):307ra152. doi:10.1126/scitranslmed.aab2271.; Hill C., Guarner F., Reid G., Gibson G.R., Merenstein D.J., Pot B. et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11(8):506–514. doi:10.1038/nrgastro.2014.66.; Sebastián Domingo J.J. Review of the role of probiotics in gastrointestinal diseases in adults. Gastroenterol Hepatol. 2017;40(6):417–429. doi:10.1016/j.gastrohep.2016.12.003.; Daliri E., Lee B.H. New perspectives on probiotics in health and disease. Food Sci Hum Wellness. 2015;4(2):56–65. doi:10.1016/j.fshw.2015.06.002.; Guarner F., Sanders M.E., Eliakim R., Fedorak R., Gangl A., Garisch J. et al. Probiotics and prebiotics. World Gastroenterology Organisation. 2017. Available at: https://www.worldgastroenterology.org/guidelines/globalguidelines/probiotics-and-prebiotics/probiotics-and-prebiotics-english.; Ouwehand A.C., Forssten S., Hibberd A.A., Lyra A., Stahl B. Probiotic approach to prevent antibiotic resistance. Ann Med. 2016;48(4):246–255. doi:10.3109/07853890.2016.1161232.; Korpela K., Salonen A., Virta L.J., Kumpu M., Kekkonen R.A., de Vos W.M. Lactobacillus rhamnosus GG Intake Modifies Preschool Children’s Intestinal Microbiota, Alleviates Penicillin-Associated Changes, and Reduces Antibiotic Use. PLoS One. 2016;11(4):e0154012. doi:10.1371/journal.pone.0154012.; Ivashkin V.T., Mayev I.V., Abdulganieva D.I., Alekseenko S.A., Ivashkina N.Yu., Korochanskaya N.V. et al. Practical Recommendations of Scientific Society for the Study of Human Microbiome and Russian Gastroenterological Association (RGA) for Probiotics in Treatment and Prevention of Gastroenterological Diseases in Adults. Rossiyskiy zhurnal gastroehnterologii, gepatologii, koloproktologii = Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2020;30(2):76–89. (In Russ.) doi:10.22416/1382-4376-2020-30-2-76-89.; Yoo J.Y., Kim S.S. Probiotics and Prebiotics: Present Status and Future Perspectives on Metabolic Disorders. Nutrients. 2016;8(3):173. doi:10.3390/nu8030173.; Sun J., Buys N. Effects of probiotics consumption on lowering lipids and CVD risk factors: a systematic review and meta-analysis of randomized controlled trials. Ann Med. 2015;47(6):430–440. doi:10.3109/07853890.20 15.1071872.; Kim C.J., Walmsley S.L., Raboud J.M., Kovacs C., Coburn B., Rousseau R. et al. Can Probiotics Reduce Inflammation and Enhance Gut Immune Health in People Living with HIV: Study Designs for the Probiotic Visbiome for Inflammation and Translocation (PROOV IT) Pilot Trials. HIV Clin Trials. 2016;17(4):147–157. doi:10.1080/15284336.2016.1184827.; Cani P.D., Van Hul M. Novel opportunities for next-generation probiotics targeting metabolic syndrome. Curr Opin Biotechnol. 2015;32:21–27. doi:10.1016/j.copbio.2014.10.006.; Patel R., DuPont H.L. New approaches for bacteriotherapy: prebiotics, new-generation probiotics, and synbiotics. Clin Infect Dis. 2015;60(2 Suppl.):108–121. doi:10.1093/cid/civ177.; Martín R., Miquel S., Benevides L., Bridonneau C., Robert V., Hudault S. et al. Functional Characterization of Novel Faecalibacterium prausnitzii Strains Isolated from Healthy Volunteers: A Step Forward in the Use of F. prausnitzii as a Next-Generation Probiotic. Front Microbiol. 2017;8:1226. doi:10.3389/fmicb.2017.01226.; Cani P.D., Everard A. Akkermansia muciniphila: a novel target controlling obesity, type 2 diabetes and inflammation? Med Sci (Paris). 2014;30(2):125–127. (In French) doi:10.1051/medsci/20143002003.; Schneeberger M., Everard A., Gómez-Valadés A.G., Matamoros S., Ramírez S., Delzenne N.M. et al. Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci Rep. 2015;5:16643. doi:10.1038/srep16643.; Miller L.E., Ouwehand A.C., Ibarra A. Effects of probiotic-containing products on stool frequency and intestinal transit in constipated adults: systematic review and meta-analysis of randomized controlled trials. Ann Gastroenterol. 2017;30(6):629–639. doi:10.20524/aog.2017.0192.; Asha M.Z., Khalil S.F. H. Efficacy and Safety of Probiotics, Prebiotics and Synbiotics in the Treatment of Irritable Bowel Syndrome. Sultan Qaboos Univ Med J. 2020;20(1):e13–24. doi:10.18295/squmj.2020.20.01.003.; Derwa Y., Gracie D.J., Hamlin P.J., Ford A.C. Systematic review with metaanalysis: the efficacy of probiotics in inflammatory bowel disease. Aliment Pharmacol Ther. 2017;46(4):389–400. doi:10.1111/apt.14203.; Ganji‐Arjenaki M., Rafieian‐Kopaei M. Probiotics are a good choice in remission of inflammatory bowel diseases: A meta analysis and systematic review. J Cell Physiol. 2018;233(3):2091–2103. doi:10.1002/jcp.25911.; Oka A., Sartor R.B. Microbial-Based and Microbial-Targeted Therapies for Inflammatory Bowel Diseases. Dig Dis Sci. 2020;65(3):757–788. doi:10.1007/s10620-020-06090-z.; Luthold R.V., Fernandes G.R., Franco-de-Moraes A.C., Folchetti L.G. D., Ferreira S.R. G. Gut microbiota interactions with the immunomodulatory role of vitamin D in normal individuals. Metabolism. 2017;69:76–86. doi:10.1016/j.metabol.2017.01.007.; Yacoub R., Kaji D., Patel S.N., Simoes P.K., Busayavalasa D., Nadkarni G.N. et al. Association between probiotic and yogurt consumption and kidney disease: insights from NHANES. Nutr J. 2016;15:10. doi:10.1186/s12937-016-0127-3.; Firouzi S., Haghighatdoost F. The effects of prebiotic, probiotic, and synbiotic supplementation on blood parameters of renal function: A systematic review and meta-analysis of clinical trials. Nutrition. 2018;51–52:104–113. doi:10.1016/j.nut.2018.01.007.; Hadi A., Mohammadi H., Miraghajani M., Ghaedi E. Efficacy of synbiotic supplementation in patients with nonalcoholic fatty liver disease: A systematic review and meta-analysis of clinical trials: Synbiotic supplementation and NAFLD. Crit Rev Food Sci Nutr. 2019;59(15):2494–2505. doi:10.1080/10408398.2018.1458021.; Kristensen N.B., Bryrup T., Allin K.H., Nielsen T., Hansen T.H., Pedersen O. Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: a systematic review of randomized controlled trials. Genome Med. 2016;8(1):52. doi:10.1186/s13073-016-0300-5.; Satokari R. Modulation of Gut Microbiota for Health by Current and NextGeneration Probiotics. Nutrients. 2019;11(8):1921. doi:10.3390/nu11081921.; Sanders M.E. Probiotics and microbiota composition. BMC Med. 2016;14(1):82. doi:10.1186/s12916-016-0629-z.; Falony G., Joossens M., Vieira-Silva S., Wang J., Darzi Y., Faust K. et al. Population-level analysis of gut microbiome variation. Science. 2016;352(6285):560–564. doi:10.1126/science.aad3503.; Mullish B.H., Quraishi M.N., Segal J.P., McCune V. L., Baxter M., Marsden G.L. et al. The use of faecal microbiota transplant as treatment for recurrent or refractory Clostridium difficile infection and other potential indications: joint British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS) guidelines. Gut. 2018;67(11):1920–1941. doi:10.1136/gutjnl-2018-316818.; Saha S., Mara K., Pardi D.S., Khanna S. Long-term Safety of Fecal Microbiota Transplantation for Recurrent Clostridioides difficile Infection. Gastroenterology. 2021;(April 08). (In press) doi:10.1053/j.gastro.2021.01.010.; Grehan M.J., Borody T.J., Leis S.M., Campbell J., Mitchell H., Wettstein A. Durable alteration of the colonic microbiota by the administration of donor fecal flora. J Clin Gastroenterol. 2010;44(8):551–561. doi:10.1097/MCG.0b013e3181e5d06b.; Blanchaert C., Strubbe B., Peeters H. Fecal microbiota transplantation in ulcerative colitis. Acta Gastroenterol Belg. 2019;82(4):519–528. Available at: https://pubmed.ncbi.nlm.nih.gov/31950808/.; Sokol H., Landman C., Seksik P., Berard L., Montil M., Nion-Larmurier I. et al. Fecal microbiota transplantation to maintain remission in Crohn’s disease: a pilot randomized controlled study. Microbiome. 2020;8(1):12. doi:10.1186/s40168-020-0792-5.; Caldeira L.F., Borba H.H., Tonin F.S., Wiens A., Fernandez-Llimos F., Pontarolo R. Fecal microbiota transplantation in inflammatory bowel disease patients: A systematic review and meta-analysis. PLoS One. 2020;15(19):e0238910. doi:10.1371/journal.pone.0238910.; El-Salhy M., Mazzawi T. Fecal microbiota transplantation for managing irritable bowel syndrome. Expert Rev Gastroenterol Hepatol. 2018;12(5):439–445. doi:10.1080/17474124.2018.1447380.; Xu D., Chen V.L., Steiner C.A., Berinstein J.A., Eswaran S., Waljee A.K. et al. Efficacy of Fecal Microbiota Transplantation in Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis. Am J Gastroenterol. 2019;114(7):1043–1050. doi:10.14309/ajg.0000000000000198.; Ianiro G., Eusebi L.H., Black C.J., Gasbarrini A., Cammarota G., Ford A.C. Systematic review with meta-analysis: efficacy of faecal microbiota transplantation for the treatment of irritable bowel syndrome. Aliment Pharmacol Ther. 2019;50(3):240–248. doi:10.1111/apt.15330.; Myneedu K., Deoker A., Schmulson M.J., Bashashati M. Fecal microbiota transplantation in irritable bowel syndrome: A systematic review and meta-analysis. United European Gastroenterol J. 2019;7(8):1033–1041. doi:10.1177/2050640619866990.; Kao D., Roach B., Park H., Hotte N., Madsen K., Bain V., Tandon P. Fecal microbiota transplantation in the management of hepatic encephalopathy. Hepatology. 2016;63(1):339–340. doi:10.1002/hep.28121.; Bajaj J.S., Kassam Z., Fagan A., Gavis E.A., Liu E., Cox I.J. et al. Fecal Microbiota Transplant from a Rational Stool Donor Improves Hepatic Encephalopathy: A Randomized Clinical Trial. Hepatology. 2017;66(6):1727–1738. doi:10.1002/hep.29306.; Bajaj J.S., Salzman N.H., Acharya C., Sterling R.K., White M.B., Gavis E.A. et al. Fecal Microbial Transplant Capsules are Safe in Hepatic Encephalopathy: A Phase 1, Randomized, Placebo-Controlled Trial. Hepatology. 2019;70(5):1690–1703. doi:10.1002/hep.30690.; Vemuri R., Shankar E.M., Chieppa M., Eri R., Kavanagh K. Beyond Just Bacteria: Functional Biomes in the Gut Ecosystem Including Virome, Mycobiome, Archaeome and Helminths. Microorganisms. 2020;8(4):483. doi:10.3390/microorganisms8040483.; DeFilipp Z., Bloom P.P., Soto M.T., Mansour M.K., Sater M.R. A., Huntley M. H et al. Drug-Resistant E. coli Bacteremia Transmitted by Fecal Microbiota Transplant. N Engl J Med. 2019;381(21):2043–2050. doi:10.1056/NEJMoa1910437.; Cammarota G., Ianiro G., Tilg H., Rajilić-Stojanović M., Kump P., Satokari R. et al. European consensus conference on faecal microbiota transplantation in clinical practice. Gut. 2017;66(4):569–580. doi:10.1136/gutjnl-2016–313017.

  14. 14
  15. 15
    Academic Journal

    Source: Acta Biomedica Scientifica; Том 5, № 6 (2020); 248-253 ; 2587-9596 ; 2541-9420

    File Description: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/2523/2106; Lessa F, Mu Y, Bamberg W, Beldavs Z, Dumyati G, Dunn J, et al. Burden of Clostridium difficile infection in the United States. N Engl J Med. 2015; 372: 825-834. doi:10.1056/NEJMoa1408913; Knight D, Elliott B, Chang B, Perkins T, Riley T. Diversity and evolution in the genome of Clostridium difficile. Clin Microbiol Rev. 2015; 28(3): 721-741. doi:10.1128/CMR.00127-14; Ивашкин В.Т., Ющук Н.Д., Маев И.В., Лапина Т.Л., Полуэктова Е.А., Шифрин О.С., и др. Рекомендации Российской гастроэнтерологической ассоциации по диагностике и лечению Clostridium difficile-ассоциированной болезни. Российский журнал гастроэнтеролологии, гепатологии и колопроктологии. 2016; 26(5): 56-65. doi:10.22416/1382-4376-2016-26-5-56-65; Шелыгин Ю.А., Алешкин В.А., Сухина М.А., Миронов А.Ю.,Брико Н.И., Козлов Р.С., и др. Клинические рекомендации Национальной ассоциации специалистов по контролю инфекций, связанных с оказанием медицинской помощи, и Общероссийской общественной некоммерческой организации «Ассоциации колопроктологов России» по диагностике, лечению и профилактике Clostridium difficile-ассоциированной диареи (CDI). Колопроктология. 2018; 3(65): 7-23.; Momani L, Abughanimeh O, Boonpheng B, Gabriel J, Young M. Fidaxomicin vs vancomycin for the treatment of a first episode of Clostridium difficile infection: a meta-analysis and systematic review. Cureus. 2018; 10(6): e2778. doi:10.7759/cureus.2778; Aziz M, Weissman S, Rajani FR, Eid A, Nawras A. Cadazolid vs vancomycin for the treatment of Clostridioides difficile infection: systematic review with meta-analysis. Curr Clin Pharmacol. 2020; 15(1): 4-10. doi:10.2174/1574884714666190802124301; Surawicz C, Brandt L, David G, Ananthakrishnan A, Curry S, Gilligan P, et al. Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am J Gastroenterol. 2013; 108(4): 478-498. doi:10.1038/ajg.2013.4; Sokol H, Galperine T, Kapel N, Bourlioux P, Seksik P, Barbut F, et al. Faecal microbiota transplantation in recurrent Clostridium difficile infection: Recommendations from the French Group of Faecal Microbiota Transplantation. Dig Liver Dis. 2016; 48(3): 242-247. doi:10.1016/j.dld.2015.08.017; Cammarota G, Ianiro G, Tilg H, Rajilić-Stojanović M, Kump P, Satokari R, et al. European consensus conference on faecal microbiota transplantation in clinical practice. Gut. 2017; 66: 569-580. doi:10.1136/gutjnl-2016-313017; Kelly C, Kahn S, Kashyap P, Laine L, Rubin D, Atreja A. Update on fecal microbiota transplantation2015: indications, methodologies, mechanisms, and outlook. Gastroenterology. 2015; 149(1): 223-237. doi:10.1053/j.gastro.2015.05.008; Van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013; 368: 407-15. doi:10.1056/NEJMoa1205037; Cammarota G, Masucci L, Ianiro G, Bibbò S, Dinoi G, Costamagna G, et al. Randomized clinical trial: faecal microbiota transplantation by colonoscopy vs. vancomycin for the treatment of recurrent Clostridium difficile infection. Aliment Pharmacol Ther. 2015; 41: 835-843. doi:10.1111/apt.13144; Голощапов О.В., Чуракина Д.В., Кучер М.А., Клементьева Р.В., Сидоренко С.В., Гостев В.В., и др. Трансплантация фекальной микробиоты при критическом состоянии пациентов в онкогематологической практике. Вестник анестезиологии и реаниматологии. 2019; 3(16): 63-73. doi:10.21292/2078-5658-2019-16-3-63-73; Шрайнер Е.В., Морозов В.В., Хавкин А.И., Власов В.В., Куликов В.Г., Кольцова С.Т. Опыт проведения трансплантации фекальной микробиоты у пациентки с клостридиальной инфекцией. Экспериментальная и клиническая гастроэнтерология. 2018; 12(160): 80-83. doi:10.31146/1682-8658-ecg-160-12-80-83; Щербаков П.Л., Белова Н.Д., Генерозов Э.В., Жгун Е.С., Иванова И.О., Ильина Е.Н., и др. Применение фекальной трансплантации в лечении заболеваний пищеварительного тракта (первый клинический опыт). Доктор.Ру. 2019; 3(158): 40-46. doi:10.31550/1727-2378-2019-158-3-40-46; Карпухин О.Ю., Хасанов Э.Р., Бикбов Б.Ш. Трансплантация фекальной микробиоты в современной клинической практике. Практическая медицина. 2017; 6(107): 7-12.; Апарцин К.А., Кулундуков А.А., Чашкова Е.Ю. Устройство для подготовки донорского фекального материала к трансплантации: Пат. № 2659417 Рос. Федерация; МПК A61K 35/12 (2015.01), A61J 3/00 (2006.01). № 2017122089; заявл. 22.06.2017; опубл. 02.07.2018.; https://www.actabiomedica.ru/jour/article/view/2523

  16. 16
  17. 17
    Academic Journal
  18. 18
  19. 19
  20. 20