-
1Academic Journal
Authors: S. V. Titova, I. R. Simonova, E. A. Menshikova, V. S. Osadchaya, С. В. Титова, И. Р. Симонова, Е. А. Меньшикова, В. С. Осадчая
Contributors: Авторы выражают искреннюю благодарность научному сотруднику Головину Сергею Николаевичу, за непосредственное участие в подготовке проб для трансмиссионной электронной микроскопии.
Source: Epidemiology and Vaccinal Prevention; Том 23, № 1 (2024); 41-50 ; Эпидемиология и Вакцинопрофилактика; Том 23, № 1 (2024); 41-50 ; 2619-0494 ; 2073-3046
Subject Terms: трансмиссионная электронная микроскопия, Vibrio cholera, chitin, transmission electron microscopy, хитин
File Description: application/pdf
Relation: https://www.epidemvac.ru/jour/article/view/1938/1011; Silva A.J., Benitez J.A. Vibrio cholerae biofilms and cholera pathogenesis // PLOS Neglected Tropical Diseases. 2016. Vol. 10, N2. DOI: https://doi.org/10.1371/journal.pntd.0004330; Rahman H., Mahbub K.R., Vergara G.E., et al. Protozoal food vacuoles enhance transformation in Vibrio cholerae through SOS-regulated DNA integration // The ISME Journal. 2022. Vol. 16. Р. 1993–2001. DOI: https://doi.org/10.1038/s41396-022-01249-0; Pruzzo C., Vezzulli L, Colwell R.R. Global impact Vibrio cholerae interactions with chitin // Environ. Microbiol. 2008. Vol. 10. P. 1400–1410. DOI:10.1111/j.1462-2920.2007.01559.x; Vezzulli L, Guzman C.A., Colwell R.R., Pruzzo C. Dual role colonization factors connecting Vibrio cholerae’s lifestyles in human and aquatic environments open new perspectives for combating infectious diseases // Curr. Opin. Biotechnol. 2008. Vol. 19. DOI: http://dx.doi.org/10.1016/j.copbio.2008.04.002; Vezzullia L., Grandea C., Reidb P.C., et al. Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proc Natl Acad Sci USA. 2016. Vol. 23, N113(34). P 5062–5071. DOI:10.1073/pnas.1609157113; Меньшикова Е. А., Курбатова Е. М., Титова С. В. Экологические особенности персистенции холерных вибрионов: ретроспективный анализ и современное состояние проблемы. Журн. микробиол., эпидемиол. и иммунобиол. 2020. T.97, №2. C. 165–173. DOI: https://doi.org/10.36233/0372-9311-2020-97-2-165-173; ISSN0372-9311; Меньшикова Е. А., Курбатова Е. М., Водопьянов С. О. и др. Оценка способности холерных вибрионов формировать биопленку на поверхности хитинового панциря речного рака. Журнал микробиологии, эпидемиологии и иммунобиологии. 2021. Т. 98, №4. C. 434–439. DOI: https://doi.org/10.36233/0372-9311-99.; Meibom K.L., Li X.B., Nielsen A.T, et al. The Vibrio cholerae chitin utilization program. Proc. Natl. Acad. ScL USA. 2004. Vol. 101. P. 2524–2529. DOI:10.1073/pnas.0308707101; Sinha-Ray S., Ali A. Mutation in flrA and mshA genes of Vibrio cholerae inversely involved in vps – independent biofilm driving bacterium toward nutrients in lake water. Water. Front. Microbiol. 2017. Sec. Aquatic Microbiology. DOI: https://doi.org/10.3389/fmicb.2017.01770; Kirn T.J., Jude B.A., Taylor R.K. A colonization factor links Vibrio cholerae environmental survival and human infection. Nature. 2005. Vol. 438. P. 863–866. DOI:10.1038/nature04249; Waldor M.K., Mekalanos J.J. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science. 1996. Vol. 272. P. 1910–1914. DOI:10.1126/наука.272.5270.1910; Meibom K.L, Blokesch M., Dolganov N.A., et al. Chitin induces natural competence in Vibrio cholerae. Science. 2005. Vol. 310. P. 1824–1827. DOI:10.1126/science.1120096; Mondal M., Chatterjee N.S. Role of Vibrio cholera exochitinase ChiA2 in horizontal gene transfer Can. J. Microbiol. 2016. Vol. 62, N3 P. 201–209. DOI:10.1139/cjm-2015-0556; Metzger LC, Blokesch M. Regulation of competence-mediated horizontal gene transfer in the natural habitat of Vibrio cholera. Curr Open Microbiol. 2016. Vol. 30. P.1–7. DOI:10.1016/j.mib.2015.10.0070; Worden A.Z., Seidel M., Smriga S., et al. Trophic regulation of Vibrio cholerae in coastal marine waters. Environ. Microbiol. 2006. Vol. 8. P. 21–29. DOI: https://dx.doi.org/10.1111/j.1462-2920.2005.00863.x); Sun S., Tay Q.X.M., Kjelleberg S., et.al. Quorum sensing- regulated chitin metabolism provides grazing resistance to Vibrio cholerae biofilms. The ISME Journal. 2015. Vol. 9, N8. P. 1812–1820. DOI:10.1038/ismej.2014.265; Reguera G., Kolter R. Virulence and the environment: a novel role of Vibrio cholerae toxin-coregulated pili in biofilm formation on chitin. Journal of bacteriology. 2005. Vol. 187, N10. P. 3551–3555. DOI:10.1128/JB.187.10.3551-3555.2005; Chiavelli D.A., Marsh J. W., Taylor R.K. The mannose-sensitive hemagglutinin of Vibrio cholerae promotes adherence to zooplankton. Appl. Environ. Microbiol. 2001. Vol. 67, N7. P 3220–3225. DOI:10.1128/AEM.67.7.3220-3225.2001; Jude B.A., Taylor R.K. The physical basis of type 4 pilus-mediated microcolony formation by Vibrio cholerae O1. J. Struct. Biol. 2011. Vol. 175, N1. P. 1–9. DOI:10.1016/j.jsb.2011.04.008; Окулич В. К., Кабанова А. А., Плотников Ф. В. Микробные биопленки в клинической микробиологии и антибактериальной терапии. Витебск: ВГМУ; 2017. 300 с.: ил. ISBN 978-985-466-896-0; Водопьянов С. О., Водопьянов А. С., Меньшикова Е. А. и др. Способ моделирования биопленок, формируемых Vibrio cholerae O1 серогруппы на поверхности хитина. Патент РФ №2685878; 23.04.2019. Бюл. №12.; Головин С. Н., Титова С. В. Симонова И. Р. Способ получения образцов биопленок холерных вибрионов для исследования методом трансмиссионной электронной микроскопии. Патент РФ № 2662938; 30.07.2018, Бюл. №22; Марков Е. Ю., Куликалова B. C., Урбанович Л. Я. и др. Хитин и продукты его гидролиза в экологии Vibrio cholerae. Биохимия. 2015. Т.80, №9. P. 1334–1343. DOI: http://dx.doi.org/10.1134/S0006297915090023; Дуванова О. В., Мишанькин Б. Н., Водопьянов А. С., Сорокин В. М. N-ацетил-β-D-глюкозаминидаза холерных вибрионов. Журн. микробиол., эпидемиол. ииммунобиол. 2016. Т. 2. С. 41–48. DOI: https://doi.org/10.36233/0372-9311-2016-2-41-48; Головин С. Н., Симонова И. Р., Титова С. В. и др. Изучение биопленок Vibrio cholerae методом трансмиссионной электронной микроскопии. Клиническая лабораторная диагностика. 2017. Т. 62, №9. С. 568–576. DOI: http://dx.doi.org/10.18821/0869-2084-2017-63-9-568-576; Shahkarami M. Vibrio cholerae biofilm development on natural and artificial chitin substrates. 2005. Master’s Theses. 2839. DOI: https://doi.org/10.31979/etd.5478-vxaj; Nahar S., Sultana M., Naser M.N., et.al. Role of shrimp chitin in the ecology of toxigenic Vibrio cholerae and cholera transmission. Frontiers in Microbiology. 2011. Vol. 2. DOI: https://dx.doi.org/10.3389/fmicb.2011.00260; https://www.epidemvac.ru/jour/article/view/1938
-
2Academic Journal
Source: Nauchno-prakticheskii zhurnal «Patogenez». :45-50
Subject Terms: 2. Zero hunger, 03 medical and health sciences, 0302 clinical medicine, рибофлавин, фоторефракционная кератоэктомия, photorefractive keratectomy, cornea cross-linking, transmission electron microscopy, кросслинкинг роговицы, riboflavin, трансмиссионная электронная микроскопия, 3. Good health
-
3Academic Journal
Authors: O. S. Tutanov, Y. S. Bakakina, K. V. Proskura, A. Б. Grigoryeva, V. E. Syakhovich, S. A. Beliaev, E. I. Ryabchikova, Y. P. Tsentalovich, P. P. Laktionov, S. N. Tamkovich, О. С. Тутанов, Ю. С. Бакакина, К. В. Проскура, А. E. Григорьева, В. Э. Сяхович, С. А. Беляев, Е. И. Рябчикова, Ю. П. Центалович, П. П. Лактионов, С. Н. Тамкович
Contributors: This work was supported by the Russian Foundation for Basic Research and Government of Novosibirsk region of the Russian Federation, grant 18-415-540012, Исследование выполнено при финансовой поддержке РФФИ и Правительства Новосибирской области в рамках научного проекта № 18-415-540012р_а
Source: Siberian journal of oncology; Том 19, № 2 (2020); 49-61 ; Сибирский онкологический журнал; Том 19, № 2 (2020); 49-61 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2020-19-2
Subject Terms: рак молочной железы, transmission electron microscopy, mass-spectrometry, proteomic markers, breast cancer, трансмиссионная электронная микроскопия, масс-спектрометрия, протеомные маркеры
File Description: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/1398/728; WittenM., Parker C.C. Screening mammography: recommendations and controversies. Surg Clin North Am. 2018 Aug; 98(4): 667-75. doi:10.1016/j.suc.2018.03.003.; Tamkovich S.N., Tutanov O.S., LaktionovP.P. Exosomes: generation, structure, transport, biological activity, and diagnostic application. Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology. 2016 Oct; 10(3): 163-73. doi:10.1134/S1990747816020112.; Yanez-MoM., Siljander P.R., Andreu Z., Zavec A.B., BorraF.E., Bu-zasE.I., BuzasK., CasalE., CappelloF., Carvalh o J., ColaE., SilvaA.C. Fais S., Falcon-Perez J.M., Ghobrial IM., Giebel B., Gimona M., Gra-ner M., Gursel I., Gursel M., Heegaard N.H.H., Hendrix A., Kierulf P., KokubunK., KosanovicM., Kralj-Iglic V, Kramer-AlbersE.-M, Laitinen S., Lasser S., Lener T., Ligeti E., Line A., Lipps G., Llorente A., Lotvall J., Mancek-Keber M., Marcilla A., Mittelbrunn M., Nazarenko I., Hoen E.N.M., Nyman T.A., O’Driscoll L., Olivan M., Oliveira C., Pall-inger E., del Portillo HA., Reventos J., Rigau M., Rohde E., Sammar M., Sanchez-Madrid F., Santarem N., Schallmoser K., Ostenfeld M.S., Stoorvo-gel W., StukeljR., Van der Grein S.G., VasconcelosM.H., WaubenM.H.M., De Wever O. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015 May; 4: 27066. doi:10.3402/jev.v4.27066.; Aghebati-Maleki A., Nami S., Baghbanzadeh A., Karzar B.H., Noorolyai S., FotouhiA., Aghebati-MalekiL. Implications of exosomes as diagnostic and therapeutic strategies in cancer. J Cell Physiol. 2019 Jun. doi:10.1002/jcp.28875.; Clark D.J., Fondrie W.E., Liao Z., Hanson P.I., Fulton A., Mao L., YangA.J. Redefining the breast cancer exosome proteome by tandem mass tag quantitative proteomics and multivariate cluster analysis. Anal Chem. 2015 Oct; 87(20): 10462-9. doi:10.1021/acs.analchem.5b02586.; Pant S., Hilton H., Burczynski M.E. The multifaceted exosome: biogenesis, role in normal and aberrant cellular function, and frontiers for pharmacological and biomarker opportunities. Biochem Pharmacol. 2012 Jun; 83(11): 1484-94. doi:10.1016/j.bcp.2011.12.037.; Koumangoye R.B., SakweA.M., Goodwin J.S., Patel T., Ochieng J. Detachment of breast tumor cells induces rapid secretion of exosomes which subsequently mediate cellular adhesion and spreading. PLoS One. 2011 Sep; 6(9): e24234. doi:10.1371/journal.pone.0024234.; Tamkovich S.N., Bakakina Y.S., Tutanov O.S., Somov A.K., Ki-rushina N.A., Dubovskaya L.V., Volotovski I.D., Laktionov P.P. Proteome analysis of circulating exosomes in health and breast cancer. Russian Journal of Bioorganic Chemistry 2017 Jul; 43(2): 126-34. doi:10.1134/S1068162017020157.; ЛактионовП.П., Скворцова Т.Э., МорозкинЕ.С., Бондарь АА., МилейкоВ.А., Власов В.В.; ООО «ЦСБГеномика». Способ получения суммарной фракции внеклеточных нуклеиновых кислот из крови. Патент № 2554746 РФ, МПК G01N 33/48. № 2014120562/15; Заявл. 21.05.14; Опубл. 01.06.15.; GorgA., Weiss W. Horizontal SDS-PAGE for IPG-Dalt. Meth Mol Biol. 1999; 112: 235-44.; Blum H., Beier H., Gross H.J. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis. 1987 Feb; 8(2): 93-9. doi:10.1002/elps.1150080203.; Tamkovich S.N., Serdukov D.S., Tutanov O.S., Duzhak T. G., Laktionov P.P. Identification of proteins in blood nucleoprotein complexes. Russian Journal of Bioorganic Chemistry. 2015; 41(6): 617-25. doi:10.1134/S1068162015060163.; Yang Q., Zhang Y., Cui H., Chen L., Zhao Y., Lin Y., Zhang M., Xie L. dbDEPC 3.0: the database of differentially expressed proteins in human cancer with multi-level annotation and drug indication. Database (Oxford). 2018; 2018: bay015. doi:10.1093/database/bay015.; Thery C., Witwer K.W., Aikawa E., Alcaraz MJ., Anderson J.D., Andriantsitohaina R., Antoniou A., Arab T., Archer F, Atkin-Smith G.K. Minimal information for studies of extracellular vesicles 2018 (MIS-EV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018 Nov; 7(1): 1535750. doi:10.1080/20013078.2018.1535750.; Tamkovich S.N., Yunusova N.V, Somov A.K., Afanas’ev S.G., Kakurina G.V., Kolegova E.S., Tugutova EA., Laktionov P.P., Kondakova I.V Comparative subpopulation analysis of plasma exosomes from cancer patients. Biochemistry (Moscow) Supplement Series. B. Biomedical. Chemistry. 2018 Oct; 12(2): 151-5. doi:10.1134/S1990750818020130.; Tamkovich S., Grigor’eva A., Eremina A., Tupikin A., Kabilov M., Chernykh V, Vlassov V, Ryabchikova E. What information can be obtained from the tears of a patient with primary open angle glaucoma? Clin Chem Acta 2019 Aug; 495: 529-37. doi:10.1016/j.cca.2019.05.028.; Wu A.Y., Ueda K., Lai C.P. Proteomic analysis of extracellular vesicles for cancer diagnostics. Proteomics. 2019 Jan; 19(1-2): e1800162. doi:10.1002/pmic.201800162.; Cufaro M.C., Pieragostino D., Lanuti P., Rossi C., Cicalini I., Federici L., De Laurenzi V., Del Boccio P. Extracellular vesicles and their potential use in monitoring cancer progression and therapy: the contribution of proteomics. J Oncol. 2019 Jun; 2019: 1639854. doi:10.1155/2019/1639854.; Boukouris S., Mathivanan S. Exosomes in bodily fluids are a highly stable resource of disease biomarkers. Proteomics Clin Appl. 2015 Apr; 9(3-4): 358-67. doi:10.1002/prca.201400114.; Nazarenko I., Rana S., Baumann A., McAlear J., Hellwig A., TrendelenburgM., Lochnit G., PreissnerK.T., ZollerM. Cell surface tet-raspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res. 2010 Feb; 70(4): 1668-78. doi:10.1158/0008-5472.CAN-09-2470.; Mathivanan S., Ji H., Simpson R.J. Exosomes: extracellular organelles important in intercellular communication. J Proteomics 2010 Sep; 73(10): 1907-20. doi:10.1016/j.jprot.2010.06.006.; Calzolari A., Raggi C., Deaglio S., Sposi N.M., Stafsnes M., Fecchi K., Parolini I., Malavasi F, Peschle C., Sargiacomo M., Testa U. TfR2 localizes in lipid raft domains and is released in exosomes to activate signal transduction along the MAPK pathway. J Cell Sci. 2006 Nov; 119: 4486-98.; Clayton A., Turkes A., Dewitt S., Steadman R., Mason M.D., Hal-lett M.B. Adhesion and signaling by B cell-derived exosomes: the role of integrins. FASEB J. 2004 Jun; 18(9): 977-9.; Danesh A., Inglis H.C., Jackman R.P., Wu S., Deng X., Muench M.O., Heitman J.W., Norris PJ. Exosomes from red blood cell units bind to monocytes and induce proinflammatory cytokines, boosting T-cell responses in vitro. Blood 2014 Jan; 123(5): 687-96. doi:10.1182/blood-2013-10-530469.; Minciacchi VR., FreemanM.R., Di VizioD. Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large on-cosomes. Semin Cell Dev Biol. 2015 Apr; 40: 41-51. doi:10.1016/j.semcdb.2015.02.010.; Tamkovich S., Tutanov O., Efimenko A., Grigor’eva A., Ryabchikova E., Kirushina N., Vlassov V, Tkachuk V, Laktionov P. Blood circulating exosomes contain distinguishable fractions of free and cell-surface-associated vesicles. Curr Mol Med. 2019 Mar; 19(4): 273-85. doi:10.2174/1566524019666190314120532.; https://www.siboncoj.ru/jour/article/view/1398
-
4Academic Journal
Authors: V. I. Albanova, V. V. Chikin, R. V. Epishev
Source: Vestnik Dermatologii i Venerologii, Vol 0, Iss 3, Pp 53-59 (2017)
Subject Terms: врожденный буллезный эпидермолиз, трансмиссионная электронная микроскопия, иммунофлюоресцентное антигенное картирование, молекулярная диагностика, пренатальная диагностика, генетическое консультирование, hereditary epidermolysis bullosa, transmission electron microscopy, immunofluorescence antigen mapping, molecular diagnostics, prenatal diagnostics, genetic consulting, Dermatology, RL1-803
File Description: electronic resource
-
5Academic Journal
Authors: Kvyatkovskaya, T.O., Kvyatkovsky, E.A.
Source: Урологія; Том 23, № 1 (2019)
Урология; Том 23, № 1 (2019)
Urology; Том 23, № 1 (2019)Subject Terms: 03 medical and health sciences, 0302 clinical medicine, гідроцеле, мезотелій, стомата, трансмісійна електронна мікроскопія, скануюча електронна мікроскопія, hydrocele, mesothelium, stomata, transmission electron microscopy, scanning electron microscopy, гидроцеле, мезотелий, трансмиссионная электронная микроскопия, сканирующая электронная микроскопия
File Description: application/pdf
-
6Academic Journal
Authors: Novikov, S. P., Bondarenko, N. S., Vasilishin, A. V., Kirillova, L. A., Frolov, K. B., Tverdokhleb, I. V.
Source: Морфологія, Vol 13, Iss 1, Pp 38-46 (2019)
Morphologia; Том 13, № 1 (2019); 38-46Subject Terms: трансмісійна електронна мікроскопія, стимуляція еритропоезу, QH301-705.5, колоректальный рак, стимуляция эритропоэза, красный костный мозг, толстый кишечник, трансмиссионная электронная микроскопия, колоректальний рак, червоний кістковий мозок, товстий кишечник, colorectal cancer, erythropoiesis stimulation, red bone marrow, large intestine, transmission electron microscopy, Biology (General), 3. Good health
File Description: application/pdf
-
7Academic Journal
Authors: article editotial, статья редакционная
Source: PULMONOLOGIYA; Том 27, № 6 (2017); 705-731 ; Пульмонология; Том 27, № 6 (2017); 705-731 ; 2541-9617 ; 0869-0189 ; 10.18093/0869-0189-2017-27-6
Subject Terms: генотипирование, diagnosis, nasal nitric oxide, ciliary beat frequency, high-speed video-microscopy, transmission electron microscopy, genotyping, диагностика, назальный оксид азота, частота биения ресничек, высокоскоростной видеомикроскопический анализ, трансмиссионная электронная микроскопия
File Description: application/pdf
Relation: https://journal.pulmonology.ru/pulm/article/view/938/786; Lucas J.S., Leigh M.W. Diagnosis of primary ciliary dyskinesia: searching for a gold standard. Eur. Respir. J. 2014; 44 (6): 1418–1422. DOI:10.1183/09031936.00175614.; Barbato A., Frischer T., Kuehni C.E. et al. Primary ciliary dyskinesia: a consensus statement on diagnostic and treatment approaches in children. Eur. Respir. J. 2009; 34 (6): 1264–1276. DOI:10.1183/09031936.00176608.; Kuehni C.E., Frischer T., Strippoli M.P. et al. Factors influencing age at diagnosis of primary ciliary dyskinesia in European children. Eur. Respir. J. 2010; 36 (6): 1248–1258. DOI:10.1183/09031936.00001010.; Strippoli M.P., Frischer T., Barbato A. et al. Management of primary ciliary dyskinesia in European children: recommendations and clinical practice. Eur. Respir. J. 2012; 39 (6): 1482–1491. DOI:10.1183/09031936.00073911.; Schünemann H.J., Oxman A.D., Brozek J. et al. Grading quality of evidence and strength of recommendations for diagnostic tests and strategies. BMJ. 2008; 336: 1106–1110. DOI:10.1136/bmj.39500.677199.AE.; Guyatt G.H., Oxman A.D., Kunz R. et al. GRADE guidelines: 2. Framing the question and deciding on important outcomes. J. Clin. Epidemiol. 2011; 64 (4): 395–400. DOI:10.1016/j.jclinepi.2010.09.012.; Behan L., Dunn Galvin A., Rubbo B. et al. Diagnosing primary ciliary dyskinesia; an international patient perspective. Eur. Respir. J. 2016; 48 (4): 1096–1107. DOI:10.1183/13993003.02018-2015.; Balshem H., Helfand M., Schünemann H.J. et al. GRADE guidelines: 3. Rating the quality of evidence. J. Clin. Epidemiol. 2011; 64 (4): 401–406. DOI:10.1016/j.jclinepi.2010.07.015.; Andrews J.C., Schünemann H.J., Oxman A.D. et al. GRADE guidelines: 15. Going from evidence to recommendation: determinants of a recommendation’s direction and strength. J. Clin. Epidemiol. 2013; 66 (7): 726–735. DOI:10.1016/j.jclinepi.2013.02.003.; Behan L., Dimitrov B.D., Kuehni C.E. et al. PICADAR: a diagnostic predictive tool for primary ciliary dyskinesia. Eur. Respir. J. 2016; 47 (4): 1103–1112. DOI:10.1183/13993003.01551-2015.; Shapiro A.J., Chawla K.K., Baker B.R. et al. Nasal nitric oxide and clinical characteristics of patients with heterotaxy: comparison to primary ciliary dyskinesia. Am. J. Respir. Crit. Care Med. 2011; 183: A1209. DOI:10.1164/ajrccm-conference.2011.183.1_MeetingAbstracts.A1209.; Leigh M.W., Ferkol T.W., Davis S.D. et al. Clinical features and associated likelihood of primary ciliary dyskinesia in children and adolescents. Ann. Am. Thorac. Soc. 2016; 13 (8): 1305–1313. DOI:10.1513/AnnalsATS.201511-748OC.; Noll E.M., Rieger C.H.L., Hamelmann E., Nüßlein T.G. Questionnaire to preselect patients with a high probability of primary ciliary dyskinesia. Klin. Padiatr. 2011; 223 (1): 22–26. DOI:10.1055/s-0030-1263136.; Chin G.Y., Karas D.E., Kashgarian M. Correlation of presentation and pathologic condition in primary ciliary dyskinesia. Arch. Otolaryngol. Head Neck. Surg. 2002; 128 (11): 1292–1294. DOI:10.1001/archotol.128.11.1292.; Beucher J., Chambellan A., Segalen J., Deneuville E. Primary ciliary dyskinesia: a retrospective review of clinical and paraclinical data. Rev. Mal. Respir. 2011; 28 (7): 856–863. DOI:10.1016/j.rmr.2011.02.014.; Pifferi M., Bush A., Michelucci A. et al. Mannose-binding lectin 2 gene polymorphism and lung damage in primary ciliary dyskinesia. Pediatr. Pulmonol. 2015; 50 (2): 179–186. DOI:10.1002/ppul.23026.; Mullowney T., Manson D., Kim R. et al. Primary ciliary dyskinesia and neonatal respiratory distress. Pediatrics. 2014; 134 (6): 1160–1166.; Goutaki M., Meier A.B., Halbeisen F.S. et al. Clinical manifestations in primary ciliary dyskinesia: a systematic review and meta-analysis. Eur. Respir. J. 2016; 48 (4): 1081–1095. DOI:10.1183/13993003.00736-2016.; Walker W.T., Jackson C.L., Lackie P.M. et al. Nitric oxide in primary ciliary dyskinesia. Eur. Respir. J. 2012; 40 (4): 1024–1032. DOI:10.1183/09031936.00176111.; Collins S.A., Gove K., Walker W. et al. Nasal nitric oxide screening for primary ciliary dyskinesia: systematic review and meta-analysis. Eur. Respir. J. 2014; 44 (6): 1589–1599. DOI:10.1183/09031936.00088614.; American Thoracic Society, European Respiratory Society. ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am. J. Respir. Crit. Care Med. 2005; 171 (8): 912–930. DOI:10.1164/rccm.200406-710ST.; Beydon N., Chambellan A., Alberti C. et al. Technical and practical issues for tidal breathing measurements of nasal nitric oxide in children. Pediatr. Pulmonol. 2015; 50 (12): 1374–1382. DOI:10.1002/ppul.23167.; Marthin J.K., Nielsen K.G. Hand-held tidal breathing nasal nitric oxide measurement – a promising targeted case-finding tool for the diagnosis of primary ciliary dyskinesia. PLoS One. 2013; 8 (2): e57262. DOI:10.1371/journal.pone.0057262.; Marthin J.K., Nielsen K.G. Choice of nasal nitric oxide technique as first-line test for primary ciliary dyskinesia. Eur. Respir. J. 2011; 37 (3): 559–565. DOI:10.1183/09031936.00032610.; Leigh M.W., Hazucha M.J., Chawla K.K. et al. Standardizing nasal nitric oxide measurement as a test for primary ciliary dyskinesia. Ann. Am. Thorac. Soc. 2013; 10 (6): 574–581. DOI:10.1513/AnnalsATS.201305-110OC.; Jackson C.L., Behan L., Collins S.A. et al. Accuracy of diagnostic testing in primary ciliary dyskinesia. Eur. Respir. J. 2016; 47 (3): 837–848. DOI:10.1183/13993003.00749-2015.; Harris A., Bhullar E., Gove K. et al. Validation of a portable nitric oxide analyzer for screening in primary ciliary dyskinesias. BMC Pulm. Med. 2014; 14: 18. DOI:10.1186/1471-2466-14-18.; Struben V.M., Wieringa M.H., Mantingh C.J. et al. Nasal NO: normal values in children age 6 through to 17 years. Eur. Respir. J. 2005; 26 (3): 453–457. DOI:10.1183/09031936.05.00015205.; Adams P.S., Tian X., Zahid M. et al. Establishing normative nasal nitric oxide values in infants. Respir. Med. 2015; 109 (9): 1126–1130. DOI:10.1016/j.rmed.2015.07.010.; Olbrich H., Cremers C., Loges N.T. et al. Loss-of-function GAS8 mutations cause primary ciliary dyskinesia and disrupt the nexin-dynein regulatory complex. Am. J. Hum. Genet. 2015; 97 (4): 546–554. DOI:10.1016/j.ajhg.2015.08.012.; Knowles M.R., Ostrowski L.E., Leigh M.W. et al. Mutations in RSPH1 cause primary ciliary dyskinesia with a unique clinical and ciliary phenotype. Am. J. Respir. Crit. Care Med. 2014; 189 (6): 707–717. DOI:10.1164/rccm.201311-2047OC.; Kott E., Legendre M., Copin B. et al. Loss-of-function mutations in RSPH1 cause primary ciliary dyskinesia with central-complex and radial-spoke defects. Am. J. Hum. Genet. 2013; 93 (3): 561–570. DOI:10.1016/j.ajhg.2013.07.013.; Afzelius B.A. A human syndrome caused by immotile cilia. Science. 1976; 193 (4250): 317–319. DOI:10.1126/science.1084576.; Rayner C.F., Rutman A., Dewar A. et al. Ciliary disorientation alone as a cause of primary ciliary dyskinesia syndrome. Am. J. Respir. Crit. Care Med.1996; 153 (3): 1123–1129. DOI:10.1164/ajrccm.153.3.8630555.; Chapelin C., Coste A., Reinert P. et al. Incidence of primary ciliary dyskinesia in children with recurrent respiratory diseases. Ann. Otol. Rhinol. Laryngol. 1997; 106 (10, Pt 1): 854–858. DOI:10.1177/000348949710601008.; Santamaria M.M., de Santi G., Grillo F. Ciliary motility at light microscopy: a screening technique for ciliary defects? Acta. Paediatr. 1999; 88 (8): 853–857.; Jorissen M., Willems T., Van der Schueren B. et al. Ultrastructural expression of primary ciliary dyskinesia after ciliogenesis in culture. Acta. Otorhinolaryngol. Belg. 2000; 54 (3): 343–356.; Toskala-Hannikainen E., Haataja J., Shirasaki H. et al. Culture of cells harvested with nasal brushing: a method for evaluating ciliary function. Rhinology. 2005; 43 (2): 121–124.; Pifferi M., Montemurro F., Cangiotti A.M. et al. Simplified cell culture method for the diagnosis of atypical primary ciliary dyskinesia. Thorax. 2009; 64 (12): 1077–1081. DOI:10.1136/thx.2008.110940.; Hirst R.A., Jackson C.L., Coles J.L. et al. Culture of primary ciliary dyskinesia epithelial cells at air-liquid interface can alter ciliary phenotype but remains a robust and informative diagnostic aid. PLoS One. 2014; 9 (2): e89675. DOI:10.1371/journal.pone.0089675.; Chilvers M.A., O’Callaghan C. Analysis of ciliary beat pattern and beat frequency using digital high speed imaging: comparison with the photomultiplier and photodiode methods. Thorax. 2000; 55 (4): 314–317. DOI:10.1136/thorax.55.4.314.; Papon J.F., Bassinet L., Cariou-Patron G. et al. Quantitative analysis of ciliary beating in primary ciliary dyskinesia: a pilot study. Orphanet. J. Rare Dis. 2012; 7: 78. DOI:10.1186/1750-1172-7-78.; Friedman N.R., Pachigolla R., Deskin R.W. et al. Optimal technique to diagnose primary ciliary dyskinesia. Laryngoscope. 2000; 110 (9): 1548–1551. DOI:10.1097/00005537-200009000-00026.; Chilvers M.A., Rutman A., O’Callaghan C. Ciliary beat pattern is associated with specific ultrastructural defects in primary ciliary dyskinesia. J. Allergy Clin. Immunol. 2003; 112 (3): 518–524.; Raidt J., Wallmeier J., Hjeij R. et al. Ciliary beat pattern and frequency in genetic variants of primary ciliary dyskinesia. Eur. Respir. J. 2014; 44 (6): 1579–1588. DOI:10.1183/09031936.00052014.; Pifferi M., Bush A., Montemurro F. et al. Rapid diagnosis of primary ciliary dyskinesia: cell culture and soft computing analysis. Eur. Respir. J. 2013; 41 (4): 960–965. DOI:10.1183/09031936.00039412.; Jorissen M., Willems T., Van der Schueren B. Ciliary function analysis for the diagnosis of primary ciliary dyskinesia: advantages of ciliogenesis in culture. Acta. Otolaryngol. 2000; 120 (2): 291–295.; Stannard W.A., Chilvers M.A., Rutman A.R. et al. Diagnostic testing of patients suspected of primary ciliary dyskinesia. Am. J. Respir. Crit. Care Med. 2010; 181 (4): 307–314. DOI:10.1164/rccm.200903-0459OC.; Schwabe G.C., Hoffmann K., Loges N.T. et al. Primary ciliary dyskinesia associated with normal axoneme ultrastructure is caused by DNAH11 mutations. Hum. Mutat. 2008; 29 (2): 289–298. DOI:10.1002/humu.20656.; Sturgess J.M., Turner J.A. Ultrastructural pathology of cilia in the immotile cilia syndrome. Perspect. Pediatr. Pathol. 1984; 8 (2): 133–161.; Rutland J., Dewar A., Cox T. et al. Nasal brushing for the study of ciliary ultrastructure. J. Clin. Pathol. 1982; 35 (3): 357–359. DOI:10.1136/jcp.35.3.357.; Pifferi M., Caramella D., Cangiotti A.M. et al. Nasal nitric oxide in atypical primary ciliary dyskinesia. Chest. 2007; 131 (3): 870–873. DOI:10.1378/chest.06-2472.; Hirst R.A., Rutman A., Williams G. et al. Ciliated air-liquid cultures as an aid to diagnostic testing of primary ciliary dyskinesia. Chest. 2010; 138 (6): 1441–1447. DOI:10.1378/chest.10-0175.; Papon J.F., Coste A., Roudot-Thoraval F. et al. A 20-year experience of electron microscopy in the diagnosis of primary ciliary dyskinesia. Eur. Respir. J. 2010; 35 (5): 1057–1063. DOI:10.1183/09031936.00046209.; Olm M.A., Kögler J.E., Macchione M. et al. Primary ciliary dyskinesia: evaluation using cilia beat frequency assessment via spectral analysis of digital microscopy images. J. Appl. Physiol. 2011; 111 (1): 295–302. DOI:10.1152/japplphysiol.00629.2010.; Shoemark A., Dixon M., Corrin B. et al. Twenty-year review of quantitative transmission electron microscopy for the diagnosis of primary ciliary dyskinesia. J. Clin. Pathol. 2012; 65 (3): 267–271. DOI:10.1136/jclinpath-2011-200415.; Munkholm M., Nielsen K.G., Mortensen J. Clinical value of measurement of pulmonary radioaerosol mucociliary clearance in the work up of primary ciliary dyskinesia. EJNMMI Res. 2015; 5: 39. DOI:10.1186/s13550-015-0118-y.; Olin J.T., Burns K., Carson J.L. et al. Diagnostic yield of nasal scrape biopsies in primary ciliary dyskinesia: a multicenter experience. Pediatr. Pulmonol. 2011; 46 (5): 483–488. DOI:10.1002/ppul.21402.; Boon M., Smits A., Cuppens H. et al. Primary ciliary dyskinesia: critical evaluation of clinical symptoms and diagnosis in patients with normal and abnormal ultrastructure. Orphanet. J. Rare Dis. 2014; 9: 11. DOI:10.1186/1750-1172-9-11.; Escudier E., Couprie M., Duriez B. et al. Computer-assisted analysis helps detect inner dynein arm abnormalities. Am. J. Respir. Crit. Care Med. 2002; 166 (9): 1257–1262. DOI:10.1164/rccm.2111070.; Funkhouser W.K., Niethammer M., Carson J.L. et al. A new tool improves diagnostic test performance for transmission em evaluation of axonemal dynein arms. Ultrastruct. Pathol. 2014; 38 (4): 248–255. DOI:10.3109/01913123.2013.815081.; Smith C.M., Hirst R.A., Bankart M.J. et al. Cooling of cilia allows functional analysis of the beat pattern for diagnostic testing. Chest. 2011; 140 (1): 186–190. DOI:10.1378/chest.10-1920.; Shoemark A., Hogg C. Electron tomography of respiratory cilia. Thorax. 2013; 68 (2): 190–191. DOI:10.1136/thoraxjnl-2012-202938.; Wallmeier J., Al-Mutairi D.A., Chen C.T. et al. Mutations in CCNO result in congenital mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat. Genet. 2014; 46 (6): 646–651. DOI:10.1038/ng.2961.; Olbrich H., Häffner K., Kispert A. et al. Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry. Nat. Genet. 2002; 30 (2): 143–144. DOI:10.1038/ng817.; Pennarun G., Escudier E., Chapelin C. et al. Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. Am. J. Hum. Genet. 1999; 65 (6): 1508–1519. DOI:10.1086/302683.; Loges N.T., Olbrich H., Fenske L. et al. DNAI2 mutations cause primary ciliary dyskinesia with defects in the outer dynein arm. Am. J. Hum. Genet. 2008; 83 (5): 547–558. DOI:10.1016/j.ajhg.2008.10.001.; Duriez B., Duquesnoy P., Escudier E. et al. A common variant in combination with a nonsense mutation in a member of the thioredoxin family causes primary ciliary dyskinesia. Proc. Natl. Acad. Sci. USA. 2007; 104 (9): 3336–3341. DOI:10.1073/pnas.0611405104.; Mazor M., Alkrinawi S., Chalifa-Caspi V. et al. Primary ciliary dyskinesia caused by homozygous mutation in DNAL1, encoding dynein light chain 1. Am. J. Hum. Genet. 2011; 88 (5): 599–607. DOI:10.1016/j.ajhg.2011.03.018.; Hjeij R., Onoufriadis A., Watson C.M. et al. CCDC151 mutations cause primary ciliary dyskinesia by disruption of the outer dynein arm docking complex formation. Am. J. Hum. Genet. 2014; 95 (3): 257–274. DOI:10.1016/j.ajhg.2014.08.005.; Onoufriadis A., Paff T., Antony D. et al. Splice-site mutations in the axonemal outer dynein arm docking complex gene CCDC114 cause primary ciliary dyskinesia. Am. J. Hum. Genet. 2013; 92 (1): 88–98. DOI:10.1016/j.ajhg.2012.11.002.; Onoufriadis A., Shoemark A., Munye M.M. et al. Combined exome and whole-genome sequencing identifies mutations in ARMC4 as a cause of primary ciliary dyskinesia with defects in the outer dynein arm. J. Med. Genet. 2014; 51 (1): 61–67. DOI:10.1136/jmedgenet-2013-101938.; Panizzi J.R., Becker-Heck A., Castleman V.H. et al. CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms. Nat. Genet. 2012; 44 (6): 714–719. DOI:10.1038/ng.2277.; Tarkar A., Loges N.T., Slagle C.E. et al. DYX1C1 is required for axonemal dynein assembly and ciliary motility. Nat. Genet. 2013; 45 (9): 995–1003. DOI:10.1038/ng.2707.; Knowles M.R., Ostrowski L.E., Loges N.T. et al. Mutations in SPAG1 cause primary ciliary dyskinesia associated with defective outer and inner dynein arms. Am. J. Hum. Genet. 2013; 93 (4): 711–720. DOI:10.1016/j.ajhg.2013.07.025.; Horani A., Ferkol T.W., Shoseyov D. et al. LRRC6 mutation causes primary ciliary dyskinesia with dynein arm defects. PLoS One. 2013; 8 (3): e59436. DOI:10.1371/journal.pone.0059436.; Omran H., Kobayashi D., Olbrich H. et al. Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature. 2008; 456 (7222): 611–616. DOI:10.1038/nature07471.; Duquesnoy P., Escudier E., Vincensini L. et al. Loss-of-function mutations in the human ortholog of Chlamydomonas reinhardtii ODA7 disrupt dynein arm assembly and cause primary ciliary dyskinesia. Am. J. Hum. Genet. 2009; 85 (6): 890–896. DOI:10.1016/j.ajhg.2009.11.008.; Loges N.T., Olbrich H., Becker-Heck A. et al. Deletions and point mutations of LRRC50 cause primary ciliary dyskinesia due to dynein arm defects. Am. J. Hum. Genet. 2009; 85 (6): 883–889. DOI:10.1016/j.ajhg.2009.10.018.; Austin-Tse C., Halbritter J., Zariwala M.A. et al. Zebrafish ciliopathy screen plus human mutational analysis identifies C21orf59 and CCDC65 defects as causing primary ciliary dyskinesia. Am. J. Hum. Genet. 2013; 93 (4): 672–686. DOI:10.1016/j.ajhg.2013.08.015.; Mitchison H.M., Schmidts M., Loges N.T. et al. Mutations in axonemal dynein assembly factor DNAAF3 cause primary ciliary dyskinesia. Nat. Genet. 2012; 44 (4): 381–389. DOI:10.1038/ng.1106.; Zariwala M.A., Gee H.Y., Kurkowiak M. et al. ZMYND10 is mutated in primary ciliary dyskinesia and interacts with LRRC6. Am. J. Hum. Genet. 2013; 93 (2): 336–345. DOI:10.1016/j.ajhg.2013.06.007.; Horani A., Druley T.E., Zariwala M.A. et al. Whole-exome capture and sequencing identifies HEATR2 mutation as a cause of primary ciliary dyskinesia. Am. J. Hum. Genet. 2012; 91 (4): 685–693. DOI:10.1016/j.ajhg.2012.08.022.; Olbrich H., Schmidts M., Werner C. et al. Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry. Am. J. Hum. Genet. 2012; 91 (4): 672–684. DOI:10.1016/j.ajhg.2012.08.016.; Jeanson L., Copin B., Papon J.-F. et al. RSPH3 mutations cause primary ciliary dyskinesia with central-complex defects and a near absence of radial spokes. Am. J. Hum. Genet. 2015; 97 (1): 153–162. DOI:10.1016/j.ajhg.2015.05.004.; Frommer A., Hjeij R., Loges N.T. et al. Immunofluorescence analysis and diagnosis of primary ciliary dyskinesia with radial spoke defects. Am. J. Respir. Cell. Mol. Biol. 2015; 53 (4): 563–573. DOI:10.1165/rcmb.2014-0483OC.; Wirschell M., Olbrich H., Werner C. et al. The nexin-dynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans. Nat. Genet. 2013; 45 (3): 262–268. DOI:10.1038/ng.2533.; Horani A., Brody S.L., Ferkol T.W. et al. CCDC65 mutation causes primary ciliary dyskinesia with normal ultrastructure and hyperkinetic cilia. PLoS One. 2013; 8 (8): e72299. DOI:10.1371/journal.pone.0072299.; Merveille A.C., Davis E.E., Becker-Heck A. et al. CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs. Nat. Genet. 2011; 43 (1): 72–78. DOI:10.1038/ng.726.; Becker-Heck A., Zohn I.E., Okabe N. et al. The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation. Nat. Genet. 2011; 43 (1): 79–84. DOI:10.1038/ng.727.; Moore A., Escudier E., Roger G. et al. RPGR is mutated in patients with a complex X linked phenotype combining primary ciliary dyskinesia and retinitis pigmentosa. J. Med. Genet. 2006; 43 (4): 326–333. DOI:10.1136/jmg.2005.034868.; Budny B., Chen W., Omran H. et al. A novel X-linked recessive mental retardation syndrome comprising macrocephaly and ciliary dysfunction is allelic to oral-facial-digital type I syndrome. Hum. Genet. 2006; 120 (2): 171–178. DOI:10.1007/s00439-006-0210-5.; Boon M., Wallmeier J., Ma L. et al. MCIDAS mutations result in a mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat. Commun. 2014; 5: 4418. DOI:10.1038/ncomms5418.; Fliegauf M., Olbrich H., Horvath J. et al. Mislocalization of DNAH5 and DNAH9 in respiratory cells from patients with primary ciliary dyskinesia. Am. J. Respir. Crit. Care Med. 2005; 171 (12): 1343–1349. DOI:10.1164/rccm.200411-1583OC.; Hornef N., Olbrich H., Horvath J. et al. DNAH5 mutations are a common cause of primary ciliary dyskinesia with outer dynein arm defects. Am. J. Respir. Crit. Care Med. 2006; 174 (2): 120–126. DOI:10.1164/rccm.200601-084OC.; Knowles M.R., Leigh M.W., Carson J.L. et al. Mutations of DNAH11 in patients with primary ciliary dyskinesia with normal ciliary ultrastructure. Thorax. 2012; 67 (5): 433–441. DOI:10.1136/thoraxjnl-2011-200301.; Dougherty G.W., Loges N.T., Klinkenbusch J.A. et al. DNAH11 localization in the proximal region of respiratory cilia defines distinct outer dynein arm complexes. Am. J. Respir. Cell. Mol. Biol. 2016; 55 (2): 213–224. DOI:10.1165/rcmb.2015-0353OC.; Hjeij R., Lindstrand A., Francis R. et al. ARMC4 mutations cause primary ciliary dyskinesia with randomization of left/right body asymmetry. Am. J. Hum. Genet. 2013; 93 (2): 357–367. DOI:10.1016/j.ajhg.2013.06.009.; Kott E., Duquesnoy P., Copin B. et al. Loss-of-function mutations in LRRC6, a gene essential for proper axonemal assembly of inner and outer dynein arms, cause primary ciliary dyskinesia. Am. J. Hum. Genet. 2012; 91 (5): 958–964. DOI:10.1016/j.ajhg.2012.10.003.; Kurkowiak M., Ziętkiewicz E., Greber A. et al. ZMYND10 – mutation analysis in slavic patients with primary ciliary dyskinesia. PLoS One. 2016; 11 (1): e0148067. DOI:10.1371/journal.pone.0148067.; Diggle C.P., Moore D.J., Mali G. et al. HEATR2 plays a conserved role in assembly of the ciliary motile apparatus. PLoS Genet. 2014; 10 (9): e1004577. DOI:10.1371/journal.pgen.1004577.; Onoufriadis A., Shoemark A., Schmidts M. et al. Targeted NGS gene panel identifies mutations in RSPH1 causing primary ciliary dyskinesia and a common mechanism for ciliary central pair agenesis due to radial spoke defects. Hum. Mol. Genet. 2014; 23 (13): 3362–3374. DOI:10.1093/hmg/ddu046.; Antony D., Becker-Heck A., Zariwala M.A. et al. Mutations in CCDC39 and CCDC40 are the major cause of primary ciliary dyskinesia with axonemal disorganization and absent inner dynein arms. Hum. Mutat. 2013; 34 (3): 462–472. DOI:10.1002/humu.22261.; Zietkiewicz E., Loges N.T., Wittmer M. et al. RPGR mutations might cause reduced orientation of respiratory cilia. Pediatr. Pulmonol. 2013; 48 (4): 352–363. DOI:10.1002/ppul.22632.; Zariwala M.A., Leigh M.W., Ceppa F. et al. Mutations of DNAI1 in primary ciliary dyskinesia: evidence of founder effect in a common mutation. Am. J. Respir. Crit. Care Med. 2006; 174 (8): 858–866. DOI:10.1164/rccm.200603-370OC.; Amirav I., Wallmeier J., Loges N.T. et al. Systematic analysis of CCNO variants in a defined population: implications for clinical phenotype and differential diagnosis. Hum. Mutat. 2016; 37 (4): 396–405. DOI:10.1002/humu.22957.; Richards S., Aziz N., Bale S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015; 17 (5): 405–424. DOI:10.1038/gim.2015.30.; Lucas J.S., Adam E.C., Goggin P.M. et al. Static respiratory cilia associated with mutations in Dnahc11/DNAH11: a mouse model of PCD. Hum. Mutat. 2012; 33 (3): 495–503. DOI:10.1002/humu.22001.; Davis S.D., Ferkol T.W., Rosenfeld M. et al. Clinical features of childhood primary ciliary dyskinesia by genotype and ultrastructural phenotype. Am. J. Respir. Crit. Care Med. 2015; 191 (3): 316–324. DOI:10.1164/rccm.201409-1672OC.; Marshall C.R., Scherer S.W., Zariwala M.A. et al. Whole-exome sequencing and targeted copy number analysis in primary ciliary dyskinesia. G3 (Bethesda). 2015; 5 (8): 1775–1781. DOI:10.1534/g3.115.019851.; Djakow J., Svobodová T., Hrach K. et al. Effectiveness of sequencing selected exons of DNAH5 and DNAI1 in diagnosis of primary ciliary dyskinesia. Pediatr. Pulmonol. 2012; 47 (9): 864–875. DOI:10.1002/ppul.22520.; Failly M., Bartoloni L., Letourneau A. et al. Mutations in DNAH5 account for only 15% of a non-preselected cohort of patients with primary ciliary dyskinesia. J. Med. Genet. 2009; 46 (4): 281–286. DOI:10.1136/jmg.2008.061176.; Blanchon S., Legendre M., Copin B. et al. Delineation of CCDC39/CCDC40 mutation spectrum and associated phenotypes in primary ciliary dyskinesia. J. Med. Genet. 2012; 49 (6): 410–416. DOI:10.1136/jmedgenet-2012-100867.; Claustres M., Kožich V., Dequeker E. et al. Recommendations for reporting results of diagnostic genetic testing (biochemical, cytogenetic and molecular genetic). Eur. J. Hum. Genet. 2014; 22 (2): 160–170. DOI:10.1038/ejhg.2013.125.; Matthijs G., Souche E., Alders M. et al. Guidelines for diagnostic next-generation sequencing. Eur. J. Hum. Genet. 2016; 24 (1): 2–5. DOI:10.1038/ejhg.2015.226.; Omran H., Loges N.T. Immunofluorescence staining of ciliated respiratory epithelial cells. Methods Cell. Biol. 2009; 91: 123–133. DOI:10.1016/S0091-679X(08)91007-4.; Werner C., Lablans M., Ataian M. et al. An international registry for primary ciliary dyskinesia. Eur. Respir. J. 2016; 47 (3): 849–859. DOI:10.1183/13993003.00776-2015.; Rutjes A.W., Reitsma J.B., Coomarasamy A. et al. Evaluation of diagnostic tests when there is no gold standard. A review of methods. Health Technol. Assess. 2007; 11 (50): iii.; https://journal.pulmonology.ru/pulm/article/view/938
-
8Academic Journal
Authors: R. V. Epishev, V. I. Albanova, V. V. Chikin
Source: Vestnik Dermatologii i Venerologii, Vol 0, Iss 3, Pp 53-59 (2017)
Subject Terms: 0301 basic medicine, врожденный буллезный эпидермолиз, пренатальная диагностика, genetic consulting, hereditary epidermolysis bullosa, молекулярная диагностика, Dermatology, трансмиссионная электронная микроскопия, 3. Good health, molecular diagnostics, 03 medical and health sciences, 0302 clinical medicine, immunofluorescence antigen mapping, RL1-803, transmission electron microscopy, prenatal diagnostics, генетическое консультирование, иммунофлюоресцентное антигенное картирование
-
9Academic Journal
Authors: E. E. Bragina, E. A. Arifulin, E. M. Lazareva, M. A. Lelekova, O. L. Kolomiets, A. G. Chogovadze, T. M. Sorokina, L. F. Kurilo, V. Yu. Polyakov, Е. Е. Брагина, Е. А. Арифулин, Е. М. Лазарева, М. А. Лелекова, О. Л. Коломиец, А. Г. Чоговадзе, Т. М. Сорокина, Л. Ф. Курило, В. Ю. Поляков
Contributors: Российский научный фонд (проект № 14–50-00029) и РФФИ (грант № 16-04-01447)
Source: Andrology and Genital Surgery; Том 18, № 1 (2017); 48-61 ; Андрология и генитальная хирургия; Том 18, № 1 (2017); 48-61 ; 2412-8902 ; 2070-9781 ; 10.17650/2070-9781-2017-18-1
Subject Terms: корреляционная электронная микроскопия, sperm count, chromatin condensation, DNA fragmentation, residual cytoplasm, transmission electron microscopy, correlated electron microscopy, содержание сперматозоидов, конденсация хроматина, фрагментация ДНК, остаточная цитоплазма, трансмиссионная электронная микроскопия
File Description: application/pdf
Relation: https://agx.abvpress.ru/jour/article/view/224/211; Zamboni L. Sperm structure and its relevance to infertility. An electron microscopic study. Arch Pathol Lab Med 1992;116(4):325–44.; Gannon J.R., Emery B.R., Jenkins T.G., Carrell D.T. The sperm epigenome: implications for the embryo. Adv Exp Med Biol 2014;791:53–66.; Carrell D.T. Epigenetics of the male gamete. Fertil Steril 2012;97(2):267–74.; Castillo J., Estanyol J.M., Ballescá J.L., Oliva R. Human sperm chromatin epigenetic potential: genomics, proteomics, and male infertility. Asian J Androl 2015;17(4):601–9.; Braun R.E. Packaging paternal chromosomes with protamine. Nature Genetics 2001;28:10–2.; Георгиев Г.П., Ченцов Ю.С. О структуре клеточного ядра(экспериментальное электронно-микроскопическое исследование изолированных ядер). Докл. АН СССР 1960;132:199–202. [Georgiev G.P., Chentsov Yu.S. On the structure of cell nuclei: Experimental electron microscopic investigation of isolated nuclei. Doklady Akademii nauk SSSR = Proceedings of the USSR Academy of Sciences 1960;132:199–202. (In Russ.)].; Kierszenbaum A.L., Tres L.L. The acrosome – acroplaxome – manchette complex and the shaping of the spermatid head. Arch. Histol Cytol 2004;67:271–84.; Green G.R., Balhorn R., Poccia D.L., Hecht N.B. Synthesis and processing of mammalian protamines and transition proteins. Mol Reprod Dev 1994;37:255–63.; Govin J., Caron C., Rousseaux S. et al. Testis-specific histone H3 expression in somatic cells. Trends Biochem Sci 2005;30:357–9.; McPherson S., Longo F.J., Longo FJ. Chromatin structure-function alterations during mammalian spermatogenesis: DNA nicking and repair in elongating spermatids. Eur J Histochem 1993;37:109–28.; Коничев А.С., Севастьянова Г.А. Молекулярная биология. М.: ИЦ «Академия», 2012. [Konichev A.S., Sevastyanova G.A. Molecular biology. Moscow: IC «Akademiya», 2012. (In Russ.)].; Marcon L., Boissonneault G. Transient DNA strand breaks during mouse and human spermiogenesis new insights in stage specificity and link to chromatin remodeling. Biol Reprod 2004;70:910–8. 13.; Oliva R. Protamines and male infertility. Hum Reprod Update 2006;12(4):417–35.; Castillo J., Amaral A., Oliva R. Sperm nuclear proteome and its epigenetic potential. Andrology 2014;2(3):326–38.; Prigent Y., Muller S., Dadoune J.P. Immunoelectron microscopical distribution of histones H2B and H3 and protamines during human spermiogenesis. Mol Hum Reprod 1996;2(12):929–235.; Dadoune J.P. Expression of mammalian spermatozoal nucleoproteins. Microsc Res Tech 2003;61:56–75.; Love C.C., Kenney R. Scrotal heat stress induces altered sperm chromatin structure associated with a decrease in protamine disulfide bonding in the stallion. Biol Reprod 1999;60:615–20.; D’Occhio M.J., Hengstberger K.J., Johnston S.D. Biology of sperm chromatin structure and relationship to male fertility and embryonic survival. Anim Reprod Sci 2007;101(1–2):1–17.; Brykczynska U., Hisano M., Erkek S. et al. Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat Struct Mol Biol 2010;17(6):679–87.; Miller D., Brinkworth M., Iles D. Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics. Reproduction 2010;139(2):287–301.; Hammoud S.S., Nix D.A., Zhang H. et al. Distinctive chromatin in human sperm packages genes for embryo development. Nature 2009;23;460(7254):473–78.; Arpanahi A., Brinkworth M., Iles D. et al. Endonuclease-sensitive regions of human spermatozoal chromatin are highly enriched in promoter and CTCF binding sequences. Genome Res 2009;19:1338–49.; Rousseaux S., Reynoird N., Escoffier E. et al. Epigenetic reprogramming of the male genome during gametogenesis and in the zygote. Reproductive BioMedicine Online 2008;16:492–503.; Ward W.S. Function of sperm chromatin structural elements in fertilization and development. Mol Hum Reprod 2010;16:30–6.; Małgorzata K., Depa-Martynów M., Butowska W. et al. Human spermatozoa ultrastructure assessment in the infertility treatment by assisted reproduction technique. Arch Androl 2007;53(6):297–302.; Бочарова Е.Н., Брагина Е.Е., Гусак Ю.К. Количественное ультраструктурное исследование сперматозоидов человека при нарушениях фертильности. Вестник новых медицинских технологий 2007;24(4):199–201. [Bocharova E.N., Bragina E.E., Gusak Yu.K. Quantitative ultrastructural research of spermatozoon from patients with fertility infringement. Vestnik novikh meditsinskikh tekhnologiy = Journal of New Medical Technologies 2007;24(4):199–201. (In Russ.)]; Talebi A.R., Vahidi S., Aflatoonian A. et al. Cytochemical evaluation of sperm chromatin and DNA integrity in couples with unexplained recurrent spontaneous abortions. Andrologia 2012;44 Suppl 1:462–70.; Hammoud S.S., Nix D.A., Hammoud A.O. et al. Genome-wide analysis identifies changes in histone retention and epigenetic modifications at developmental and imprinted gene loci in the sperm of infertile men. Hum Reprod 2011;26:2558–69.; Арифулин Е.А., Брагина Е.Е., Замятнина В.А. и др. Компактизация ДНК в сперматозоидах человека. I. Динамика изменений компактизации нуклеогистонного и нуклеопротаминного хроматина в дифференцирующихся сперматидах. Онтогенез 2012;(2):143–53. [Arifulin E.A., Bragina E.E., Zamyatnina V.A. et al. Chromatin folding in human spermatozoa. I. Dynamics of chromatin remodeling in differentiating human spermatids. Ontogenez = Russian Journal of Developmental Biology 2012;(2):143–53. (In Russ.)].; Manochantr S., Chiamchanya C., Sobhon P. Relationship between chromatin condensation, DNA integrity and quality of ejaculated spermatozoa from infertile men. Andrologia 2012;44(3):187–99.; Iranpour F.G., Nasr-Esfahani M.H., Valojerdi M.R., al-Taraihi T.M. Chromomycin A3 staining as a useful tool for evaluation of male fertility. J Assist Reprod Genet 2000;17(1):60–6.; Zini A., Gabriel M.S., Zhang X. The histone to protamine ratio in human spermatozoa: comparative study of whole and processed semen. Fertil Steril 2007;87(1):217–19.; Foresta C., Zorzi M., Rossato M., Varotto A. Sperm nuclear instability and staining with aniline blue: abnormal persistence of histones in spermatozoa in infertile men. Int J Androl 1992;15(4):330–7.; Bianchi P.G., Manicardi G.C., Bizzaro D. et al. Effect of deoxyribonucleic acid protamination on fluorochrome staining and in situ nick-translation of murine and human mature spermatozoa. Biol Reprod 1993;49:1083–88.; Montjean D., Zini A., Ravel C. et al. Sperm global DNA methylation level: association with semen parameters and genome integrity. Andrology 2015;3(2):235–40.; Singh N.P., Danner D.B., Tice R.R. et al. Abundant alkali-sensitive sites in DNA of human and mouse sperm. Exp Cell Res 1989;184(2):461–70.; Gorczyca W., Traganos F., Jesionowska H., Darzynkiewicz Z. Presence of DNA strand breaks and increased sensitivity of DNA in situ to denaturation in abnormal human sperm cells: analogy to apoptosis of somatic cells. Exp Cell Res 1993;207(1):202–5.; Varghese A.C., Bragais F.M., Mukhopadhyay D. et al. Human sperm DNA integrity in normal and abnormal semen samples and its correlation with sperm characteristics. Andrologia 2009;41(4):207–15.; Ahmadi A., Ng S.C. Fertilizing ability of DNA-damaged spermatozoa. J Exp Zool 1999;284:696–704.; Benchaib M., Braun V., Lornage J. et al. Sperm DNA fragmentation decreases the pregnancy rate in an assisted reproductive technique. Hum Reprod 2003;18:1023–8.; Seli E., Gargner D.K., Schoolcraft W.B. Extent of nuclear DNA damage in ejaculated spermatozoa impacts on blastocyst development after in vitro fertilization. Fertil Steril 2004;82:378–83.; Simon L., Liu L., Murphy K. et al. Comparative analysis of three sperm DNA damage assays and sperm nuclear protein content in couples undergoing assisted reproduction treatment. Hum Reprod 2014;29(5):904–17.; Hamidi J., Frainais C., Amar E. et al. A double-blinded comparison of in situ TUNEL and aniline blue versus flow cytometry acridine orange for the determination of sperm DNA fragmentation and nucleus decondensation state index. Zygote 2015;23(4):556–62.; Manicardi G.C., Bianchi P.G., Pantano S. et al. Presence of endogenous nicks in DNA of ejaculated human spermatozoa and its relationship to chromomycin A3 accessibility. Biol Reprod 1995;52(4): 864–7.; Simon L., Castillo J., Oliva R., Lewis S.E. Relationships between human sperm protamines, DNA damage and assisted reproduction outcomes. Reprod Biomed Online 2011;23(6):724–34.; Skowronek F. Casanova G. Alciaturi J. et al. DNA sperm damage correlates with nuclear ultrastructural sperm defects in teratozoospermic men. Andrologia 2012;44(1):59–65.; Irvine D.S., Twigg J.P., Gordon E.L. et al. DNA integrity in human spermatozoa: relationships with semen quality. J Androl 2000;21:33–44.; Mantas D., Angelopoulou R., Msaouel P. et al. Evaluation of sperm chromatin quality and screening of Y chromosome microdeletions in Greek males with severe oligozoospermia. Arch Androl 2007;53:5–8.; De Iuliis G.N., Thomson L.K., Mitchell L.A. et al. DNA damage in human spermatozoa is highly correlated with the efficiency of chromatin remodeling and the formation of 8-hydroxy-– deoxyguanosine, a marker of oxidative stress. Biol Reprod 2009;81(3):517–24.; Aoki V.W., Emery B.R., Liu L., Carrell D.T. Protamine levels vary between individual sperm cells of infertile human males and correlate with viability and DNA integrity. J Androl 2006;27:890–8.; Zini A., Bielecki R., Phang D., Zenzes M.T. Correlations between two markers of sperm DNA integrity, DNA denaturation and DNA fragmentation, in fertile and infertile men. Fertil Steril 2001;75:674–7.; Virro M.R., Larson-Cook K.L., Evenson D.P. Sperm chromatin structure assay(scsa) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in vitro fertilization and intracytoplasmic sperm injection cycles. Fertil Steril 2004;81:1289–95.; Wyrobek A.J., Eskenazi B., Young S. et al. Advancing age has differential effects on DNA damage, chromatin integrity, gene mutations, and aneuploidies in sperm. Proc Natl Acad Sci USA 2006;103:9601–6.; Sati L., Ovari L., Bennett D. et al. Double probing of human spermatozoa for persistent histones, surplus cytoplasm, apoptosis and DNA fragmentation. Reprod Biomed Online 2008;16(4):570–9.; Muratori M., Tamburrino L., Marchiani S. et al. Investigation on the Origin of Sperm DNA Fragmentation: Role of Apoptosis, Immaturity and Oxidative Stress. Mol Med 2015;21:109–22.; Брагина Е.Е., Бочарова Е.Н. Количественное электронно-микроскопическое исследование сперматозоидов при диагностике мужского бесплодия. Андрология и генитальная хирургия 2014;(1):41–50. [Bragina Y.Y., Bocharova Y.N. Quantitative electron microscopic examination of sperm for male infertility diagnosis. Andrologiya i genitalnaya khirurgiya = Andrology and Genital Surgery 2014;(1):41–50. (In Russ.)].; Guzick D.S., Overstreet J.W., Factor-Litvak P. et al. National Cooperative Reproductive Medicine Network. Sperm morphology, motility, and concentration in fertile and infertile men. N Engl J Med 2001;345:1388–93.; Sakkas D., Tomlinson M. Assessment of sperm competence. Semin Reprod Med 2000;18:133–9.; Avendano C., Franchi A., Duran H., Oehninger S. DNA fragmentation of normal spermatozoa negatively impacts embryo quality and intracytoplasmic sperm injection outcome. Fertil Steril 2010;94:549–57.; Abu D.A., Franken D.R., Hoffman B., Henkel R. Sequential analysis of sperm functional aspects involved in fertilisation: a pilot study. Andrologia 2012;44(Suppl 1): 175–81.; Boitrelle F., Pagnier M., Athiel Y. et al. A human morphologically normal spermatozoon may have noncondensed chromatin. Andrologia 2015;47(8):879–86.; Lewis J.D., Song Y., de Jong M.E. et al. A walk through vertebrate and invertebrate protamines. Chromosoma 1999;111:473–82.; Corzett M., Mazrimas J., Balhorn R. Protamine 1: protamine 2 stoichiometry in the sperm of eutherian mammals. Mol Reprod Dev 2002;61:519–27.; Ozmen B., Koutlaki N., Youssry M. et al. DNA damage of human spermatozoa in assisted reproduction: origins, diagnosis, impacts and safety. Reprod Biomed Online 2007;14:384–95.; Agarwal A., Said Tamer M. Role of sperm chromatin abnormalities and DNA damage in male infertility. Hum Reprod Update 2003;9:331–45.; Tarozzi N., Bizzaro D., Flamigni C., Borini A. Clinical relevance of sperm DNA damage in assisted reproduction. Reprod Biomed Online 2007;14:746–57.; Manicardi G.C., Bizzaro D., Sakkas D. Basic and Clinical Aspects of Sperm Chromomycin A3 Assay. In: Zini A., Agarwal A.(Ed.). Sperm Chromatin biological and clinical application in male infertility and assisted reproduction. New York: Springer, 2011. Pp. 171–179.; Baccetti B., Bergamini M., Bernieri G. et al. Submicroscopic mathematical evaluation of spermatozoa in assisted reproduction. 4. The bovine fertilization (Notulae seminologicae 10). J Submicrosc Cytol Pathol 1997;29(4):563–82.; Bartoov B., Eltes F., Reichart M. et al. Quantitative ultramorphological analysis of human sperm: fifteen years of experience in the diagnosis and management of male factor infertility. Arch Androl 1999;43(1):13–25.; Zhang Z.H., Mu S.M., Guo M.S. et al. Dynamics of histone H2A, H4 and HS1ph during spermatogenesis with a focus on chromatin condensation and maturity of spermatozoa. Sci Rep 2016;28:25089.; Auger J., Mesbah M., Huber C., Dadoune J.P. Analine blue staining as a marker of sperm chromatin defects associated with different semen characteristics discriminates between proven fertile and suspected infertile men. Int J Androl 1990;13:452–62.; Sakkas D., Urner F., Bianchi P.G. et al. Sperm chromatin anomalies can influence decondensation after intracytoplasmic sperm injection. Hum Reprod 1996;11(4):837–43.; Eid L.N., Lorton S.P., Parrish J.J. Paternal infl uence on S-phase in the fi rst cell cycle of the bovine embryo. Biol Reprod 1994;51:1232–7.; Zalenskaya I.A., Bradbury E.M., Zalensky A.O. Chromatin structure of telomere domain in human sperm. Biochem Biophys Res Comm 2000;279:213–8.; Puri D., Dhawan J., Mishra R.K. The paternal hidden agenda: Epigenetic inheritance through sperm chromatin. Epigenetics 2010;5:386–91.; Ihara M., Meyer-Ficca M.L., Leu N.A. et al. Paternal poly(ADP ribose) metabolism modulates retention of inheritable sperm histones and early embryonic gene expression. PLoS Genet 2014;10: e1004317.; Junca A., Gonzalez Marti B., Tosti E. et al. Sperm nucleus decondensation, hyaluronic acid(HA) binding and oocyte activation capacity: different markers of sperm immaturity? Case reports. J Assist Reprod Genet 2012;29:353–5.; Dattilo M., Cornet D., Amar E. et al. The importance of the one carbon cycle nutritional support in human male fertility: a preliminary clinical report. Reprod Biol Endocrinol 2014;12:71.; Kazerooni T., Asadi N., Jadid L. et al. Evaluation of sperm’s chromatin quality with acridine orange test, chromomycin A3 and aniline blue staining in couples with unexplained recurrent abortion. J Assist Reprod Genet 2009;26:591–6.; Huszar G., Ozenci C.C., Cayli S. et al. Hyaluronic acid binding by human spermatozoa indicates cellular maturity, viability, and unreacted acrosomal status. Fertil Steril 2003;79(3):1616–24.; Huszar G., Sbracia M., Vigue L. et al. Sperm plasma membrane remodeling during spermiogenetic maturation in men: relationship among plasma membrane beta 1,4-galactosyltransferase, cytoplasmic creatine phosphokinase, and creatine phosphokinase isoform ratios. Biol Reprod 1997;56:1020–4.; Evenson D.P., Jost L.K., Marshall D. et al. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod 1999;14(4):1039–49.; Sakkas D., Alvarez J.G. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril 2010;93:1027–36.; Agarwal A., Majzoub A., Esteves S.C. et al. Clinical utility of sperm DNA fragmentation testing: practice recommendations based on clinical scenarios. Transl Androl Urol 2016;5(6):935–50. 85.; Agarwal A., Varghese, A. C., Sharma R.K. Markers of oxidative stress and sperm chromatin integrity. Methods Mol Biol 2009;590:377–402.; Barratt L.R., Aitken R.J., Björndahl L. et al. Sperm DNA: organization, protection and vulnerability: from basic science to clinical applications – a position report. Hum Reprod 2010;25:824–38.; Zini A., Sigman M. Are tests of sperm DNA damage clinically useful? pros and cons. J Androl 2009;30(3):219–29.; Davies M.J., Moore V.M., Willson K.J. et al. Reproductive technologies and the risk of birth defects. New Engl J Med 2012;366:1803–13.; Fernández-Gonzalez R., Moreira P.N., Pérez-Crespo M. et al. Long-term effects of mouse intracytoplasmic sperm injection with DNA-fragmented sperm on health and behavior of adult offspring. Biol Reprod 2008;78:761–72.; Haghpanah T., Salehi M., Ghaffari Novin M. et al. Does sperm DNA fragmentation affect the developmental potential and the incidence of apoptosis following blastomere biopsy? Syst Biol Reprod Med 2016;62(1):1–10.; Zini A., Boman J.M., Belzile E., Ciampi A. Sperm DNA damage is associated with an increased risk of pregnancy loss after IVF and ICSI: systematic review and metaanalysis. Hum Reprod 2008;23:2663–8.; Collins J.A., Barnhart K.T., Schlegel P.N. Do sperm DNA integrity tests predict pregnancy with in vitro fertilization? Fertil Steril 2008;89:823–31.; Robinson L., Gallos I.D., Conner S.J. et al. The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Hum Reprod 2012;27(10):2908–17.; Osman A., Alsomait H., Seshadri S. et al. The effect of sperm DNA fragmentation on live birth rate after IVF or ICSI: a systematic review and meta-analysis. Reprod Biomed Online 2015;30:120–7.; Cissen M., Wely M.V., Scholten I. et al. Measuring sperm DNA fragmentation and clinical outcomes of medically assisted reproduction: a systematic review and meta-analysis. PLoS One 2016;11(11):e0165125.; Showell M.G., Mackenzie-Proctor R., Brown J. et al. Antioxidants for male subfertility. Cochrane Database Syst Rev 2014;(12):CD007411.; Menezo Y. Jr, Russo G., Tosti E. et al. Expression profile of genes coding for DNA repair in human oocytes using pangenomic microarrays, with a special focus on ROS linked decays. J Assist Reprod Genet 2007;24:513–20.; Jungwirth А., Diemer T., Dohle G.R. et al. Guidelines on Male Infertility. European Association of Urology 2015. 42 p.; Jarow J., Sigman M., Kolettis P.N. et al. The optimal evaluation of the infertile male: best practice statement reviewed and validity confirmed 2011. Available at: https://www.auanet.org/education/ guidelines/maleinfertility-d. cfm. 1; Chohan K.R., Griffin J.T., Lafromboise M. et al. Comparison of chromatin assays for DNA fragmentation evaluation in human sperm. J Androl 2006;27(1):53–9.; Smith R., Kaune H., Parodi D. et al. Increased sperm DNA damage in patients with varicocele: relationship with seminal oxidative stress. Hum Reprod 2006;21(4):986–93.; Tesarik J., Greco E., Mendoza C. Late, but not early, paternal effect on human embryo development is related to sperm DNA fragmentation. Hum Reprod 2004;19(3):611–5.; Carrell D.T., Liu L., Peterson C.M. et al. Sperm DNA fragmentation is increased in couples with unexplained recurrent pregnancy loss. Arch Androl 2003;49(1):49–55. 1; Sergerie M., Laforest G., Bujan L. et al. Sperm DNA fragmentation: threshold value in male fertility. Hum Reprod 2005;20(12):3446–51.; Tamburrino L., Marchiani S., Montoya M. et al. Mechanisms and clinical correlates of sperm DNA damage. Asian J Androl 2012;14(1):24–31.; Руднева С.А., Брагина Е.Е., Арифулин Е.А. и др. Фрагментация ДНК в сперматозоидах и ее взаимосвязь с нарушением сперматогенеза. Андрология и генитальная хирургия 2014;(4):26–33. [Rudneva S.A., Bragina E.E., Arifulin E.A. et al. DNA fragmentation in spermatozoa and its relationship with impaired spermatogenesis. Andrologiya i genitalnaya khirurgiya = Andrology and Genital Surgery 2014;(4):26–33. (In Russ.)].; Sakkas D., Moffatt O., Manicardi G.C. et al. Nature of DNA damage in ejaculated human spermatozoa and the possible involvement of apoptosis. Biol Reprod 2002;66:1061–7.; Cho C., Willis W.D., Goulding E.H. et al. Haploinsufficiency of protamine-1 or –2 causes infertility in mice. Nat Genet 2001;8:82–6.; Aoki V.W., Moskovtsev S.I., Willis J. et al. DNA integrity is compromised in protamine-deficient human sperm. J Androl 2005;26:741–8.; Henkel R., Hoogendijk C.F., Bouic P.J., Kruger T.F. TUNEL assay and SCSA determine different aspects of sperm DNA damage. Andrologia 2010;42(5): 305–13.; Sharbatoghli M., Rezazadeh Valojerdi M., Bahadori M.H. et al. The Relationship between Seminal Melatonin with Sperm Parameters, DNA Fragmentation and Nuclear Maturity in Intra-Cytoplasmic Sperm Injection Candidates. Cell J 2015;17(3):547–53.; Shamsi M.B., Kumar R., Dada R. Evaluation of nuclear DNA damage in human spermatozoa in men opting for assisted reproduction. Indian J Med Res 2008;127:1115–23.; Sakkas D., Mariethoz E., Manicardi G. et al. Origin of DNA damage in ejaculated human spermatozoa. Rev Reprod 1999;4:31–7.; Mahfouz R.Z., Sharma R.K., Poenicke K. et al. Evaluation of poly (ADP-ribose) polymerase cleavage (cPARP) in ejaculated human sperm fractions after induction of apoptosis. Fertil Steril 2009;91(5 Suppl): 2210–20.; Venkatesh S., Riyaz A.M., Shamsi M.B. et al. Clinical significance of reactive oxygen species in semen of infertile Indian men. Andrologia 2009;41:251–56.; Moskovtsev S.I., Jarvi K., Mullen J.B. et al. Testicular spermatozoa have statistically significantly lower DNA damage compared with ejaculated spermatozoa in patients with unsuccessful oral antioxidant treatment. Fertil Steril 2010;93(4):1142–6.; Gharagozloo P., Aitken R.J. The role of sperm oxidative stress in male infertility and the significance of oral antioxidant therapy. Hum Reprod 2011;26(7):1628–40.; Menezo Y., Hazout A., Panteix G. et al. Antioxidants to reduce sperm DNA fragmentation: an unexpected adverse effect. Reprod Biomed Online 2007;14:418–21.; Menezo I., Evenson D., Cohen M., Dale B. Effect of Antioxidants on Sperm Genetic Damage. In: E. Baldi, M. Muratori(eds.), Genetic Damage in Human Spermatozoa, Advances in Experimental Medicine and Biology. New York: Springer Science+Business Media, 2014. P. 173–189.; https://agx.abvpress.ru/jour/article/view/224
-
10Academic Journal
Authors: БРАГИНА Е.Е., АРИФУЛИН Е.А., ЛАЗАРЕВА Е.М., ЛЕЛЕКОВА М.А., КОЛОМИЕЦ О.Л., ЧОГОВАДЗЕ А.Г., СОРОКИНА Т.М., КУРИЛО Л.Ф., ПОЛЯКОВ В.Ю.
File Description: text/html
-
11Academic Journal
Authors: I. G. Shirinkina, S. V. Razorenov, R. V. Muradymov, A. N. Petrova, I. G. Brodova, L.A. Yolshina, D. Yu. Rasposienko, E. V. Shorokhov
Source: Journal of alloys and compounds. 2021. Vol. 859. P. 158387 (1-9)
Subject Terms: графено-алюминиевые композиты, 0103 physical sciences, метод динамического канально-углового прессования, динамические характеристики, 02 engineering and technology, сильная пластическая деформация, 0210 nano-technology, трансмиссионная электронная микроскопия, 01 natural sciences
Linked Full TextAccess URL: https://www.sciencedirect.com/science/article/abs/pii/S0925838820347502
https://vital.lib.tsu.ru/vital/access/manager/Repository/koha:000924729 -
12Academic Journal
Source: Андрология и генитальная хирургия.
Subject Terms: ГЕНЕЗИС БЕСПЛОДИЯ,СОДЕРЖАНИЕ СПЕРМАТОЗОИДОВ,КОНДЕНСАЦИЯ ХРОМАТИНА,ФРАГМЕНТАЦИЯ ДНК,ОСТАТОЧНАЯ ЦИТОПЛАЗМА,ТРАНСМИССИОННАЯ ЭЛЕКТРОННАЯ МИКРОСКОПИЯ,КОРРЕЛЯЦИОННАЯ ЭЛЕКТРОННАЯ МИКРОСКОПИЯ,INFERTILITY CAUSES,SPERM COUNT,CHROMATIN CONDENSATION,DNA FRAGMENTATION,RESIDUAL CYTOPLASM,TRANSMISSION ELECTRON MICROSCOPY,CORRELATED ELECTRON MICROSCOPY, 3. Good health
File Description: text/html
-
13Academic Journal
Subject Terms: трансмісійна електронна мікроскопія, vocational training, laboratory workshop, физика, electronic transmission microscopy, фізика, engineering specialties, physics, лабораторный практикум, трансмиссионная электронная микроскопия, лабораторний практикум, фахова підготовка, інженерні спеціальності
File Description: application/pdf
Access URL: https://er.chdtu.edu.ua/handle/ChSTU/2923
-
14Academic Journal
Authors: КЛИМЕНТОВА Е.Г., ЮДИНА Т.Г., КАМЕНЕК Л.К., ВАСИЛЬЕВ Д.А., ФЕОКТИСТОВА Н.А., РАССАДИНА Е.В., ГО ДАНЬЯН
File Description: text/html
-
15Academic Journal
Authors: АСАДУЛАЕВА М.Н., ЛАЗЬКО А.Е.
Subject Terms: ЗАКЛАДКИ БЕДРЕННЫХ КОСТЕЙ ЧЕЛОВЕКА, ТРАНСМИССИОННАЯ ЭЛЕКТРОННАЯ МИКРОСКОПИЯ, ХОНДРОЦИТЫ, РАЗЛИЧНЫЕ ГЕОХИМИЧЕСКИЕ УСЛОВИЯ
File Description: text/html
-
16Academic Journal
Authors: Елагин, В., Бугрова, М., Горшкова, Е., Сергеева, Е., Загайнова, Е.
File Description: text/html
-
17Academic Journal
Subject Terms: СУДЕБНАЯ МЕДИЦИНА, УШИБ СЕРДЦА, ЭКСПЕРИМЕНТ, КРЫСА, ТРАНСМИССИОННАЯ ЭЛЕКТРОННАЯ МИКРОСКОПИЯ, КАРДИОМИОЦИТ, МИТОХОНДРИЯ
File Description: text/html
-
18Academic Journal
Source: Ульяновский медико-биологический журнал.
Subject Terms: 03 medical and health sciences, 0302 clinical medicine, ДЕЛЬТА-ЭНДОТОКСИНЫ B. THURINGIENSIS,δ-ENDOTOXINS OF B. THURINGIENSIS,ТРАНСМИССИОННАЯ ЭЛЕКТРОННАЯ МИКРОСКОПИЯ,TRANSMISSION ELECTRON MICROSCOPY,АНТИБАКТЕРИАЛЬНАЯ АКТИВНОСТЬ CRY-БЕЛКОВ,ANTIBACTERIAL ACTIVITY OF CRY-PROTEINS,УЛЬТРАСТРУКТУРА КЛЕТОК E. COLI,CELL ULTRASTRUCTURE OF E. COLI
File Description: text/html
-
19Academic Journal
Source: Фундаментальные исследования.
Subject Terms: МИНЕРАЛИЗАЦИЯ, ЗАКЛАДКИ ТРУБЧАТЫХ КОСТЕЙ ЧЕЛОВЕКА, ГЕОХИМИЧЕСКИЕ УСЛОВИЯ, ТРАНСМИССИОННАЯ ЭЛЕКТРОННАЯ МИКРОСКОПИЯ
File Description: text/html
-
20Academic Journal
Source: Современные технологии в медицине.
File Description: text/html