Showing 1 - 6 results of 6 for search '"транскутанная сенсибилизация"', query time: 0.53s Refine Results
  1. 1
    Academic Journal

    Contributors: Not specified, Отсутствует

    Source: Current Pediatrics; Том 21, № 5 (2022); 378-382 ; Вопросы современной педиатрии; Том 21, № 5 (2022); 378-382 ; 1682-5535 ; 1682-5527

    File Description: application/pdf

    Relation: https://vsp.spr-journal.ru/jour/article/view/3033/1227; Drucker AM, Wang AR, Li WQ, et al. The Burden of Atopic Dermatitis: Summary of a Report for the National Eczema Asso ciation. J Investig Dermatol. 2017;137(1):26–30. doi: https://doi.org/10.1016/j.jid.2016.07.012; Maliyar K, Sibbald C, Pope E, et al. Diagnosis and Management of Atopic Dermatitis. Adv Skin Wound Care. 2018;31(12):538–550. doi: https://doi.org/10.1097/01.asw.0000547414.38888.8d; Xu X, van Galen LS, Koh MJ, et al. Factors influencing quality of life in children with atopic dermatitis and their caregivers: A cross-sectional study. Sci Rep. 2019;9(1):15990. doi: https://doi.org/10.1038/s41598-019-51129-5; Akdis CA, Akdis M, Bieber T, et al. Diagnosis and treatment of atopic dermatitis in children and adults: European Academy of Allergology and Clinical Immunology/American Academy of Allergy, Asthma and Immunology/PRACTALL consensus report. Allergy. 2006;61(8):969–987. doi: https://doi.org/10.1111/j.1398-9995.2006.01153.x; Abu-Dayyeh I, Abu-Kwaik J, Weimann A, Abdelnour A. Prevalence of IgE-mediated sensitization in patients with suspected food allergic reactions in Jordan. Immun Inflamm Dis. 2020;8(3): 384–392. doi: https://doi.org/10.1002/iid3.320; Kim J, Kim BE, Leung DYM. Pathophysiology of atopic dermatitis: Clinical implications. Allergy Asthma Proc. 2019;40(2):84–92. doi: https://doi.org/10.2500/aap.2019.40.4202; Elias PM, Steinhoff M. “Outside-to-inside” (and now back to “outside”) pathogenic mechanisms in atopic dermatitis. J Invest Dermatol. 2008;128(5):1067–1070. doi: https://doi.org/10.1038/jid.2008.88; Elias PM, Schmuth M. Abnormal skin barrier in the etiopathogenesis of atopic dermatitis. Curr Opin Allergy Clin Immunol. 2009;9(5):437–446. doi: https://doi.org/10.1097/ACI.0b013e32832e7d36; Kubo A, Nagao K, Amagai M. Epidermal barrier dysfunction and cutaneous sensitization in atopic diseases. J Clin Invest. 2012; 122(2):440–447. doi: https://doi.org/10.1172/JCI57416; Irvine AD, McLean WH, Leung DY. Filaggrin mutations associated with skin and allergic diseases. N Engl J Med. 2011;365(14): 1315–1327. doi: https://doi.org/10.1056/NEJMra1011040; Kaufman BP, Guttman-Yassky E, Alexis AF. Atopic dermatitis in diverse racial and ethnic groups-Variations in epidemiology, genetics, clinical presentation and treatment. Exp Dermatol. 2018;27(4):340–357. doi: https://doi.org/10.1111/exd.13514; Bin L, Leung DY. Genetic and epigenetic studies of atopic dermatitis. Allergy Asthma Clin Immunol. 2016;12:52. doi: https://doi.org/10.1186/s13223-016-0158-5; Peng W, Novak N. Pathogenesis of atopic dermatitis. Clin Exp Allergy. 2015;45(3):566–574. doi: https://doi.org/10.1111/cea.12495; Finlay AY, Khan GK. Dermatology Life Quality Index (DLQI) — a simple practical measure for routine clinical use. Clin Exp Dermatol. 1994;19(3):210–216. doi: https://doi.org/10.1111/j.1365-2230.1994.tb01167.x; Altrichter S, Kriehuber E, Moser J, et al. Serum IgE Autoantibodies Target Keratinocytes in Patients with Atopic Dermatitis. J Invest Dermatol. 2008;128(9):2232–2239. doi: https://doi.org/10.1038/jid.2008.80; Tan BB, Weald D, Strickland I, Friedmann PS. Double-blind controlled trial of effect of housedust-mite allergen avoidance on atopic dermatitis. Lancet. 1996;347(8993):15–18. doi: https://doi.org/10.1016/s0140-6736(96)91556-1; McGirt LY, Beck LA. Innate immune defects in atopic dermatitis. J Allergy Clin Immunol. 2006;118(1):202–208. doi: https://doi.org/10.1016/j.jaci.2006.04.033; Nakatsuji T, Chen TH, Two AM, et al. Staphylococcus aureus Exploits Epidermal Barrier Defects in Atopic Dermatitis to Trigger Cytokine Expression. J Invest Dermatol. 2016;136(11):2192–2200. doi: https://doi.org/10.1016/j.jid.2016.05.127; Leung DY, Harbeck R, Bina P, et al. Presence of IgE antibod ies to staphylococcal exotoxins on the skin of patients with atopic dermatitis. Evidence for a new group of allergens. J Clin Invest. 1993;92(3):1374–1380. doi: https://doi.org/10.1172/JCI1167; Hauk PJ, Hamid QA, Chrousos GP, et al. Induction of corticosteroid insensitivity in human PBMCs by microbial superantigens. J Allergy Clin Immunol. 2000;105(4):782–787. doi: https://doi.org/10.1067/mai.2000.105807; Egawa G, Weninger W. Pathogenesis of atopic dermatitis: A short review. Cogent Biology. 2015;1(1):1103459. doi: https://doi.org/10.1080/23312025.2015.1103459; Kezic S, Novak N, Jakasa I, et al. Skin barrier in atopic dermatitis. Fron Biosci (Landmark Ed). 2014;19(3):542–556. doi: https://doi.org/10.2741/4225; Adhikary PP, Tan Z, Page BDG, Hedtrich S. TSLP as druggable target — a silver-lining for atopic diseases? Pharmacol Ther. 2021;217: 107648. doi: https://doi.org/10.1016/j.pharmthera.2020.107648; Kubo A, Nagao K, Yokouchi M, et al. External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers. J Exp Med. 2009;206(13):2937–2946. doi: https://doi.org/10.1084/jem.20091527; Rutz S, Ouyang W. Regulation of Interleukin-10 Expression. In: Regulation of Cytokine Gene Expression in Immunity and Diseases. Ma X, ed. Springer Dordrecht; 2016. pp. 89–116. doi: https://doi.org/10.1007/978-94-024-0921-5_5; Rinaldi G. The Itch-Scratch Cycle: A Review of the Mechanisms. Dermatol Pract Concept. 2019;9(2):90–97. doi: https://doi.org/10.5826/dpc.0902a03; Davidson WF, Leung DYM, Beck LA, et al. Report from the National Institute of Allergy and Infectious Diseases workshop on “Atopic dermatitis and the atopic march: Mechanisms and interventions”. J Allergy Clin Immunol. 2019;143(3):894–913. doi: https://doi.org/10.1016/j.jaci.2019.01.003; Szczepanowska J, Reich A, Szepietowski JC. Emollients improve treatment results with topical corticosteroids in childhood atopic dermatitis: a randomized comparative study. Pediatr Allergy Immunol. 2008;19(7):614–618. doi: https://doi.org/10.1111/j.1399-3038.2007.00706.x; Eckert RL, Rorke EA. Molecular biology of keratinocyte differentiation. Environ Health Perspect. 1989;80:109–116. doi: https://doi.org/10.1289/ehp.8980109; Siddiqi KS, ur Rahman A, Tajuddin, Husen A. Properties of Zinc Oxide Nanoparticles and Their Activity Against Microbes. Nanoscale Res Lett. 2018;13(1):141. doi: https://doi.org/10.1186/s11671-018-2532-3; Chew SWT, Zeng Y, Cui M, et al. In Situ Generation of Zinc Oxide Nanobushes on Microneedles as Antibacterial Coating. SLAS Technol. 2018;24(2):181–187. doi: https://doi.org/10.1177/2472630318812350; Clement JL, Jarrett PS. Antibacterial Silver. Met Based Drugs. 1994;1(5-6):467–482. doi: https://doi.org/10.1155/MBD.1994.467; Wisniewski JA, Agrawal R, Minnicozzi S, et al. Sensitization to food and inhalant allergens in relation to age and wheeze among children with atopic dermatitis. Clin Exp Allergy. 2013;43(10): 1160–1170. doi: https://doi.org/10.1111/cea.12169

  2. 2
    Academic Journal

    Source: Bulletin of Siberian Medicine; Том 20, № 4 (2021); 180-192 ; Бюллетень сибирской медицины; Том 20, № 4 (2021); 180-192 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2021-20-4

    File Description: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/4595/3116; NIAID-Sponsored Expert Panel, Boyce J.A., Assa’ad A. et al. Guidelines for the diagnosis and management of food allergy in the United States: report of the NIAID-sponsored expert panel. J. Allergy Clin. Immunol. 2010; 126 (6): S1–58. DOI:10.1016/j.jaci.2010.10.007.; Sampson H.A., Aceves S., Bock S.A. et al. Food allergy: a practice parameter update-2014. J. Allergy Clin. Immunol. 2014; 134 (5): 1016–1025.e43. DOI:10.1016/j.jaci.2014.05.013.; Eigenmann P.A., Beyer K., Lack G. et al. Are avoidance diets still warranted in children with atopic dermatitis? Pediatr. Allergy Immunol. 2020; 31 (1): 19–26. DOI:10.1111/pai.13104.; Warren C.M. et al. Epidemiology and burden of food allergy. Curr. Allergy Asthma Rep. 2020; 20 (2): 6. DOI:10.1007/s11882-020-0898-7.; Hill D.J., Hosking C.S., de Benedictis F.M. et al. Confirmation of the association between high levels of immunoglobulin E food sensitization and eczema in infancy: an international study. Clin. Exp. Allergy. 2008; 38 (1): 161–168. DOI:10.1111/j.1365-2222.2007.02861.x.; Eigenmann P.A., Calza A.M. Diagnosis of IgE-mediated food allergy among Swiss children with atopic dermatitis. Pediatr. Allergy Immunol. 2000; 11 (2): 95–100. DOI:10.1034/j.1399-3038.2000.00071.x.; Eigenmann P.A., Sicherer S.H., Borkowski T.A. et al. Prevalence of IgE-mediated food allergy among children with atopic dermatitis. Pediatrics. 1998; 101 (3): e8. DOI:10.1542/peds.101.3.e8.; Sampson H.A., McCaskill C.C. Food hypersensitivity and atopic dermatitis: evaluation of 113 patients. J. Pediatr. 1985; 107 (5): 669–675. DOI:10.1016/s0022-3476(85)80390-5.; Lack G. et al. Epidemiologic risks for food allergy. J. Allergy Clin. Immunol. 2008;121 (6): 1331–1336. DOI:10.1016/j. jaci.2008.04.032.; Yu R., Igawa K., Handa Y., Munetsugu T., Satoh T., Yokozeki H. Basophils and mast cells are crucial for reactions due to epicutaneous sensitization to ovalbumin. Exp. Dermatol. 2017; 26 (9): 778–784. DOI:10.1111/exd.13279.; Hsieh K.Y., Tsai C.C., Wu C.H., Lin R.H. Epicutaneous exposure to protein antigen and food allergy. Clin. Exp. Allergy. 2003; 33 (8): 1067–1075. DOI:10.1046/j.1365-2222.2003.01724.x.; Strid J., Hourihane J., Kimber I. et al. Disruption of the stratum corneum allows potent epicutaneous immunization with protein antigens resulting in a dominant systemic Th2 response. Eur. J. Immunol. 2004; 34 (8): 2100–2109. DOI:10.1002/eji.200425196.; Benor S., Shani N., Etkin S., Bondar E., Kivity S., Langier S. Epicutaneous exposure to peanut oil induces systemic and pulmonary allergic reaction in mice. Int. Arch. Allergy Immunol. 2019; 179 (3): 187–191. DOI:10.1159/000497382.; Glocova I., Brück J., Geisel J., Müller-Hermelink E., Widmaier K., Yazdi A.S. et al. Induction of skin-pathogenic Th22 cells by epicutaneous allergen exposure. J. Dermatol. Sci. 2017; 87 (3): 268–277. DOI:10.1016/j.jdermsci.2017.06.006.; Koshiba R., Oba T., Fuwa A., Arai K., Sasaki N., Kitazawa G. et al. Aggravation of food allergy by skin sensitization via systemic Th2 enhancement. Int. Arch. Allergy Immunol. 2021; 182 (4): 292–300. DOI:10.1159/000511239.; Murakami H., Ogawa T., Takafuta A., Yano E., Zaima N., Moriyama T. Percutaneous sensitization to soybean proteins is attenuated by oral tolerance. J. Nutr. Sci. Vitaminol. (Tokyo). 2018; 64 (6): 483–486. DOI:10.3177/jnsv.64.483.; Strid J., Hourihane J., Kimber I. et al. Epicutaneous exposure to peanut protein prevents oral tolerance and enhances allergic sensitization. Clin. Exp. Allergy. 2005; 35 (6): 757–766. DOI:10.1111/j.1365-2222.2005.02260.x.; Iwamoto H., Matsubara T., Okamoto T., Matsumoto T., Yoshikawa M., Takeda Y. Ingestion of casein hydrolysate induces oral tolerance and suppresses subsequent epicutaneous sensitization and development of anaphylaxis reaction to casein in mice. Int. Arch. Allergy Immunol. 2019; 179 (3): 221–230. DOI:10.1159/000497410.; Oji V., Eckl K.M., Aufenvenne K., Natebus M., Tarinski T., Ackermann K. et al. Loss of corneodesmosin leads to severe skin barrier defect, pruritus, and atopy: unraveling the peeling skin disease. Am. J. Hum. Genet. 2010; 87 (2): 274–281. DOI:10.1016/j.ajhg.2010.07.005.; Drislane C., Irvine A.D. The role of filaggrin in atopic dermatitis and allergic disease. Ann. Allergy Asthma Immunol. 2020; 124 (1): 36–43. DOI:10.1016/j.anai.2019.10.008.; Irvine A.D. et al. Filaggrin mutations associated with skin and allergic diseases. N. Engl. J. Med. 2011; 365 (14): 1315–1327. DOI:10.1056/NEJMra1011040.; Van den Oord R.A., Sheikh A. Filaggrin gene defects and risk of developing allergic sensitisation and allergic disorders: systematic review and meta-analysis. BMJ. 2009; 339: b2433. DOI:10.1136/bmj. b2433.; Dębińska A. et al. Filaggrin loss-of-function mutations as a predictor for atopic eczema, allergic sensitization and eczema-associated asthma in Polish children population. Adv. Clin. Exp. Med. 2017; 26 (6): 991–998. DOI:10.17219/acem/61430.; Brown S.J. et al. Loss-of-function variants in the filaggrin gene are a significant risk factor for peanut allergy. J. Allergy Clin. Immunol. 2011; 127 (3): 661–667. DOI:10.1016/j.jaci.2011.01.031.; Brough H.A. et al. Peanut allergy: Effect of environmental peanut exposure in children with filaggrin loss-of-function mutations. J. Allergy Clin. Immunol. 2014; 134 (4): 867–875. e1. DOI:10.1016/j.jaci.2014.08.011.; Marenholz I. et al. Genome-wide association study identifies the SERPINB gene cluster as a susceptibility locus for food allergy. Nat. Commun. 2017; 8 (1): 1056. DOI:10.1038/s41467-017-01220-0.; Chan A. et al. Filaggrin mutations increase allergic airway disease in childhood and adolescence through interactions with eczema and aeroallergen sensitization. Clin. Exp. Allergy. 2018; 48 (2):147–155. DOI:10.1111/cea.13077.; Simpson A. et al. Early-life inhalant allergen exposure, filaggrin genotype and the development of sensitization from infancy to adolescence. J. Allergy Clin. Immunol. 2020; 145 (3): 993–1001. DOI:10.1016/j.jaci.2019.08.041.; Cole C., Kroboth K., Schurch N.J., Sandilands A., Sherstnev A., O’Regan G.M. et al. Filaggrin-stratified transcriptomic analysis of pediatric skin identifies mechanistic pathways in patients with atopic dermatitis. J. Allergy Clin. Immunol. 2014; 134 (1): 82–91. DOI:10.1016/j.jaci.2014.04.021.; Czarnowicki T., Krueger J.G., Guttman-Yassky E. Novel concepts of prevention and treatment of atopic dermatitis through barrier and immune manipulations with implications for the atopic march. J. Allergy Clin. Immunol. 2017; 139 (6): 1723– 1734. DOI:10.1016/j.jaci.2017.04.004.; Kelleher M.M. et al. Skin barrier impairment at birth predicts food allergy at 2 years of age. J. Allergy Clin. Immunol. 2016; 137 (4): 1111–1116.e8. DOI:10.1016/j.jaci.2015.12.1312.; Leung D.Y. New insights into atopic dermatitis: role of skin barrier and immune dysregulation. Allergol. Int. 2013; 62 (2): 151–161. DOI:10.2332/allergolint.13-RAI-0564.; De Benedetto A., Rafaels N.M., McGirt L.Y., Ivanov A.I., Georas S.N., Cheadle C. et al. Tight junction defects in patients with atopic dermatitis. J. Allergy Clin. Immunol. 2011; 127 (3):773–86e1-7. DOI:10.1016/j.jaci.2010.10.018.; Furuse M., Hata M., Furuse K. et al. Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J. Cell Biol. 2002; 156 (6): 1099–1111. DOI:10.1083/jcb.200110122.; Brandner J.M., Zorn-Kruppa M., Yoshida T. et al. Epidermal tight junctions in health and disease. Tissue Barriers. 2015; 3 (1–2): e974451. DOI:10.4161/21688370.2014.974451.; Cork M.J., Robinson D.A., Vasilopoulos Y. et al. New perspectives on epidermal barrier dysfunction in atopic dermatitis: gene-environment interactions. J. Allergy Clin. Immunol. 2006; 118 (1): 3–21. DOI:10.1016/j.jaci.2006.04.042.; Vasilopoulos Y., Cork M.J., Murphy R., Williams H.C., Robinson D.A, Duff G.W. et al. Genetic association between an AACC insertion in the 3′UTR of the stratum corneum chymotryptic enzyme gene and atopic dermatitis. J. Invest. Dermatol. 2004; 123 (1): 62–66. DOI:10.1111/j.0022-202X.2004.22708.x.; Walley A.J. Chavanas S., Moffatt M.F., Esnouf R.M., Ubhi B., Lawrence R. et al. Gene polymorphism in Netherton and common atopic disease. Nat. Genet. 2001; 29 (2): 175–178. DOI:10.1038/ng728.; Kato A., Fukai K., Oiso N. et al. Association of SPINK5 gene polymorphisms with atopic dermatitis in the Japanese population. Br. J. Dermatol. 2003; 148 (4): 665–669. DOI:10.1046/j.1365-2133.2003.05243.x.; Lan C.C., Tu H.P., Wu C.S. et al. Distinct SPINK5 and IL31 polymorphisms are associated with atopic eczema and non-atopic hand dermatitis in Taiwanese nursing population. Exp. Dermatol. 2011; 20 (12): 975–979. DOI:10.1111/j.1600-0625.2011.01374.x.; Zhao L.P., Di Z., Zhang L. et al. Association of SPINK5 gene polymorphisms with atopic dermatitis in Northeast China. J. Eur. Acad. Dermatol. Venereol. 2012; 26 (5): 572–577. DOI:10.1111/j.1468-3083.2011.04120.x.; Badertscher K., Bronnimann M., Karlen S., Braathen L.R., Yawalkar N. Mast cell chymase is increased in atopic dermatitis but not in psoriasis. Arch. Dermatol. Res. 2005; 296. (10): 503–506. DOI:10.1007/s00403-005-0542-3.; Tomimori Y., Muto T., Fukami H., Saito K., Horikawa C., Tsuruoka N. et al. Chymase participates in chronic dermatitis by inducing eosinophil infiltration. Lab. Invest. 2002; 82 (6): 789–794. DOI:10.1097/01.lab.0000018827.78602.f4.; Mao X.Q., Shirakawa T., Enomoto T., Shimazu S., Dake Y., Kitano H. et al. Association between variants of mast cell chymase gene and serum IgE levels in eczema. Hum. Hered. 1998; 48 (1): 38–41. DOI:10.1159/000022782.; Shimura S., Takai T., Iida H., Maruyama N., Ochi H., Kamijo S. et al. Epicutaneous allergic sensitization by cooperation between allergen protease activity and mechanical skin barrier damage in mice. J. Invest. Dermatol. 2016; 136 (7): 1408– 1417. DOI:10.1016/j.jid.2016.02.810.; Deleuran M., Ellingsen A.R., Paludan K., Schou C., Thestrup-Pedersen K. Purified Der p1 and p2 patch tests in patients with atopic dermatitis: evidence for both allergenicity and proteolytic irritancy. Acta Derm. Venereol. 1998; 78(4): 241–243. DOI:10.1080/000155598441783.; Leyva-Castillo J.-M., McGurk A., Raif Geha M.D. Allergic skin inflammation and S. aureus skin colonization are mutually reinforcing. Clinical Immunology. 2020; 218: 108511. DOI:10.1016/j.clim.2020.108511.; Laouini D., Kawamoto S., Yalcindag A., Bryce P., Mizoguchi E., Oettgen H. et al. Epicutaneous sensitization with superantigen induces allergic skin inflammation. J. Allergy Clin. Immunol. 2003; 112 (5): 981–987. DOI:10.1016/j.jaci.2003.07.007.; Skov L., Olsen J.V., Giorno R., Schlievert P.M., Baadsgaard O., Leung D.Y. Application of Staphylococcal enterotoxin B on normal and atopic skin induces up-regulation of T cells by a superantigen-mediated mechanism. J. Allergy Clin. Immunol. 2000; 105 (4): 820–826. DOI:10.1067/mai.2000.105524.; Meylan P., Lang C., Mermoud S., Johannsen A., Norrenberg S., Hohl D. et al. Skin colonization by Staphylococcus aureus precedes the clinical diagnosis of atopic dermatitis in infancy. J. Invest. Dermatol. 2017; 137 (12): 2497–2504. DOI:10.1016/j.jid.2017.07.834.; Ganeshan K., Neilsen C.V., Hadsaitong A., Schleimer R.P., Luo X., Bryce P.J. Impairing oral tolerance promotes allergy and anaphylaxis: a new murine food allergy model. J. Allergy Clin. Immunol. 2009; 123 (1): 231–238.e4. DOI:10.1016/j.jaci.2008.10.011.; Forbes-Blom E., Camberis M., Prout M., Tang S.C., Le Gros G. Staphylococcal-derived superantigen enhances peanut induced Th2 responses in the skin. Clin. Exp. Allergy. 2012; 42 (2): 305–314. DOI:10.1111/j.1365-2222.2011.03861.x.; Jones A.L., Curran-Everett D., Leung D.Y.M. Food allergy is associated with Staphylococcus aureus colonization in children with atopic dermatitis. J. Allergy Clin. Immunol. 2016; 137 (4): 1247–1248.e3. DOI:10.1016/j.jaci.2016.01.010.; Tsilochristou O., du Toit G., Sayre P.H. et al. Association of Staphylococcus aureus colonization with food allergy occurs independently of eczema severity. J. Allergy Clin. Immunol. 2019; 144 (2): 494–503. DOI:10.1016/j.jaci.2019.04.025.; Leyva-Castillo J.M., McGurk A., Geha M.D.R. Allergic skin inflammation and S. aureus skin colonization are mutually reinforcing. Clin. Immunol. 2020; 218: 108511. DOI:10.1016/j.clim.2020.108511.; Trendelenburg V. et al. Hen’s egg allergen in house and bed dust is significantly increased after hen’s egg consumption – A pilot study. Allergy. 2018; 73 (1): 261–264. DOI:10.1111/all.13303.; Foong R.X., Brough H. The role of environmental exposure to peanut in the development of clinical allergy to peanut. Clin. Exp. Allergy. 2017; 47 (10): 1232–1238. DOI:10.1111/cea.12992.; Bertelsen R.J. et al. Food allergens in mattress dust in Norwegian homes – a potentially important source of allergen exposure. Clin. Exp. Allergy. 2014; 44 (1): 142–149. DOI:10.1111/cea.12231.; Boussault P. et al. Oatsensitization in children with atopic dermatitis: prevalence, risks and associated factors. Allergy. 2007; 62 (11): 1251–1256. DOI:10.1111/j.1398-9995.2007.01527.x.; Lack G. et al. Factors associated wit the development of peanut allergy in childhood. N. Engl. J. Med. 2003; 348 (11): 977–985. DOI:10.1056/NEJMoa013536.; Lina T. et al. Epicutaneous sensitization with ovalbumin, staphylococcal enterotoxin B and vitamin D analogue induces atopic dermatitis in mice. J. Cent. South Univ. (Med. Sci.) 2017; 42 (9): 1023–1029. DOI:10.11817/j.issn.1672-7347.2017.09.005.; Noti M. et al. Exposure to food allergens through inflamed skin promotes intestinal food allergy through the thymic stromal lymphopoietin-basophil axis. J. Allergy Clin. Immunol. 2014; 133 (5): 1390–1399. DOI:10.1016/j.jaci.2014.01.021.; Kawasaki A. et al. Skin inflammation exacerbates food allergy symptoms in epicutaneously sensitized mice. Allergy. 2018; 73 (6): 1313–1321. DOI:10.1111/all.13404.; Palomares O., Akdis M., Martin-Fontecha M., Akdis C.A. Mechanisms of immune regulation in allergic diseases: the role of regulatory T and B cells. Immunol. Rev. 2017; 278: 219–236. DOI:10.1111/imr.12555.; Holm J., Willumsen N., Wurtzen P.A., Christensen L.H., Lund K. Facilitated antigen presentation and its inhibition by blocking IgG antibodies depends on IgE repertoire complexity. J. Allergy Clin. Immunol. 2011; 127 (4): 1029–1037. DOI:10.1016/j.jaci.2011.01.062.; Turcanu V., Stephens A.C., Chan S.M., Rance F., Lack G. IgE-mediated facilitated antigen presentation underlies higher immune responses in peanut allergy. Allergy. 2010; 65 (10): 1274–1281. DOI:10.1111/j.1398-9995.2010.02367.x.; Bieber T. Interleukin-13: Targeting an underestimated cytokine in atopic dermatitis. Allergy. 2020; 75 (1): 54–62. DOI:10.1111/all.13954.; Brough H.A., Nadeau K.C., Sindher S.B., Alkotob S.S., Chan S., Bahnson H.T. et al. Epicutaneous sensitization in the development of food allergy: What is the evidence and how can this be prevented? Allergy. 2020; 75 (9): 2185–2205. DOI:10.1111/all.14304.; Hsieh K.Y. et al. Epicutaneous exposure to protein antigen and food allergy. Clin. Exp. Allergy. 2003; 33 (8): 1067–1075. DOI:10.1046/j.1365-2222.2003.01724.x.; Hussain M. et al. Basophil-derived IL-4 promotes epicutaneous antigen sensitization concomitant with the development of food allergy. J. Allergy Clin. Immunol. 2018; 141 (1): 223– 234.e5 DOI:10.1016/j.jaci.2017.02.035.; Sano Y., Masuda K., Tamagawa-Mineoka R., Matsunaka H., Murakami Y., Yamashita R. et al. Thymic stromal lymphopoietin expression is increased in the horny layer of patients with atopic dermatitis. Clin. Exp. Immunol. 2013; 171 (3): 330–337. DOI:10.1111/cei.12021.; Al-Shami A., Spolski R., Kelly J., Keane-Myers A., Leonard W.J. A role for TSLP in the development of inflammation in an asthma model. J. Exp. Med. 2005; 202 (6): 829– 839. DOI:10.1084/jem.20050199.; He R., Oyoshi M.K., Garibyan L., Kumar L., Ziegler S.F., Geha R.S. TSLP acts on infiltrating effector T cells to drive allergic skin inflammation. Proc. Nat. Acad. Sci. USA. 2008; 105 (33): 11875–11880. DOI:10.1073/pnas.0801532105.; Zhou B., Comeau M.R., De S.T., Liggitt H.D., Dahl M.E., Lewis D.B. et al. Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nature Immunol. 2005; 6 (10): 1047–1053. DOI:10.1038/ni1247.; Noti M., Kim B.S., Siracusa M.C., Rak G.D., Kubo M., Moghaddam A.E. et al. Exposure to food allergens through inflamed skin promotes intestinal food allergy through the thymic stromal lymphopoietin-basophil axis. J. Allergy Clin. Immunol. 2014; 133: 1390–1399 e1–6. DOI:10.1016/j.jaci.2014.01.021.; Bogiatzi S.I., Fernandez I., Bichet J.C., Marloie-Provost M.A., Volpe E., Sastre X. et al. Cutting edge: Proinflammatory and Th2 cytokines synergize to induce thymic stromal lymphopoietin production by human skin keratinocytes. J. Immunol. 2007; 178 (3): 3373–3377. DOI:10.4049/jimmunol.178.6.3373.; Oyoshi M.K., Larson R.P., Ziegler S.F., Geha R.S. Mechanical injury polarizes skin dendritic cells to elicit a T(H)2 response by inducing cutaneous thymic stromal lymphopoietin expression. J. Allergy Clin. Immunol. 2010; 126 (5): 976–984. DOI:10.1016/j.jaci.2010.08.041.; Tamari M. et al. The optimal age for epicutaneous sensitization following tape-stripping in BALB/c mice. Allergology International. 2018; 67 (3): 380–387. DOI:10.1016/j.alit.2018.01.003.; Cayrol C., Girard J.P. IL-33: an alarmin cytokine with crucial roles in innate immunity, inflammation and allergy. Curr. Opin. Immunol. 2014; 31: 31–37. DOI:10.1016/j.coi.2014.09.004.; Savinko T., Matikainen S., Saarialho-Kere U., Lehto M., Wang G., Lehtimaki S. et al. IL-33 and ST2 in atopic dermatitis: expression profiles and modulation by triggering factors. J. Invest. Dermatol. 2012; 132 (5): 1392–1400. DOI:10.1038/jid.2011.446.; Tamagawa-Mineoka R., Okuzawa Y., Masuda K., Katoh N. Increased serum levels of interleukin 33 in patients with atopic dermatitis. J. Am. Acad. Dermatol. 2014; 70 (5): 882–888. DOI:10.1016/j.jaad.2014.01.867.; Komai-Koma M., Brombacher F., Pushparaj P.N., Arendse B., McSharry C., Alexander J. et al. Interleukin-33 amplifies IgE synthesis and triggers mast cell degranulation via interleukin-4 in naive mice. Allergy. 2012; 67 (9): 1118–1126. DOI:10.1111/j.1398-9995.2012.02859.x.; Muto T., Fukuoka A., Kabashima K., Ziegler S.F., Nakanishi K., Matsushita K. et al. The role of basophils and proallergic cytokines, TSLP and IL-33, in cutaneously sensitized food allergy. Int. Immunol. 2014; 26 (10): 539–549. DOI:10.1093/intimm/dxu058.; Galand C. et al. IL-33 promotes food anaphylaxis in epicutaneously sensitized mice by targeting mast cells. J. Allergy Clin Immunol. 2016; 138 (5): 1356–1366. DOI:10.1016/j.jaci.2016.03.056.; Walker M.T. et al. Mechanism for initiation of food allergy: Dependence on skin barrier mutations and environmental allergen costimulation. J. Allergy Clin. Immunol. 2018; 141 (5): 1711–1725.e9. DOI:10.1016/j.jaci.2018.02.003.; Chinthrajah S., Cao S., Liu C., Lyu S.C., Sindher S.B., Long A. et al. Phase 2a randomized, placebo-controlled study of anti-IL-33 in peanut allergy. JCI Insight. 2019; 4 (22): e131347. DOI:10.1172/jci.insight.131347.; Chen Y.L., Gutowska-Owsiak D., Hardman C.S., Westmoreland M., MacKenzie T., Cifuentes L. et al. Proof-of-concept clinical trial of etokimab shows a key role for IL-33 in atopic dermatitis pathogenesis. Sci. Transl. Med. 2019; (515): eaax2945. DOI:10.1126/scitranslmed.aax2945.; Mitamura Y. et al. IL-24: A new player in the pathogenesis of pro-inflammatory and allergic skin diseases. Allergology International. 2020; 69 (3): 405–411. DOI:10.1016/j.alit.2019.12.003.; Vickery B.P., Burks A.W. Immunotherapy in the treatment of food allergy: focus on oral tolerance. Curr. Opin. Allergy Clin. Immunol. 2009; 9 (4): 364–370. DOI:10.1097/ACI.0b013e32832d9add.; Pearson R.M., Casey L.M., Hughes K.R., Miller S.D., Shea L.D. In vivo reprogramming of immune cells: Technologies for induction of antigen-specific tolerance. Adv. Drug. Deliver Rev. 2017; 114: 240–255. DOI:10.1016/j.addr.2017.04.005.; Strobel S., Ferguson A. Immune responses to fed protein antigens in mice. 3. Systemic tolerance or priming is related to age at which antigen is first encountered. Pediatr. Res. 1984; 18: 588–594. DOI:10.1203/00006450-198407000-00004.; Matsubara T., Iwamoto H., Nakazato Y., Okamoto T., Ehara T., Izumi H., Takeda Y. Ingestion of partially hydrolyzed whey protein suppresses epicutaneous sensitization to β-lactoglobulin in mice. Pediatr. Allergy Immunol. 2018 ;29 (4): 433–440. DOI:10.1111/pai.12887.; Murakami H., Ogawa T., Takafuta A., Yano E., Zaima N., Moriyama T. Percutaneous sensitization to soybean proteins is attenuated by oral tolerance. J. Nutr. Sci. Vitaminol. (Tokyo). 2018; 64 (6): 483–486. DOI:10.3177/jnsv.64.483. PMID: 30606971.; Levy Y., Broides A., Segal N., Danon Y.L. Peanut and tree nut allergy in children: role of peanut snacks in Israel? Allergy. 2003; 58 (11): 1206–1207. DOI:10.1046/j.1398-9995.2003.00307.x.; Du Toit G., Katz Y., Sasieni P., Mesher D., Maleki S.J., Fisher H.R. et al. Early consumption of peanuts in infancy is associated with a low prevalence of peanut allergy. J. Allergy Clin. Immunol. 2008; 122 (5): 984–991. DOI:10.1016/j.jaci.2008.08.039.; Katz Y., Rajuan N., Goldberg M.R., Eisenberg E., Heyman E., Cohen A. et al: Early exposure to cow’s milk protein is protective against IgE-mediated cow’s milk protein allergy. J. Allergy Clin. Immunol. 2010; 126 (1): 77.e1–82. DOI:10.1016/j.jaci.2010.04.020.; Muraro A., Halken S., Arshad S.H., Beyer K., Dubois A.E.J., Du Toit G. et al. EAACI food allergy and anaphylaxis guidelines. Primary prevention of food allergy. Allergy. 2014; 69 (5): 590–601. DOI:10.1111/all.12398.; Horimukai K. et al. Application of moisturizer to neonates prevents development of atopic dermatitis. J. Allergy Clin. Immunol. 2014; 134 (4): 824–830. DOI:10.1016/j.jaci.2014.07.060.; Simpson E.L., Chalmers J.R., Hanifin J.M., Thomas K.S., Cork M.J., McLean W.H. et al. Emollient enhancement of the skin barrier from birth offers effective atopic dermatitis prevention. J. Allergy Clin. Immunol. 2014; 134 (4): 818–823. DOI:10.1016/j.jaci.2014.08.005.; Chalmers J.R., Haines R.H., Bradshaw L.E., Montgomery A.A., Thomas K.S., Brown S.J. et al. Daily emollient during infancy for prevention of eczema: the BEEP randomised controlled trial. Lancet. 2020; 395 (10228): 962– 972. DOI:10.1016/S0140-6736(19)32984-8.; Dissanayake E., Yumi Tanib Y., Nagaic K. et al. Skin care and synbiotics for prevention of atopic dermatitis or food allergy in newborn infants: A 2 × 2 factorial, randomized, non-treatment controlled trial. Int. Arch. Allergy Immunol. 2019; 180 (3): 202–211. DOI:10.1159/000501636.; https://bulletin.tomsk.ru/jour/article/view/4595

  3. 3
  4. 4
    Academic Journal

    Source: Pediatric pharmacology; Том 18, № 1 (2021); 8-16 ; Педиатрическая фармакология; Том 18, № 1 (2021); 8-16 ; 2500-3089 ; 1727-5776

    File Description: application/pdf

    Relation: https://www.pedpharma.ru/jour/article/view/1942/1212; Lyons JJ, Milner JD, Stone KD. Atopic dermatitis in children: clini cal features, pathophysiology, and treatment. Immunol Allergy Cin North Am. 2015;35(1):161–183. doi:10.1016/j.iac.2014.09.008; Bylund S, von Kobyletzki LB, Svalstedt M, Svensson Å. Prevalence and Incidence of Atopic Dermatitis: A Systematic Review. Acta Derm Venereol. 2020;100(12):adv00160. doi:10.2340/00015555-3510; Larsen FS, Hanifin JM. Epidemiology of atopic dermatitis. Immunol Allergy Clin North Am. 2002;22(1): 1–24. doi:10.1016/s0889-8561(03)00066-3; Nutten S. Atopic dermatitis: global epidemiology and risk factors. Ann Nutr Metab. 2015;66(Suppl 1):8–16. doi:10.1159/000370220; Kim J, Kim BE, Leung DYM. Pathophysiology of atopic dermatitis: Clinical implications. Allergy Asthma Proc. 2019;40(2):84–92. doi:10.2500/aap.2019.40.4202; Dharmage SC, Lowe AJ, Matheson MC, et al. Atopic dermatitis and the atopic march revisited. Allergy. 2013;69(1):17–27. doi:10.1111/all.12268; Kapoor R, Menon C, Hoffstad O, et al. The prevalence of atopic triad in children with physician-confirmed atopic dermatitis. J Am Acad Dermatol. 2008;58(1):68–73. doi:10.1016/j.jaad.2007.06.041; Zheng T, Yu J, Oh MH, Zhu Z. The atopic march: progression from atopic dermatitis to allergic rhinitis and asthma. Allergy Asthma Immunol Res. 2011;3(2):67–73. doi:10.4168/aair.2011.3.2.67; Du Toit G, Roberts G, Sayre PH, et al. Randomized Trial of Peanut Consumption in Infants at Risk for Peanut Allergy. New Engl J Med. 2015;372(9):803–813. doi:10.1056/nejmoa1414850; Lack G. Update on risk factors for food allergy. J Allergy Clin Immunol. 2012;129(5):1187–1197. doi:10.1016/j.jaci.2012.02.036; Kelleher MM, Dunn-Galvin A, Gray C, et al. Skin barrier impairment at birth predicts food allergy at 2 years of age. J Allergy Clin Immunol. 2016;137(4):1111–1116.e8; Kulig M, Bergmann R, Klettke U, et al. Natural course of sensitization to food and inhalant allergens during the first 6 years of life. J Allergy Clin Immunol. 1999;103(6):1173–1179. doi:10.1016/s0091-6749(99)70195-8; Kulig M, Bergmann R, Tacke U, et al. Long-lasting sensitization to food during the first two years precedes allergic airway disease. Pediatr Allergy Immunol. 1998;9(2),61–67. doi:10.1111/j.1399-3038.1998.tb00305.x.; Capristo C, Romei I, Boner AL. Environmental prevention in atopic eczema dermatitis syndrome (AEDS) and asthma: avoidance of indoor allergens. Allergy. 2004;59(78):53–60. doi:10.1111/j.1398-9995.2004.00652.x; Мурашкин Н.Н., Макарова С.Г., Григорьев С.Г. и др. Профилактика развития транскутанной сенсибилизации к белкам коровьего молока при атопическом дерматите у детей первого года жизни: когортное исследование // Вопросы современной педиатрии. — 2020. — Т. 19. — № 6. — С. 538–544. doi:10.15690/vsp.v19i6.2152; Hanifin JM, Rajka G. Diagnostic features of atopic dermatitis. Acta Derm Venereol Suppl (Stockh). 1980;92(Suppl):44–47. doi:10.2340/ 00015555924447; Hanifin JM, Thurston M, Omoto M, et al. The eczema area and severity index (EASI): assessment of reliability in atopic dermatitis. Exp Dermatol. 2001;10(1):11–18. doi:10.1034/j.1600-0625.2001.100102.x; Leshem YA, Hajar T, Hanifin JM, Simpson EL. What the Eczema Area and Severity Index score tells us about the severity of atopic dermatitis: an interpretability study. Br J Dermatol. 2015;172(5): 1353–1357. doi:10.1111/bjd.13662; Атопический дерматит у детей: клинические рекомендации. — Союз педиатров России; Российская ассоциация аллергологов и клинических иммунологов; Российское общество дерматовенерологов и косметологов; 2016. — 60 с.; Miyaji Y, Yang L, Yamamoto-Hanada K, et al. Earlier aggressive treatment to shorten the duration of eczema in infants resulted in fewer food allergies at 2 years of age. J Allergy Clin Immunol Pract. 2020;8(5):1721–1724.e6. doi:10.1016/j.jaip.2019.11.036; https://www.pedpharma.ru/jour/article/view/1942

  5. 5
    Academic Journal

    Source: Pediatric pharmacology; Том 16, № 4 (2019); 241-247 ; Педиатрическая фармакология; Том 16, № 4 (2019); 241-247 ; 2500-3089 ; 1727-5776

    File Description: application/pdf

    Relation: https://www.pedpharma.ru/jour/article/view/1766/1093; Oranges T, Dini V, Romanelli M. Skin physiology of the neonate and infant: clinical implications. Adv Wound Care (New Rochelle). 2015;4(10):587–595. doi:10.1089/wound.2015.0642.; Fluhr JW, Darlenski R, Lachmann N, et al. Infant epidermal skin physiology: adaptation after birth. Br J Dermatol. 2012;166(3):483– 490. doi:10.1111/j.1365-2133.2011.10659.x.; Fernandes JD, Machado MC, Oliveira ZN. Children and newborn skin care and prevention. An Bras Dermatol. 2018;86(1):102–110. doi:10.1590/s0365-05962011000100014.; Nepalia A, Mathur N, Singh A. An overview of the harmful additives and contaminants possibly present in baby cosmetic products. Int J Chem Sci. 2017;15(2):127.; Sharma S, Hani Y. Anatomy, Skin (Integument), Epidermis. 2017;8:141.; Boer M, Duchnik E, Maleszka R, Marchlewicz M. Structural and biophysical characteristics of human skin in maintaining proper epidermal barrier function. Postepy Dermatol Alergol. 2016;33(1):1–5. doi:10.5114/pdia.2015.48037.; Kubo A, Nagao K, Amagai M. Epidermal barrier dysfunction and cutaneous sensitization in atopic diseases. J Clin Invest. 2012;122(2):440–447. doi:10.1172/JCI57416.; Evans NJ, Rutter N. Development of the epidermis in the newborn. Biol Neonate. 1986;49(2):74–80. doi:10.1159/000242513.; Kalia YN, Nonato LB, Lund CH, Guy RH. Development of skin barrier function in premature infants. J Invest Dermatol. 1998;111(2):320–326. doi:10.1046/j.1523-1747.1998.00289.x.; Telofski LS, Morello AP, Mack Correa MC, Stamatas GN. The infant skin barrier: can we preserve, protect, and enhance the barrier? Dermatol Res Pract. 2012;2012:198789. doi:10.1155/2012/198789.; Stamatas GN, Nikolovski J, Mack MC, Kollias N. Infant skin physiology and development during the first years of life: a review of recent findings based on in vivo studies. Int J Cosmet Sci. 2011;33(1):17–24. doi:10.1111/j.1468-2494.2010.00611.x.; Fluhr JW, Darlenski R, Taieb A, et al. Functional skin adaptation in infancy — almost complete but not fully competent. Exp Dermatol. 2010;19(6):483–492. doi:10.1111/j.1600-0625.2009.01023.x.; Pickens WL, Warner RR, Boissy YL, et al. Characterization of vernix caseosa: water content, morphology, and elemental analysis. J Invest Dermatol. 2000;115(5):875–881. doi:10.1046/j.15231747.2000.00134.x.; Visscher MO, Narendran V, Pickens WL, et al. Vernix caseosa in neonatal adaptation. J Perinatol. 2005;25(7):440–446. doi:10.1038/sj.jp.7211305.; Darmstadt GL, Mao-Qiang M, Chi E, et al. Impact of topical oils on the skin barrier: possible implications for neonatal health in developing countries. Acta Paediatr. 2002;91(5):546–554. doi:10.1080/080352502753711678.; Stamatas GN, Nikolovski J, Luedtke MA, et al. Infant skin microstructure assessed in vivo differs from adult skin in organization and at the cellular level. Pediatr Dermatol. 2010;27(2):125–131. doi:10.1111/j.1525-1470.2009.00973.x.; Sriram G, Bigliardi PL, Bigliardi-Qi M. Fibroblast heterogeneity and its implications for engineering organotypic skin models in vitro. Eur J Cell Biol. 2015;94(11):483–512. doi:10.1016/j.ejcb.2015.08.001.; Blume-Peytavi U, Hauser M, Stamatas GN, et al. Skin care practices for newborns and infants: review of the clinical evidence for best practices. Pediatr Dermatol. 2012;29(1):1–14. doi:10.1111/j.1525-1470.2011.01594.x.; Giusti F, Martella A, Bertoni L, Seidenari S. Skin barrier, hydration, and pH of the skinof infants under 2 years of age. Pediatr Dermatol. 2001;18(2):93–96. doi:10.1046/j.15251470.2001.018002093.x.; Visscher MO, Adam R, Brink S, Odio M. Newborn infant skin: physiology, development, and care. Clin Dermatol, 2015, 33: 271– 280. Clin Dermatol. 2015;33(3):271–280. doi:10.1016/j.clindermatol.2014.12.003.; Hoeger PH, Schreiner V, Klaassen IA, et al. Epidermal barrier lipids in human vernix caseosa: corresponding ceramide pattern in vernix and fetal skin. Br J Dermatol. 2002;146(2):194–201. doi:10.1046/j.1365-2133.2002.04584.x.; Nikolovski J, Stamatas GN, Kollias N, Wiegand BC. Barrier function and water-holding and transport properties of infant stratum corneum are different from adult and continue to develop through the first year of life. J Invest Dermatol. 2008;128(7):1728–1736. doi:10.1038/sj.jid.5701239.; Visscher M. Infant skin research. In: Second annual joint meeting of the International Society of Bioengineering and the skin and the International Society for Skin Imaging. Philadelphia, PA; 2005.; Agache P, Blanc D, Barrand C, Laurent R. Sebum levels during the first year of life. Br J Dermatol. 1980;103(6):643–649. doi:10.1111/j.1365-2133.1980.tb01686.x.; Hoeger PH, Enzmann CC. Skin physiology of the neonate and young infant: a prospective study of functional skin parameters during early Pediatr Dermatol. 2002;19(3):256–262. doi:10.1046/j.1525-1470.2002.00082.x.; Houben E, Hachem JP, De Paepe K, Rogiers V. Epidermal ceramidase activity regulates epidermal desquamation via stratum corneum acidification. Skin Pharmacol Physiol. 2008;21(2):111–118. doi:10.1159/000114872.; Puhvel SM, Reisner RM, Sakamoto M. Analysis of lipid composition of isolated human sebaceous gland homogenates after incubation with cutaneous bacteria. Thin-layer chromatography. J Invest Dermatol. 1975;64(6):406–411. doi:10.1111/1523-1747.ep12512337.; Mauro T, Holleran WM, Grayson S, et al. Barrier recovery is impeded at neutral pH, independent of ionic effects: implications for extracellular lipid processing. Arch Dermatol Res. 1998;290(4):215– 222. doi:10.1007/s004030050293.; Matousek JL, Campbell KL. A comparative review of cutaneous pH. Vet Dermatol. 2002;13(6):293–300. doi:10.1046/j.13653164.2002.00312.x.; Scientific dossier Mustela: new discoveries on infant skin from the first days of life [Publié le 4 avr. 2014. Available from: https://fr.slideshare.net/MustelaMedical/dossier-scientifique-nouvellesdcouvertes-sur-la-peau-saine-du-bb.; Kelleher MM, O’Carroll M, Gallagher A, et al. Newborn transepidermal water loss values: a reference dataset. Pediatr Dermatol. 2013,30(6):712–716. doi:10.1111/pde.12106.; Levin J, Maibach H. The correlation between transepidermal water loss and percutaneous absorption: an overview. J Control Release. 2005;103(2):291–299. doi:10.1016/j.jconrel.2004.11.035.; Wilson DR, Maibach HI. Transepidermal water loss in vivo. Premature and term infants. Biol Neonate. 1980;37(3–4):180– 185. doi:10.1159/000241271.; Sedin G, Hammarlund K, Nilsson GE, et al. Water transport through the skin of newborn infants. Ups J Med Sci. 1981;86(1):27– 31. doi:10.3109/03009738109179207.; Saijo S, Tagami H. Dry skin of newborn infants: functional analysis of the stratum corneum. Pediatr Dermatol. 1991;8(2):155–159. doi:10.1111/j.1525-1470.1991.tb00308.x.; Yosipovitch G, Maayan-Metzger A, Merlob P, Sirota L. Skin barrier properties in different body areas in neonates. Pediatrics. 2000;106(1 Pt 1):105–108. doi:10.1542/peds.106.1.105.; Rutter N, Hull D. Water loss from the skin of term and preterm babies. Arch Dis Child. 1979;54(11):858–868. doi:10.1136/adc.54.11.858.; Hirao T, Terui T, Takeuchi I, et al. Ratio of immature cornified envelopes does not correlate with parakeratosis in inflammatory skin disorders. Exp Dermatol. 2003;12(5):591–601. doi:10.1034/j.1600-0625.2003.00007.x.; Jiang YJ, Lu B, Crumrine D, et al. IL-1alpha accelerates stratum corneum formation and improves permeability barrier homeostasis during murine fetal development. J Dermatol Sci. 2009;54(2):88– 98. doi:10.1016/j.jdermsci.2009.01.001.; Kusari A, Han AM, Virgen CA, et al. Evidence-based skin care in preterm infants. Pediatr Dermatol. 2019;36(1):16–23. doi:10.1111/pde.13725.; Darmstadt GL, Saha SK, Ahmed AS, et al. Effect of skin barrier therapy on neonatal mortality rates in preterm infants in Bangladesh: a randomized, controlled, clinical trial. Pediatrics. 2008;121(3):522–529. doi:10.1542/peds.2007-0213.; Bharathi M, Sundaram V, Kumar P. Skin barrier therapy and neonatal mortality in preterm infants. Pediatrics. 2009;123(2):e355; author reply e355-6. doi:10.1542/peds.2008-2307.; Darmstadt GL, Badrawi N, Law PA, et al. Topically applied sunflower seed oil prevents invasive bacterial infections in preterm infants in Egypt: a randomized, controlled clinical trial. Pediatr Infect Dis J. 2004;23(8):719–725.; Al-Kharfy T, Ba-Abbad R, Hadi A, Al-Faleh K. Use of topical petroleum jelly for prevention of sepsis in very low-birthweight infants: a prospective, randomised controlled trial. Paediatr Int Child Health. 2014;34(3):194–197. doi:10.1179/2046905514Y.0000000117.; Campbell JR, Zaccaria E, Baker CJ. Systemic candidiasis in extremely low birth weight infants receiving topical petrolatum ointment for skin care: a case-control study. Pediatrics. 2000;105(5):1041–1045. doi:10.1542/peds.105.5.1041.; Conner JM, Soll RF, Edwards WH. Topical ointment for preventing infection in preterm infants. Cochrane Database Syst Rev. 2004;(1):CD001150. doi:10.1002/14651858.CD001150.pub2.; Kanti V, Grande C, Stroux A, et al. Influence of sunflower seed oil on the skin barrier function of preterm infants: a randomized controlled trial. Dermatology. 2014;229(3):230–239. doi:10.1159/000363380.; Kiechl-Kohlendorfer U, Berger C, Inzinger R. The effect of daily treatment with an olive oil/lanolin emollient on skin integrity in preterm infants: a randomized controlled trial. Pediatr Dermatol. 2008;25(2):174–178. doi:10.1111/j.1525-1470.2008.00627.x.; Bonifaz A, Rojas R, Tirado-Sánchez A, et al. Superficial mycoses associated with diaper dermatitis. Mycopathologia. 2016;181(9– 10):671–679. doi:10.1007/s11046-016-0020-9.; Blume-Peytavi U, Kanti V. Prevention and treatment of diaper dermatitis. Pediatr Dermatol. 2018;35 Suppl 1:s19–s23. doi:10.1111/pde.13495.; Simpson EL, Berry TM, Brown PA, Hanifin JM. A pilot study of emollient therapy for the primary prevention of atopic dermatitis. J Am Acad Dermatol. 2010;63(4):587–593. doi:10.1016/j.jaad.2009.11.011.; Simpson EL, Chalmers JR, Hanifin JM, et al. Emollient enhancement of the skin barrier from birth offers effective atopic dermatitis prevention. J Allergy Clin Immunol. 2014;134(4):818–823. doi:10.1016/j.jaci.2014.08.005.; Wollenberg A, Szepietowski J, Taieb A, Ring J. Corrigendum: consensus-based European guidelines for treatment of atopic eczema (atopic dermatitis) in adults and children: part I. J Eur Acad Dermatol Venereol. 2019;33(7):1436. doi:10.1111/jdv.15719.; LePoidevin LM, Lee DE, Shi VY. A comparison of international management guidelines for atopic dermatitis. Pediatr Dermatol. 2019;36(1):36–65. doi:10.1111/pde.13678.; Koppes SA, Charles F, Lammers L, et al. Efficacy of a cream containing ceramides and magnesium in the treatment of mild to moderate atopic dermatitis: a randomized, double-blind, emollientand hydrocortisone-controlled trial. Acta Derm Venereol. 2016;96(7):948–953. doi:10.2340/00015555-2395.; https://www.pedpharma.ru/jour/article/view/1766

  6. 6
    Academic Journal

    Source: Pediatric pharmacology; Том 16, № 4 (2019); 234-240 ; Педиатрическая фармакология; Том 16, № 4 (2019); 234-240 ; 2500-3089 ; 1727-5776

    File Description: application/pdf

    Relation: https://www.pedpharma.ru/jour/article/view/1765/1092; Sicherer SH, Allen K, Lack G, et al. Critical issues in food allergy: A National Academies Consensus Report. Pediatrics. 2017;140(2). pii: e20170194. doi:10.1542/peds.2017-0194.; Lodge CJ, Allen KJ, Lowe AJ, et al. Overview of evidence in prevention and aetiology of food allergy: a review of systematic reviews. Int J Environ Res Public Health. 2013;10(11):5781–5806. doi:10.3390/ijerph10115781.; Sicherer SH, Sampson HA. Food allergy: epidemiology, pathogenesis, diagnosis, and treatment. J Allergy Clin Immunol. 2014;133(2):291–307; quiz 308. doi:10.1016/j.jaci.2013.11.020.; Jones SM, Burks AW. Food Allergy. N Engl J Med. 2017;377(12):1168–1176. doi:10.1056/NEJMcp1611971.; Sicherer SH. Epidemiology of food allergy. J Allergy Clin Immunol. 2011;127(3):594–602. doi:10.1016/j.jaci.2010.11.044.; Soller L, Ben-Shoshan M, Harrington DW, et al. Overall prevalence of self-reported food allergy in Canada. J Allergy Clin Immunol. 2012;130(4):986–988. doi:10.1016/j.jaci.2012.06.029.; Nwaru BI, Hickstein L, Panesar SS, et al. The epidemiology of food allergy in Europe: a systematic review and meta-analysis. Allergy. 2014;69(1):62–75. doi:10.1111/all.12305.; Loh W, Tang ML. The epidemiology of food allergy in the global context. Int J Environ Res Public Health. 2018;15(9). pii: E2043. doi:10.3390/ijerph15092043.; McGowan EC, Keet CA. Prevalence of self-reported food allergy in the National Health and Nutrition Examination Survey (NHANES) 2007–2010. J Allergy Clin Immunol. 2013;132(5):1216–1219.e5. doi:10.1016/j.jaci.2013.07.018.; Gupta RS, Warren CM, Smith BM, et al. The public health impact of parent-reported childhood food allergies in the United States. Pediatrics. 2018;142(6). pii: e20181235. doi:10.1542/peds.2018–1235.; Loke P, Koplin J, Beck C, et al. Statewide prevalence of school children at risk of anaphylaxis and rate of adrenaline autoinjector activation in Victorian government schools, Australia. J Allergy Clin Immunol. 2016;138(2):529–535. doi:10.1016/j.jaci.2016.02.014.; Hu Y, Chen J, Li H. Comparison of food allergy prevalence among Chinese infants in Chongqing, 2009 versus 1999. Pediatr Int. 2010;52(5):820–824. doi:10.1111/j.1442-200X.2010.03166.x.; Yu W, Freeland DM, Nadeau KC. Food allergy: immune mechanisms, diagnosis and immunotherapy. Nat Rev Immunol. 2016;16(12):751–765. doi:10.1038/nri.2016.111.; Mansoor DK, Sharma HP. Clinical presentations of food allergy. Pediatr Clin North Am. 2011;58(2):315–326, ix. doi:10.1016/j.pcl.2011.02.008.; Bock SA, Muñoz-Furlong A, Sampson HA. Further fatalities caused by anaphylactic reactions to food, 2001–2006. J Allergy Clin Immunol. 2007;119(4):1016–1018. doi:10.1016/j.jaci.2006.12.622.; Colver AF, Nevantaus H, Macdougall CF, Cant AJ. Severe foodallergic reactions in children across the UK and Ireland, 1998– 2000. Acta Paediatr. 2007;94(6):689–695. doi:10.1111/j.16512227.2005.tb01966.x.; Berin MC, Shreffler WG. Mechanisms underlying induction of tolerance to foods. Immunol Allergy Clin North Am. 2016;36(1):87– 102. doi:10.1016/j.iac.2015.08.002.; Worbs T, Bode U, Yan S, et al. Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells. J Exp Med. 2006;203(3):519–527. doi:10.1084/jem.20052016.; Sampson HA, O’Mahony L, Burks AW, et al. Mechanisms of food allergy. J Allergy Clin Immunol. 2018;141(1):11–19. doi:10.1016/j. jaci.2017.11.005.; Brown SJ, Asai Y, Cordell HJ, et al. Loss-of-function variants in the filaggrin gene are a significant risk factor for peanut allergy. J Allergy Clin Immunol. 2011;127(3):661–667. doi:10.1016/j.jaci.2011.01.031.; Пищевая аллергия. Клинические рекомендации [интернет]. — М.: Союз педиатров России, 2018. Доступно по: http://www.pediatr-russia.ru/sites/default/files/file/kr_pa2018.pdf. Ссылка активна на: 12.04.2019.; Posthumus J, James HR, Lane CJ, et al. Initial description of pork-cat syndrome in the United States. J Allergy Clin Immunol. 2013;131(3):923–925. doi:10.1016/j.jaci.2012.12.665.; Brough HA, Liu AH, Sicherer S, et al. Atopic dermatitis increases the effect of exposure to peanut antigen in dust on peanut sensitization and likely peanut allergy. J Allergy Clin Immunol. 2015;135(1):164–170. doi:10.1016/j.jaci.2014.10.007.; Amagai, Masayuki. The three musketeers of the epidermal barrier and atopic diseases. Cornea, 2014, November. 2014;33:S9. doi:10.1097/ICO.0000000000000231.; Beck LA, Leung DY. Allergen sensitization through the skin induces systemic allergic responses. J Allergy Clin Immunol. 2000;106(5 Suppl):S258–263.; Bertelsen RJ, Faeste CK, Granum B, et al. Food allergens in mattress dust in Norwegian homes — a potentially important source of allergen exposure. Clin Exp Allergy. 2014;44(1):142–149. doi:10.1111/cea.12231.; Izadi N, Luu M, Ong PY, Tam JS. The role of skin barrier in the pathogenesis of food allergy. Children (Basel). 2015;2(3):382–402. doi:10.3390/children2030382.; Kubo A, Nagao K, Amagai M. Epidermal barrier dysfunction and cutaneous sensitization in atopic diseases. J Clin Invest. 2012;122(2):440–447. doi:10.1172/JCI57416.; Berin MC, Shreffler WG. T(h)2 adjuvants: implications for food allergy. J Allergy Clin Immunol. 2008;121(6):1311–1320; quiz 1321–1322. doi:10.1016/j.jaci.2008.04.023.; Valenta R, Hochwallner H, Linhart B, Pahr S. Food allergies: the basics. Gastroenterology. 2015;148(6):1120–1131.e4. doi:10.1053/j.gastro.2015.02.006.; Lexmond WS, Goettel JA, Sallis BF, et al. Spontaneous food allergy in Was-/mice occurs independent of FcεRI-mediated mast cell activation. Allergy. 2017;72(12):1916–1924. doi:10.1111/all.13219.; Clark RA, Chong B, Mirchandani N, Mirchandani N. The vast majority of CLA+ T cells are resident in normal skin. J Immunol. 2006;176(7):4431–4439. doi:10.4049/jimmunol.176.7.4431.; Lipscomb MF, Masten BJ. Dendritic cells: immune regulators in health and disease. Physiol Rev. 2002;82(1):97–130. doi:10.1152/physrev.00023.2001.; Craiglow BG. Ichthyosis in the newborn. Semin Perinatol. 2013;37(1):26–31. doi:10.1053/j.semperi.2012.11.001.; Oji V, Tadini G, Akiyama M, et al. Revised nomenclature and classification of inherited ichthyoses: results of the First Ichthyosis Consensus Conference in Sorèze 2009. J Am Acad Dermatol. 2010;63(4):607–641. doi:10.1016/j.jaad.2009.11.020.; Wickett RR, Visscher MO. Structure and function of the epidermal barrier. Am J Infect Control. 2006;34(10, Suppl):S98–S110. doi:10.1016/j.ajic.2006.05.295.; Egawa G, Kabashima K. Barrier dysfunction in the skin allergy. Allergol Int. 2018;67(1):3–11. doi:10.1016/j.alit.2017.10.002.; Akiyama M. FLG mutations in ichthyosis vulgaris and atopic eczema: spectrum of mutations and population genetics. Br J Dermatol. 2010;162(3):472–477. doi:10.1111/j.13652133.2009.09582.x.; Takeichi T, Okuno Y, Saito C, et al. Congenital ichthyosis and recurrent eczema associated with a novel ALOXE3 mutation. Acta Derm Venereol. 2017;97(4):532–533. doi:10.2340/00015555-2549.; Bitoun E, Chavanas S, Irvine AD, et al. Netherton syndrome: disease expression and spectrum of SPINK5 mutations in 21 families. J Invest Dermatol. 2002;118(2):352–361. doi:10.1046/j.15231747.2002.01603.x.; Deraison C, Bonnart C, Lopez F, et al. LEKTI fragments specifically inhibit KLK5, KLK7, and KLK14 and control desquamation through a pH-dependent interaction. Mol Biol Cell. 2007;18(9):3607–3619. doi:10.1091/mbc.e07-02-0124.; Briot A, Deraison C, Lacroix M, et al. Kallikrein 5 induces atopic dermatitis-like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome. J Exp Med. 2009;206(5):1135–1147. doi:10.1084/jem.20082242.; Oji V, Eckl KM, Aufenvenne K, et al. Loss of corneodesmosin leads to severe skin barrier defect, pruritus, and atopy: unraveling the peeling skin disease. Am J Hum Genet. 2010;87(2):274–281. doi:10.1016/j.ajhg.2010.07.005.; Israeli S, Zamir H, Sarig O, et al. Inflammatory peeling skin syndrome caused by a mutation in CDSN encoding corneodesmosin. J Invest Dermatol. 2011;131(3):779–781. doi:10.1038/jid.2010.363.; Samuelov L, Sarig O, Harmon RM, et al. Desmoglein 1 deficiency results in severe dermatitis, multiple allergies and metabolic wasting. Nat Genet. 2013;45(10):1244–1248. doi:10.1038/ng.2739.; McAleer MA, Pohler E, Smith FJ, et al. Severe dermatitis, multiple allergies, and metabolic wasting syndrome caused by a novel mutation in the N-terminal plakin domain of desmoplakin. J Allergy Clin Immunol. 2015;136(5):1268–1276. doi:10.1016/j.jaci.2015.05.002.; Fine JD, Eady RA, Bauer EA, et al. The classification of inherited epidermolysis bullosa (EB): Report of the Third International Consensus Meeting on Diagnosis and Classification of EB. J Am Acad Dermatol. 2008;58(6):931–950. doi:10.1016/j.jaad.2008.02.004.; Shinkuma S. Dystrophic epidermolysis bullosa: a review. Clin Cosmet Investig Dermatol. 2015;8:275–284. doi:10.2147/CCID.S54681.; Макарова С.Г., Намазова-Баранова Л.С., Мурашкин Н.Н., и др. Пищевая аллергия у детей с врожденным буллезным эпидермолизом. Результаты собственного наблюдательного исследования //Вестник Российской академии медицинских наук. — 2018. — Т.73. — №1. — C. 49–58. doi:10.15690/vramn847.; https://www.pedpharma.ru/jour/article/view/1765