-
1Academic Journal
Συγγραφείς: V. A. Akulinin, S. S. Stepanov, A. V. Mytsik, A. S. Stepanov, V. S. Rasumovsky, В. А. Акулинин, С. С. Степанов, А. В. Мыцик, А. С. Степанов, В. С. Разумовский
Πηγή: General Reanimatology; Том 12, № 4 (2016); 24-36 ; Общая реаниматология; Том 12, № 4 (2016); 24-36 ; 2411-7110 ; 1813-9779 ; 10.15360/1813-9779-2016-4
Θεματικοί όροι: нейропептид Y, man, neocortex, inhibitory interneurons, calbindin D28k, neuropeptide Y, человек, неокортекс, тормозные интернейроны, кальбиндин D28k
Περιγραφή αρχείου: application/pdf
Relation: https://www.reanimatology.com/rmt/article/view/1537/1044; https://www.reanimatology.com/rmt/article/view/1537/1045; Аврущенко М.Ш., Острова И.В., Волков А.В. Постреанимационные изменения экспрессии глиального нейротрофического фактора (GDNF): взаимосвязь с повреждением клеток Пуркинье мозжечка (экспериментальное исследование). Общая реаниматология. 2014; 10 (5): 59-68. http://dx.doi.org/10.15360/1813-9779-2014-5-59-68; Заржецкий Ю.В., Мороз В.В., Волков А.В. Влияния иммуноактивных препаратов на функциональное восстановление мозга и стероидные гормоны в постреанимационном периоде. Общая реаниматология. 2014; 10 (1): 5-11. http://dx.doi.org/10.15360/1813-9779-2014-1-5-11; Острова И.В., Аврущенко М.Ш. Экспрессия мозгового нейротрофического фактора (BDNF) повышает устойчивость нейронов к гибели в постреанимационном периоде. Общая реаниматология. 2015; 11 (3): 45-53. http://dx.doi.org/10.15360/1813-9779-2015-3-45-53; Markram H., Toledo_Rodriguez M., Wang Y., Gupta A., Silberberg G., Wu C. Interneurons of the neocortical inhibitory system. Nat. Rev. Neurosci. 2004; 5 (10): 793#807. http://dx.doi.org/10.1038/nrn1519.PMID: 15378039; Kalinichenko S.G., Dudina Y.V., Motavkin P.A. Neurogliaform cells: neurochemistry, spatial arrangement, and their role in the neocortical inhibitory system. Tsitologiia. 2006; 48 (5): 508-514. PMID: 16893057; Druga R. Neocortical inhibitory system. Folia Biol. (Praha). 2009; 55 (6): 201-217. PMID: 20163769; Rossignol E. Genetic and function of neocortical GABAergic interneurons in neurodevelopmental disorders. Neural. Plast. 2011; 2011: 649325. http://dx.doi.org/10.1155/2011/649325. PMID: 21876820; Wenner P. Mechanisms of GABAergic homeostatic plasticity. Neural. Plast. 2011; 2011: 489470. http://dx.doi.org/10.1155/2011/489470.PMID: 21876819; Calabresi P., Di Filippo M. A pathophysiological link between dystonia, striatal interneurons and neuropeptide Y. Brain. 2013; 136 (Pt 5): 1341-1344. http://dx.doi.org/10.1093/brain/awt096.PMID: 23599388; Aoki C., Pickel V.M. Neuropeptide Y in the cerebral cortex and the caudate-putamen nuclei: ultrastructural basis for interactions with GABAergic and non#GABAergic neurons. J. Neurosci. 1989; 9 (12): 4333-4354. PMID: 2687439; Maekawa S., Al_Sarraj S., Kibble M., Landau S., Parnavelas J., Cotter D., Everall I., Leigh P.N. Cortical selective vulnerability in motor neuron disease: a morphometric study. Brain. 2004; 127 (Pt 6): 1237-1251. http://dx.doi.org/10.1093/brain/awh132. PMID: 15130949; Lavenex P., Lavenex P.B., Bennett J.L., Amaral D.G. Postmortem changes in the neuroanatomical characteristics of the primate brain: the hippocampal formation. J. Comp. Neurol. 2009; 512 (1): 27-51. http://dx.doi.org/10. 1002/cne.21906. PMID: 18972553; Sharma V., Nag T.C., Wadhwa S., Roy T.S. Stereological investigation and expression of calcium#binding proteins in developing human inferior colliculus. J. Chem. Neuroanat. 2009; 37 (2): 78-86. http://dx.doi.org/10. 1016/j.jchemneu.2008.11.002. PMID: 19095058; De Almeida J., Mengod G. Quantitative analysis of glutamatergic and GABAergic neurons expressing 5#HT2A receptors in human and monkey prefrontal cortex. J. Neurochem. 2007; 103 (2): 475-486. http://dx.doi.org/10.1111/j.1471#4159.2007.04768.x. PMID: 17635672; Buritica E., Villamil L., Guzman F., Escobar M.I., García_Cairasco N., Pimienta H.J. Changes in calcium-binding protein expression in human cortical contusion tissue. J. Neurotrauma. 2009; 26 (12): 2145-2155. http://dx.doi.org/10.1089/neu.2009.0894. PMID: 19645526; Akulinin V.A., Dahlstrom A. Quantitative analysis of MAP2 immunoreactivity in human neocortex of three patients surviving after brain ischemia. Neurochem. Res. 2003; 28 (2): 373-378. http://dx.doi.org/10.1023/A:1022401922669. PMID: 12608711; Naegele J.R., Katz L.C. Cell surface molecules containing N-acetylgalactosamine are associated with basket cells and neurogliaform cells in cat visual cortex. J. Neurosci. 1990; 10 (2): 540-557. PMID: 2303859; Raghupathi R., Graham D.I., McIntosh T.K. Apoptosis after traumatic brain injury. J. Neurotrauma. 2000; 17 (10): 927#938. http://dx.doi.org/10.1089/neu.2000.17.927. PMID: 11063058; Leker R.R., Shohami E. Cerebral ischemia and trauma#different etiologies yet similar mechanisms: neuroprotective opportunities. Brain Res. Rev. 2002; 39 (1): 55-73. http://dx.doi.org/10.1016/S0165-0173(02)00157-1. PMID: 12086708; Berman R.F., Verweij B.H., Muizelaar J.P. Neurobehavioral protection by the neuronal calcium channel blocker ziconotide in a model of traumatic diffuse brain injury in rats. J. Neurosurg. 2000; 93 (5): 821-828. http://dx.doi.org/10.3171/jns.2000.93.5.0821. PMID: 11059664; Patterson M., Yasuda R. Signaling pathways underlying structural plasticity of dendritic spines. Br. J. Pharmacol. 2011; 163 (8): 1626-1638. http://dx.doi.org/10.1111/j.1476-5381.2011.01328.x. PMID: 21410464; Cormier К.J., Greenwood А.С., Connor J.А. Bidirectional synaptic plasticity correlated with the magnitude of dendritic calcium transients above а threshold. J. Neurophysiol. 2001; 85 (1): 399-406. PMID: 11152740; Klapstein G.J., Vietla S., Lieberman Р.М., Gray Р.А., Airaksinen М.S., Thoenen H., Meyer M., Mody I. Calbindin D28K fails to protect hippocampal neurons against ischemia in spite of its cytoplasmic calcium buffering properties: evidence from calbindin-D28k knockout mice. Neuroscience. 1998; 85 (2): 361-373. http://dx.doi.org/10.1016/S0306-4522(97)00632-5. PMID: 9622236; Ghosh A., Greenberg M.E. Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science. 1995; 268 (5208): 239-247. http://dx.doi.org/10.1126/science.7716515. PMID: 7716515; Morona R., González A. Pattern of calbindin#D28k and calretinin immunoreactivity in the brain of Xenopuslaevis during embryonic and larval development. J. Comp. Neurol. 2013; 521 (1): 79-108. http://dx.doi.org/10.1002/cne.23163. PMID: 22678695; Goodman J.Н., Wasterlain С.G., Massarweh W.F., Dean Е., Sollas А.L., Sloviter R.S. Calbindin#D28k immunoreactivity and selective vulnerability to ischemia in the dentate gyrus of the developing rat. Brain Res. 1993; 606 (2): 309#314. http://dx.doi.org/10.1016/0006-8993(93)90999-4. PMID: 8490723; Yenari M.A., Minami M., Sun G.H., Meier T.J., Kunis D.M., McLaughlin J.R., Ho D.Y., Sapolsky R.M., Steinberg G.K. Calbindin D28K overexpression protects striatal neurons from transient focal cerebral ischemia. Stroke. 2001; 32 (4): 1028-1035. http://dx.doi.org/10.1161/01.STR.32.4.1028. PMID: 11283407; Rami А., Rabie А., Thomasset М., Krieglstein J. Calbindin D28K and ischemic damage of pyramidal cells in rat hippocampus. J. Neurosci. Res. 1992; 31 (1): 89-95. PMID: 1613825; Rami А., Rabie А., Winckler J. Synergy between chronic corticosterone treatment and cerebral ischemia in producing damage in noncalbindinergic neurons. Ехр. Neurol. 1998; 149 (2): 439#446. http://dx.doi.org/10.1006/exnr.1997.6729. PMID: 9500960; Barbado M.V., Briсón J.G., Weruaga E., Porteros A., Arévalo R., Aijón J., Alonso J.R. Changes in immunoreactivity to calcium#binding proteins in the anterior olfactory nucleus of the rat after neonatal olfactory deprivation. Exp. Neurol. 2002; 177 (1): 133-150. http://dx.doi.org/10.1006/exnr.2002.7951. PMID: 12429217; Desgent S., Boire D., Ptito M. Altered expression of parvalbumin and calbindin in interneurons within the primary visual cortex of neonatal enucleated hamsters. Neuroscience. 2010; 171 (4): 1326-1340. http://dx.doi.org/10.1016/j.neuroscience.2010.10.016. PMID: 20937364; Fung S.J., Webster M.J., Sivagnanasundaram S., Duncan C., Elashoff M., Weickert C.S. Expression of interneuron markers in the dorsolateral prefrontal cortex of the developing human and in schizophrenia. Am. J. Psychiatry. 2010; 167 (12): 1479#1488. http://dx.doi.org/10.1176/appi.ajp.2010.09060784. PMID: 21041246; Colmers W.F., El Bahh B. Neuropeptide Y and epilepsy. Epilepsy Curr. 2003; 3 (2): 53#58. http://dx.doi.org/10.1046/j.1535#7597.2003. 03208.x. PMID: 15309085; Andiran N., Celik N., Ark N., Koca C., Kurtaran H., Karabel D. Changes in growth pattern, leptin ghrelin and neuropeptide Y levels after adenotonsillectomy in prepubertal children. J. Pediatr. Endocrinol. Metab. 2013; 26 (7-8): 683-687. http://dx.doi.org/10.1515/jpem-201-#0325.PMID: 23612639; Goto S., Kawarai T., Morigaki R., Okita S., Koizumi H., Nagahiro S., Munoz E.L., Lee L.V., Kaji R. Defects in the striatal neuropeptide Y system in X-linked dystonia#parkinsonism. Brain. 2013; 136 (Pt 5): 1555-1567. http://dx.doi.org/10.1093/brain/awt084. PMID: 23599389; González_Albo M.C., Elston G.N., DeFelipe J. The human temporal cortex: characterization of neurons expressing nitric oxide synthase, neuropeptides and calcium#binding proteins, and their glutamate receptor subunit profiles. Cereb. Cortex. 2001; 11 (12): 1170-1181. http://dx.doi.org/10.1093/cercor/11.12.1170. PMID: 11709488; Hong S.M., Chung S.Y., Park M.S., Huh Y.B., Park M.S., Yeo S.G. Immunoreactivity of calcium#binding proteins in the central auditory nervous system of aged rats. J. Korean Neurosurg. Soc. 2009; 45 (4): 231235. http://dx.doi.org/10.3340/jkns.2009.45.4.231. PMID: 19444349; https://www.reanimatology.com/rmt/article/view/1537
-
2Academic Journal
Συγγραφείς: КАЛИНИЧЕНКО С.Г., МАТВЕЕВА Н.Ю., МОТАВКИН П.А.
Θεματικοί όροι: ТОРМОЗНЫЕ ИНТЕРНЕЙРОНЫ,ОКСИД АЗОТА,NITRIC OXIDE,РЕГУЛЯЦИЯ ЛОКАЛЬНОГО КРОВОТОКА,LOCAL BLOOD FLOW REGULATION,NHIBITORY INTERNEURONS
Περιγραφή αρχείου: text/html
-
3Academic Journal
Πηγή: Тихоокеанский медицинский журнал.
Θεματικοί όροι: 03 medical and health sciences, 0302 clinical medicine, ТОРМОЗНЫЕ ИНТЕРНЕЙРОНЫ,ОКСИД АЗОТА,NITRIC OXIDE,РЕГУЛЯЦИЯ ЛОКАЛЬНОГО КРОВОТОКА,LOCAL BLOOD FLOW REGULATION,NHIBITORY INTERNEURONS
Περιγραφή αρχείου: text/html
-
4Electronic Resource
Additional Titles: ТОРМОЗНЫЕ ИНТЕРНЕЙРОНЫ НЕОКОРТЕКСА ЧЕЛОВЕКА ПОСЛЕ КЛИНИЧЕСКОЙ СМЕРТИ
Συγγραφείς: V. Akulinin A., S. Stepanov S., A. Mytsik V., A. Stepanov S., V. Rasumovsky S., В. Акулинин А.; Омский государственный медицинский университет Минздрава России, С. Степанов С.; Омский государственный медицинский университет Минздрава России, А. Мыцик В.; Омский государственный медицинский университет Минздрава России, А. Степанов С.; Омский государственный медицинский университет Минздрава России, В. Разумовский С.; Омский государственный медицинский университет Минздрава России
Πηγή: General Reanimatology; Том 12, № 4 (2016); 24-36; Общая реаниматология; Том 12, № 4 (2016); 24-36; 2411-7110; 1813-9779; 10.15360/1813-9779-2016-4
Όροι ευρετηρίου: clinical death; man; neocortex;inhibitory interneurons;calbindin D28k; neuropeptide Y, клиническая смерть; человек; неокортекс; тормозные интернейроны; кальбиндин D28k; нейропептид Y, info:eu-repo/semantics/article, info:eu-repo/semantics/publishedVersion
Σύνδεσμος:
https://www.reanimatology.com/rmt/article/view/1537/1044 https://www.reanimatology.com/rmt/article/view/1537/1045 https://www.reanimatology.com/rmt/article/view/1537/1044 https://www.reanimatology.com/rmt/article/view/1537/1045
Аврущенко М.Ш., Острова И.В., Волков А.В. Постреанимационные изменения экспрессии глиального нейротрофического фактора (GDNF): взаимосвязь с повреждением клеток Пуркинье мозжечка (экспериментальное исследование). Общая реаниматология. 2014; 10 (5): 59-68. http://dx.doi.org/10.15360/1813-9779-2014-5-59-68
Заржецкий Ю.В., Мороз В.В., Волков А.В. Влияния иммуноактивных препаратов на функциональное восстановление мозга и стероидные гормоны в постреанимационном периоде. Общая реаниматология. 2014; 10 (1): 5-11. http://dx.doi.org/10.15360/1813-9779-2014-1-5-11
Острова И.В., Аврущенко М.Ш. Экспрессия мозгового нейротрофического фактора (BDNF) повышает устойчивость нейронов к гибели в постреанимационном периоде. Общая реаниматология. 2015; 11 (3): 45-53. http://dx.doi.org/10.15360/1813-9779-2015-3-45-53
Markram H., Toledo_Rodriguez M., Wang Y., Gupta A., Silberberg G., Wu C. Interneurons of the neocortical inhibitory system. Nat. Rev. Neurosci. 2004; 5 (10): 793#807. http://dx.doi.org/10.1038/nrn1519.PMID: 15378039
Kalinichenko S.G., Dudina Y.V., Motavkin P.A. Neurogliaform cells: neurochemistry, spatial arrangement, and their role in the neocortical inhibitory system. Tsitologiia. 2006; 48 (5): 508-514. PMID: 16893057
Druga R. Neocortical inhibitory system. Folia Biol. (Praha). 2009; 55 (6): 201-217. PMID: 20163769
Rossignol E. Genetic and function of neocortical GABAergic interneurons in neurodevelopmental disorders. Neural. Plast. 2011; 2011: 649325. http://dx.doi.org/10.1155/2011/649325. PMID: 21876820
Wenner P. Mechanisms of GABAergic homeostatic plasticity. Neural. Plast. 2011; 2011: 489470. http://dx.doi.org/10.1155/2011/489470.PMID: 21876819
Calabresi P., Di Filippo M. A pathophysiological link between dystonia, striatal interneurons and neuropeptide Y. Brain. 2013; 136 (Pt 5): 1341-1344. http://dx.doi.org/10.1093/brain/awt096.PMID: 23599388
Aoki C., Pickel V.M. Neuropeptide Y in the cerebral cortex and the caudate-putamen nuclei: ultrastructural basis for interactions with GABAergic and non#GABAergic neurons. J. Neurosci. 1989; 9 (12): 4333-4354. PMID: 2687439
Maekawa S., Al_Sarraj S., Kibble M., Landau S., Parnavelas J., Cotter D., Everall I., Leigh P.N. Cortical selective vulnerability in motor neuron disease: a morphometric study. Brain. 2004; 127 (Pt 6): 1237-1251. http://dx.doi.org/10.1093/brain/awh132. PMID: 15130949
Lavenex P., Lavenex P.B., Bennett J.L., Amaral D.G. Postmortem changes in the neuroanatomical characteristics of the primate brain: the hippocampal formation. J. Comp. Neurol. 2009; 512 (1): 27-51. http://dx.doi.org/10. 1002/cne.21906. PMID: 18972553
Sharma V., Nag T.C., Wadhwa S., Roy T.S. Stereological investigation and expression of calcium#binding proteins in developing human inferior colliculus. J. Chem. Neuroanat. 2009; 37 (2): 78-86. http://dx.doi.org/10. 1016/j.jchemneu.2008.11.002. PMID: 19095058
De Almeida J., Mengod G. Quantitative analysis of glutamatergic and GABAergic neurons expressing 5#HT2A receptors in human and monkey prefrontal cortex. J. Neurochem. 2007; 103 (2): 475-486. http://dx.doi.org/10.1111/j.1471#4159.2007.04768.x. PMID: 17635672
Buritica E., Villamil L., Guzman F., Escobar M.I., García_Cairasco N., Pimienta H.J. Changes in calcium-binding protein expression in human cortical contusion tissue. J. Neurotrauma. 2009; 26 (12): 2145-2155. http://dx.doi.org/10.1089/neu.2009.0894. PMID: 19645526
Akulinin V.A., Dahlstrom A. Quantitative analysis of MAP2 immunoreactivity in human neocortex of three patients surviving after brain ischemia. Neurochem. Res. 2003; 28 (2): 373-378. http://dx.doi.org/10.1023/A:1022401922669. PMID: 12608711
Naegele J.R., Katz L.C. Cell surface molecules containing N-acetylgalactosamine are associated with basket cells and neurogliaform cells in cat visual cortex. J. Neurosci. 1990; 10 (2): 540-557. PMID: 2303859
Raghupathi R., Graham D.I., McIntosh T.K. Apoptosis after traumatic brain injury. J. Neurotrauma. 2000; 17 (10): 927#938. http://dx.doi.org/10.1089/neu.2000.17.927. PMID: 11063058
Leker R.R., Shohami E. Cerebral ischemia and trauma#different etiologies yet similar mechanisms: neuroprotective opportunities. Brain Res. Rev. 2002; 39 (1): 55-73. http://dx.doi.org/10.1016/S0165-0173(02)00157-1. PMID: 12086708
Berman R.F., Verweij B.H., Muizelaar J.P. Neurobehavioral protection by the neuronal calcium channel blocker ziconotide in a model of traumatic diffuse brain injury in rats. J. Neurosurg. 2000; 93 (5): 821-828. http://dx.doi.org/10.3171/jns.2000.93.5.0821. PMID: 11059664
Patterson M., Yasuda R. Signaling pathways underlying structural plasticity of dendritic spines. Br. J. Pharmacol. 2011; 163 (8): 1626-1638. http://dx.doi.org/10.1111/j.1476-5381.2011.01328.x. PMID: 21410464
Cormier К.J., Greenwood А.С., Connor J.А. Bidirectional synaptic plasticity correlated with the magnitude of dendritic calcium transients above а threshold. J. Neurophysiol. 2001; 85 (1): 399-406. PMID: 11152740
Klapstein G.J., Vietla S., Lieberman Р.М., Gray Р.А., Airaksinen М.S., Thoenen H., Meyer M., Mody I. Calbindin D28K fails to protect hippocampal neurons against ischemia in spite of its cytoplasmic calcium buffering properties: evidence from calbindin-D28k knockout mice. Neuroscience. 1998; 85 (2): 361-373. http://dx.doi.org/10.1016/S0306-4522(97)00632-5. PMID: 9622236
Ghosh A., Greenberg M.E. Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science. 1995; 268 (5208): 239-247. http://dx.doi.org/10.1126/science.7716515. PMID: 7716515
Morona R., González A. Pattern of calbindin#D28k and calretinin immunoreactivity in the brain of Xenopuslaevis during embryonic and larval development. J. Comp. Neurol. 2013; 521 (1): 79-108. http://dx.doi.org/10.1002/cne.23163. PMID: 22678695
Goodman J.Н., Wasterlain С.G., Massarweh W.F., Dean Е., Sollas А.L., Sloviter R.S. Calbindin#D28k immunoreactivity and selective vulnerability to ischemia in the dentate gyrus of the developing rat. Brain Res. 1993; 606 (2): 309#314. http://dx.doi.org/10.1016/0006-8993(93)90999-4. PMID: 8490723
Yenari M.A., Minami M., Sun G.H., Meier T.J., Kunis D.M., McLaughlin J.R., Ho D.Y., Sapolsky R.M., Steinberg G.K. Calbindin D28K overexpression protects striatal neurons from transient focal cerebral ischemia. Stroke. 2001; 32 (4): 1028-1035. http://dx.doi.org/10.1161/01.STR.32.4.1028. PMID: 11283407
Rami А., Rabie А., Thomasset М., Krieglstein J. Calbindin D28K and ischemic damage of pyramidal cells in rat hippocampus. J. Neurosci. Res. 1992; 31 (1): 89-95. PMID: 1613825
Rami А., Rabie А., Winckler J. Synergy between chronic corticosterone treatment and cerebral ischemia in producing damage in noncalbindinergic neurons. Ехр. Neurol. 1998; 149 (2): 439#446. http://dx.doi.org/10.1006/exnr.1997.6729. PMID: 9500960
Barbado M.V., Briсón J.G., Weruaga E., Porteros A., Arévalo R., Aijón J., Alonso J.R. Changes in immunoreactivity to calcium#binding proteins in the anterior olfactory nucleus of the rat after neonatal olfactory deprivation. Exp. Neurol. 2002; 177 (1): 133-150. http://dx.doi.org/10.1006/exnr.2002.7951. PMID: 12429217
Desgent S., Boire D., Ptito M. Altered expression of parvalbumin and calbindin in interneurons within the primary visual cortex of neonatal enucleated hamsters. Neuroscience. 2010; 171 (4): 1326-1340. http://dx.doi.org/10.1016/j.neuroscience.2010.10.016. PMID: 20937364
Fung S.J., Webster M.J., Sivagnanasundaram S., Duncan C., Elashoff M., Weickert C.S. Expression of interneuron markers in the dorsolateral prefrontal cortex of the developing human and in schizophrenia. Am. J. Psychiatry. 2010; 167 (12): 1479#1488. http://dx.doi.org/10.1176/appi.ajp.2010.09060784. PMID: 21041246
Colmers W.F., El Bahh B. Neuropeptide Y and epilepsy. Epilepsy Curr. 2003; 3 (2): 53#58. http://dx.doi.org/10.1046/j.1535#7597.2003. 03208.x. PMID: 15309085
Andiran N., Celik N., Ark N., Koca C., Kurtaran H., Karabel D. Changes in growth pattern, leptin ghrelin and neuropeptide Y levels after adenotonsillectomy in prepubertal children. J. Pediatr. Endocrinol. Metab. 2013; 26 (7-8): 683-687. http://dx.doi.org/10.1515/jpem-201-#0325.PMID: 23612639
Goto S., Kawarai T., Morigaki R., Okita S., Koizumi H., Nagahiro S., Munoz E.L., Lee L.V., Kaji R. Defects in the striatal neuropeptide Y system in X-linked dystonia#parkinsonism. Brain. 2013; 136 (Pt 5): 1555-1567. http://dx.doi.org/10.1093/brain/awt084. PMID: 23599389
González_Albo M.C., Elston G.N., DeFelipe J. The human temporal cortex: characterization of neurons expressing nitric oxide synthase, neuropeptides and calcium#binding proteins, and their glutamate receptor subunit profiles. Cereb. Cortex. 2001; 11 (12): 1170-1181. http://dx.doi.org/10.1093/cercor/11.12.1170. PMID: 11709488
Hong S.M., Chung S.Y., Park M.S., Huh Y.B., Park M.S., Yeo S.G. Immunoreactivity of calcium#binding proteins in the central auditory nervous system of aged rats. J. Korean Neurosurg. Soc. 2009; 45 (4): 231235. http://dx.doi.org/10.3340/jkns.2009.45.4.231. PMID: 19444349