Εμφανίζονται 1 - 11 Αποτελέσματα από 11 για την αναζήτηση '"тонкопленочная технология"', χρόνος αναζήτησης: 0,51δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Συνεισφορές: The work was supported by the Russian Ministry of Science and Higher Education, through state assignment No. FSFF-2023-0008., Работа выполнена в рамках государственного задания Минобрнауки России, номер темы FSFF-2023-0008.

    Πηγή: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 27, № 3 (2024); 199-222 ; Известия высших учебных заведений. Материалы электронной техники; Том 27, № 3 (2024); 199-222 ; 2413-6387 ; 1609-3577

    Περιγραφή αρχείου: application/pdf

    Relation: https://met.misis.ru/jour/article/view/582/468; Козадеров О.А. Современные химические источники тока. СПб.: Лань; 2017. 132 с.; Choi J.U., Voronina N., Sun Y.-K., Myung S.-T. Recent progress and perspective of advanced high-energy co-less Ni-rich cathodes for Li-ion batteries: Yesterday, today, and tomorrow. Advanced Energy Materials. 2020; 10(42): 2002027. https://doi.org/10.1002/aenm.202002027; Кицюк Е.П. Исследование и разработка процессовформирования наноструктурированных электродов электрохимических устройств накопления энергии. Дис. канд. техн. наук. Москва; 2017. 166 с.; Reitz C., Breitung B., Schneider A., Wang D., Von L.M., Leichtwei T., Janek J., Hahn H., Brezesinski T. Hierarchical carbon with high nitrogen doping level: a versatile anode and cathode host material for long-life lithium-ion and lithium-sulfur batteries. ACS Applied Materials & Interfaces. 2016; 8(16): 10274—10282. https://doi.org/10.1021/acsami.5b12361; Zhan F., Wang H., He Q., Xu W., Chen J., Ren X., Wang H., Liu Sh., Han M., Yamauchi Y., Chen L. Metal–organic frameworks and their derivatives for metal-ion (Li, Na, K and Zn) hybrid capacitors. Chemical Science. 2022; 13(41): 11981—12015. https://doi.org/10.1039/D2SC04012C; Itoi H., Matsuura M., Tanabe Y., Kondo Sh., Usami T., Ohzawa Y. High utilization efficiencies of alkylbenzokynones hybridized inside the pores of activated carbon for electrochemical capacitor electrodes. RSC Advances. 2023; 13(4): 2587—2599. https://doi.org/10.1039/D2RA06634C; Wang Sh., Yang C., Li X., Jia H., Jia H., Liu Sh., Liu X., Minari T., Sun Q. Polymer-based dielectrics with high permittivity and low dielectric loss for flexible electronics. Journal of Materials Chemistry C. 2022; 10(16): 6196—6221. https://doi.org/10.1039/D2TC00193D; Ren X., Meng N., Ventura L., Goutianos St., Barbieri E., Zhang H., Yan H., Reece M., Bilotti E. Ultra-high energy density integrated polymer dielectric capacitors. Journal of Materials Chemistry A. 2022; 10(18): 10171—10180. https://doi.org/10.1039/D1TA09045C; Yang K., Hu L., Wang Y., Xia J., Sun M., Zhang Y., Goua Ch., Jia Ch. Redox-active sodium 3,4-dihydroxy anthraquinone-2-sulfonate anchored on reduced graphene oxide for high-performance Zn-ion hybrid capacitors. Journal of Materials Chemistry A. 2022; 10(23): 12532—12543. https://doi.org/10.1039/D2TA02630A; Корнилов Д.Ю. Оксид графена – новый электродный наноматериал для химических источников тока. Дис. д-ра техн. наук. Москва; 2020. 256 с.; Громов Д.Г., Галперин В.А., Лебедев Е.А., Кицюк Е.П. Развитие электрохимических накопителей электрической энергии на основе наноструктур. В кн.: Нанотехнологии в электронике. Под ред. Ю.Ф. Чаплыгина. М : Техносфера; 2015. С. 347—373.; Shao H., Wu Y.-Ch., Lin Z., Taberna P.-L., Simon P. Nanoporous carbon for electrochemical capacitive energy storage. Chemical Society Reviews. 2020; 49(10): 3005—3039. https://doi.org/10.1039/D0CS00059K; Velasco A., Kyoung Ryu Yu., Boscá Mojena A., Ladrón-de-Guevara A., Hunt E., Zuo J., Pedrós J., Calle F., Martinez J. Recent trends in graphene supercapacitors: from large area to microsupercapacitors. Sustainable Energy & Fuels. 2021; 5(4): 1235—1254. https://doi.org/10.1039/D0SE01849J; Elinson V.M., Shchur P. A. Antiadhesion fluorocarbon coatings with induced surface charge for protection against biodegradation. High Temperature Material Processes: An International Quarterly of High-Techno Processes. 2023; 27(4): 33—38. https://doi.org/10.1615/HighTempMatProc.v27.i4.40; Thomas K.M. Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications: comparison with other nanoporous materials. Dalton Transactions. 2009; 9(9): 1487—1505. https://doi.org/10.1039/b815583f; Al-Thabaiti S.A., Mostafa M.M.M., Ahmed A.I., Salama R.S. Synthesis of copper/chromium metal organic frameworks-Derivatives as an advanced electrode material for high-performance supercapacitors. Ceramics International. 2023; 49(3): 5119—5129. https://doi.org/10.1016/j.ceramint.2022.10.029; Ryu U.J., Jee S., Rao P.Ch., Shin J., Ko Ch., Yoon M., Park K.S., Choi K.M. Recent advances in process engineering and upcoming applications of metal-organic frameworks. Coordination Chemistry Reviews. 2021; 426: 213544. https://doi.org/10.1016/j.ccr.2020.213544; Lou W., Wang L., Dong Sh., Zhenzhu cao, Sun J., Zhang Y. A facility synthesis of bismuth-iron bimetal MOF composite silver vanadate applied to visible light photocatalysis. Optical Materials. 2022; 126: 112168. https://doi.org/10.1016/j.optmat.2022.112168; Sundriyal S., Kaur H., Bhardwaj S., Mishra S., Kim K.-H., Deep A. Metal-organic frameworks and their composites as efficient electrodes for supercapacitor applications. Coordination Chemistry Reviews. 2018; 369(2011): 15—38. https://doi.org/10.1016/j.ccr.2018.04.018; Moghadam P.Z., Li A., Liu X.-W., Bueno-Perez R., Wang Sh.-D., Wiggin S., Wood P.A., Fairen-Jimenez D. Targeted classification of metal-organic frameworks in the Cambridge structural database (CSD). Chemical Science. 2020; 11(19): 8373—8387. https://doi.org/10.1039/D0SC01297A; Chhetri K., Adhikari A., Kunwar J., Acharya D., Bhattarai R.M., Mok Y.S., Adhikari A., Yadav A., Kim H.Y. Recent research trends on zeolitic imidazolate framework-8 and zeolitic imidazolate framework-67-based hybrid nanocomposites for supercapacitor application. International Journal of Energy Research. 2023; 2023: 8885207. https://doi.org/10.1155/2023/8885207; Tan Y.X., Wang F., Zhang J. Design and synthesis of multifunctional metal-organic zeolites. Chemical Society Reviews. 2018; 47(6): 2130—2144. https://doi.org/10.1039/C7CS00782E; Ding M., Flaig R.W., Jiang H.-L., Yaghi O.M. Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chemical Society Reviews. 2019; 48(10): 2783—2828. https://doi.org/10.1039/C8CS00829A; Phan A., Doonan Ch.J., Uribe-Romo F., Knobler C.B., O'Keeffe M., Yaghi O.M. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Accounts of Chemical Research. 2009; 43(1): 58—67. https://doi.org/10.1021/ar900116g; Banerjee R., Phan A., Wang B., Knobler C., Furukawa H., O'Keeffe M., Yaghi O.M. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science. 2008; 319(5865): 939—943. https://doi.org/10.1126/science.1152516; Yao Y., Zhao X., Chang G., Yang X., Chen B. Hierarchically porous metal-organic frameworks: synthetic strategies and applications. Small Structures. 2023; 4(1): 2200187. https://doi.org/10.1002/sstr.202200187; Shi L., Wang T., Huabin Zh., Chang K., Ye J. Electrostatic self-assembly of nanosized carbon nitride nanosheet onto a zirconium metal-organic framework for enhanced photocatalytic CO2 reduction. Advanced Functional Materials. 2015; 25(33): 5360—5367. https://doi.org/10.1002/adfm.201502253; Qian J., Sun F., Qin L. Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Materials Letters. 2012; 82: 220—223. https://doi.org/10.1016/j.matlet.2012.05.077; Song G., Shi Y., Jiang Sh., Pang H. Recent progress in MOF-derived porous materials as electrodes for high-performance lithium-ion batteries. Advanced Functional Materials. 2023; 33(42): 2303121. https://doi.org/10.1002/adfm.202303121; Ramachandran R., Zhao Ch., Luo D., Wang K., Wang F. Morphology-dependent electrochemical properties of cobalt-based metal organic frameworks for supercapacitor electrode materials. Electrochimica Acta. 2018; 267: 170—180. https://doi.org/10.1016/j.electacta.2018.02.074; Zhang H., Wang J., Sun Y., Zhang X., Yang H., Lin B. Wire spherical-shaped Co-MOF electrode materials for high-performance all-solid-state flexible asymmetric supercapacitor device. Journal of Alloys and Compounds. 2021; 879: 160423. https://doi.org/10.1016/j.jallcom.2021.160423; Wang C., Li X., Yang W., Xu Y., Pang H. Solvent regulation strategy of Co-MOF-74 microflower for supercapacitors. Chinese Chemical Letters. 2021; 32(9): 2909—2913. https://doi.org/10.1016/j.cclet.2021.04.017; Jiao Y., Pei J., Yan Ch., Chen D., Hu Y., Chen G. Layered nickel metal-organic framework for high performance alkaline battery-supercapacitor hybrid devices. Journal of Materials Chemistry A. 2016; 4(34): 13344—13351. https://doi.org/10.1039/C6TA05384J; Yan Y., Gu P., Zheng Sh., Zheng M., Pang H., Xue H. Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors. Journal of Materials Chemistry A. 2016; 4(48): 19078—19085. https://doi.org/10.1039/C6TA08331E; Du P., Dong Y., Liu Ch., Wei W., Liu D., Liu P. Fabrication of hierarchical porous nickel based metal-organic framework (Ni-MOF) constructed with nanosheets as novel pseudo-capacitive material for asymmetric supercapacitor. Journal of Colloid and Interface Science. 2018; 518: 57—68. https://doi.org/10.1016/j.jcis.2018.02.010; Shen W., Guo X., Pang H. Effect of solvothermal temperature on morphology and supercapacitor performance of Ni-MOF. Molecules. 2022; 27(23): 8226. https://doi.org/10.3390/molecules27238226; Xu X., Yang J., Hong Y., Wang J. Nitrate precursor driven high performance Ni/Co-MOF nanosheets for supercapacitors. ACS Applied Nano Materials. 2022; 5(6): 8382—8392. https://doi.org/10.1021/acsanm.2c01488; Lu X.F., Xia B.Y., Zang Sh.-Q., Lou X.W. Metal-organic frameworks based electrocatalysts for the oxygen reduction reaction. Angewandte Chemie International Edition. 2020; 59(12): 4634—4650. https://doi.org/10.1002/anie.201910309; Yang B., Li B., Xiang Z. Advanced MOF-based electrode materials for supercapacitors and electrocatalytic oxygen reduction. Nano Research. 2023; 16(1): 1338—1361. https://doi.org/10.1007/s12274-022-4682-y; Hosseinian A., Amjad A.H., Hosseinzadeh-Khanmiri R., Ghorbani-Kalhor E., Babazadeh M., Vessally E. Nanocomposite of ZIF-67 metal-organic framework with reduced graphene oxide nanosheets for high-performance supercapacitor applications. Journal of Materials Science: Materials in Electronics. 2017; 28: 18040—18048. https://doi.org/10.1007/s10854-017-7747-z; Ramachandran R., Xuan W.L., Zhao C.H., Leng X.H., Sun D.Z., Luo D., Wang F. Enhanced electrochemical properties of cerium metal-organic framework based composite electrodes for high-performance supercapacitor application. RSC Advances. 2018; 8(7): 3462—3469. https://doi.org/10.1039/C7RA12789H; Ibrahim I., Zheng Sh., Foo Ch.Y., Ming H.N., Lim H. Hierarchical nickel-based metal-organic framework/graphene oxide incorporated graphene nanoplatelet electrode with exceptional cycling stability for coin cell and pouch cell supercapacitors. Journal of Energy Storage. 2021; 43: 103304. https://doi.org/10.1016/j.est.2021.103304; Chen T., Shen T., Wang Y., Yu Z., Zhang W., Zhang Y., Ouyang Z., Cai Q., Yaxiong J., Wang Sh. In situ synthesis of Ni-BTC metal-organic framework@ graphene oxide composites for high-performance supercapacitor electrodes. ACS Omega. 2023; 8(12): 10888—10898. https://doi.org/10.1021/acsomega.2c07187; Shao L., Wang , Ma Zh., Ji Zh., Wang X., Song D., Liu Y., Wang N. A high-capacitance flexible solid-state supercapacitor based on polyaniline and metal-organic framework (UiO-66) composites. Journal of Power Sources. 2018; 379: 350—361. https://doi.org/10.1016/j.jpowsour.2018.01.028; Ramandi S., Entezari M.H. Design of new, efficient, and suitable electrode material through interconnection of ZIF-67 by polyaniline nanotube on graphene flakes for supercapacitors. Journal of Power Sources. 2022; 538: 231588. https://doi.org/10.1016/j.jpowsour.2022.231588; Hussain I., Iqbal S., Hussain T., Cheung W.L., Khan Sh.Ah., Zhou J., Ahmad M., Khan Sh.A., Lamiel Ch., Imran M., Alfantazi A., Zhang K. Zn–Co-MOF on solution-free CuO nanowires for flexible hybrid energy storage devices. Materials Today Physics. 2022; 23(2): 100655. https://doi.org/10.1016/j.mtphys.2022.100655; Wang L., Jia D., Yue L., Zheng K., Zhang A., Jia Q., Liu J. In situ fabrication of a uniform Co-MOF shell coordinated with CoNiO2 to enhance the energy storage capability of NiCo-LDH via vapor-phase growth. ACS Applied Materials & Interfaces. 2020; 12(42): 47526—47538. https://doi.org/10.1021/acsami.0c12759; Shi X., Deng T., Zhu G. Vertically oriented Ni-MOF@ Co (OH)2 flakes towards enhanced hybrid supercapacitior performance. Journal of Colloid and Interface Science. 2021; 593: 214—221. https://doi.org/10.1016/j.jcis.2021.02.096; Lu J., Duan H., Zhang Yi., Zhang G., Chen Z., Song Y., Zhu R., Pang H. Directional growth of conductive metal-organic framework nanoarrays along [001] on metal hydroxides for aqueous asymmetric supercapacitors. ACS Applied Materials & Interfaces. 2022; 14(22): 25878—25885. https://doi.org/10.1021/acsami.2c02268; Tang X., Li N., Pang H. Metal-organic frameworks-derived metal phosphides for electrochemistry application. Green Energy & Environment. 2022; 7(4): 636—661. https://doi.org/10.1016/j.gee.2021.08.003; Zhao J., Liu N., Sun Y., Xu Q., Pan J. Nitrogen-modified spherical porous carbon derived from aluminum-based metal-organic frameworks as activation-free materials for supercapacitors. Journal of Energy Storage. 2023; 73: 109070. https://doi.org/10.1016/j.est.2023.109070; Dai Y.Y., Liu C.L., Bai Y., Kong Q.Q., Pang H. Framework materials for supercapacitors. Nanotechnology Reviews. 2022; 11(1): 1005—1046. https://doi.org/10.1515/ntrev-2022-0042; Xu S.J., Dong A.R., Hu Y., Yang Z., Huang S.M., Qian J.J. Multidimensional MOF-derived carbon nanomaterials for multifunctional applications. Journal of Materials Chemistry A. 2023; 11: 9721—9747. https://doi.org/10.1039/D3TA00239J; Cao Z., Momen R., Tao Sh., Xiong D., Song Z., Xiao X., Deng W., Hou H., Yaşar S., Altin S., Bulut F., Zou G., Ji X. Metal-organic framework materials for electrochemical supercapacitors. Nano-Micro Letters. 2022; 14(1): 181. https://doi.org/10.1007/s40820-022-00910-9; Kim M., Xin R., Earnshaw J., Tang J., Hill J.P., Ashok A., Nanjundan A.K., Kim J., Young Ch., Sugahara Y., Na J., Yamauchi Y. MOF-derived nanoporous carbons with diverse tunable nanoarchitectures. Nature Protocols. 2022; 17(12): 2990—3027. https://doi.org/10.1038/s41596-022-00718-2; Zhang L.Y., Wang R., Chai W.C., Ma M.Y., Li L.K. Controllable preparation of a N-doped hierarchical porous carbon framework derived from ZIF-8 for highly efficient capacitive deionization. ACS Applied Materials & Interfaces. 2023; 15(41): 48800—48809. https://doi.org/10.1021/acsami.3c10043; Marpaung F., Kim M., Khan J.H., Yamauchi Y., Hossain Sh. Metal-organic framework (MOF)-derived nanoporous carbon materials. Chemistry-An Asian Journal. 2019; 14(9): 1331—1343.; Salunkhe R.R., Kaneti Y.V., Kim J., Kim J.H., Yamauchi Y. Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications. Accounts of Chemical Research. 2016; 49(12): 2796—2806. https://doi.org/10.1021/acs.accounts.6b00460; Rajak R., Kumar R., Naz Sh., Saraf M., Shaikh M.M. Recent highlights and future prospects on mixed-metal MOFs as emerging supercapacitor candidates. Dalton Transactions. 2020; 49(34): 11792—11818. https://doi.org/10.1039/D0DT01676D; Kumar N., Wani T.A., Pathak P.K., Bera A., Salunkhe R.R. Multifunctional nanoarchitectured porous carbon for solar steam generation and supercapacitor applications. Sustainable Energy & Fuels. 2022; 6(7): 1762—1769. https://doi.org/10.1039/D2SE00092J; Li Q., Dai Zh., Wu J., Liu W., Di T., Jiang R., Zheng X., Wang W., Ji X., Li P., Xu Zh., Qu X., Xu Zh., Zhou J. Fabrication of ordered macro-microporous single-crystalline MOF and its derivative carbon material for supercapacitor. Advanced Energy Materials. 2020; 10(33): 1903750. https://doi.org/10.1002/aenm.201903750; Huang J., Hao F., Xiaohua Zh., Chen J. N-doped porous carbon sheets derived from ZIF-8: preparation and their electrochemical capacitive properties. Journal of Electroanalytical Chemistry. 2018; 810: 86—94. https://doi.org/10.1016/j.jelechem.2017.12.078; Gu Y., Miao L., Yin Y., Liu M., Gan L., Li L. Highly N/O co-doped ultramicroporous carbons derived from nonporous metal-organic framework for high performance supercapacitors. Chinese Chemical Letters. 2021; 32(4): 1491—1496. https://doi.org/10.1016/j.cclet.2020.09.029; Li H., Xu X., Liu Y., Hao Y., Xu Zh. Fluorophore molecule loaded in Tb-MOF for dual-channel fluorescence chemosensor for consecutive visual detection of bacterial spores and dichromate anion. Journal of Alloys and Compounds. 2023; 944(19): 169138. https://doi.org/10.1016/j.jallcom.2023.169138; Liu J., Chen L., Cui H., Zhang J., Zhang L., Su Ch.-Y. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chemical Society Reviews. 2014; 43(16): 6011—6061. https://doi.org/10.1039/C4CS00094C; Hu C., Xu J., Lu Zh.-f., Cao Ch., Wang Y. Core-shell structured ZIF-7@ ZIF-67 with high electrochemical performance for all-solid-state asymmetric supercapacitor. International Journal of Hydrogen Energy. 2021; 46(63): 32149—32160. https://doi.org/10.1016/j.ijhydene.2021.06.225; Ma J., Li J., Guo R., Xu H., Shi F., Dang L., Liu Z., Sun J., Lei Zh. Direct growth of flake-like metal-organic framework on textile carbon cloth as high-performance supercapacitor electrode. Journal of Power Sources. 2019; 428: 124—130. https://doi.org/10.1016/j.jpowsour.2019.04.101; Guan C., Zhao W., Hu Y., Lai Zh., Li X., Sun Sh., Zhang H., Cheetham T., Wang J. Cobalt oxide and N-doped carbon nanosheets derived from a single two-dimensional metal–organic framework precursor and their application in flexible asymmetric supercapacitors. Nanoscale Horizons. 2017; 2(2): 99—105. https://doi.org/10.1039/C6NH00224B; Kozhitov L.V. Kostiaeva A.V., Kozlov V., Bulatov M.F. Formation of FeNi3/C nanocomposite from Fe and Ni salts and polyacrylonitrile under IR-heating. Journal of Nanoelectronics and Optoelectronics. 2012; 7(4): 419—422. https://doi.org/10.1166/jno.2012.1322; Zaporotskova I., Muratov D., Kozhitov L., Popkova A., Boroznina N., Boroznin S., Vasilev A., Tarala V., Korovin E. Nanocomposites based on pyrolyzed polyacrylonitrile doped with FeCoCr/C transition metal alloy nanoparticles: synthesis, structure, and electromagnetic properties. Polymers. 2023; 15(17): 3596. https://doi.org/10.3390/polym15173596; Lee H.C., Kim Y.A., Kim B.-H. Electrochemical activity of triple-layered boron-containing carbon nanofibers with hollow channels in supercapacitors. Carbon. 2022; 196: 78—84. https://doi.org/10.1016/j.carbon.2022.04.061; Muratov D.G., Kozhitov L.V., Yakushko E.V., Vasilev A., Popkova A.V., Tarala V., Korovin E. Synthesis, structure and electromagnetic properties of FeCoAl/C nanocomposites. Modern Electronic Materials. 2021; 7(3): 99—108. https://doi.org/10.3897/j.moem.7.3.77105; Muratov D.G., Kozhitov L.V., Korovushkin V.V., Korovin E., Popkova A.V., Novotortsev V. Synthesis, structure and electromagnetic properties of nanocomposites with three-component FeCoNi nanoparticles. Russian Physics Journal. 2019; 61(1): 1788—1797. https://doi.org/10.1007/s11182-019-01602-5; Chang C., Li M., Wang H., Wang Sh., Liu X., Liu H.-K., Li L. A novel fabrication strategy for doped hierarchical porous biomass-derived carbon with high microporosity for ultrahigh-capacitance supercapacitors. Journal of Materials Chemistry A. 2019; 7(34): 19939—19949. https://doi.org/10.1039/C9TA06210F; Yue Z., Dunya H., Ashuri M., Kucuk K., Aryal Sh., Antonov St., Alabbad B., Segre C.U., Mandal B. Synthesis of a very high specific surface area active carbon and its electrical double-layer capacitor properties in organic electrolytes. ChemEngineering. 2020; 4(3): 43. https://doi.org/10.3390/chemengineering4030043; Muratov D.G., Kozhitov L.V., Zaporotskova I.V., Popkova A.V., Tarala V.A., Korovin E.Yu., Zorin A.V. Synthesis, structure and electromagnetic properties of FeCoCu/C nanocomposites. Modern Electronic Materials. 2023; 9(1): 15—24. https://doi.org/10.3897/j.moem.9.1.104721; Das S.K., Bhunia K., Mallick A., Pradhan A., Pradhan D., Bhaumik A. A new electrochemically responsive 2D π-conjugated covalent organic framework as a high performance supercapacitor. Microporous and Mesoporous Materials. 2018; 266: 109—116. https://doi.org/10.1016/j.micromeso.2018.02.026; Roy A., Mondal S., Halder A., Banerjee A., Ghoshal D., Paul A., Malik S. Benzimidazole linked arylimide based covalent organic framework as gas adsorbing and electrode materials for supercapacitor application. European Polymer Journal. 2017; 93: 448—457. https://doi.org/10.1016/j.eurpolymj.2017.06.028; Das S.K., Pradhan L., Jena B.K., Basu S. Polymer derived honeycomb-like carbon nanostructures for high capacitive supercapacitor application. Carbon. 2023; 201: 49—59. https://doi.org/10.1016/j.carbon.2022.09.004; Khan I.A., Badshah A., Khan S.I., Zhao D., Nadeem M. Soft-template carbonization approach of MOF-5 to mesoporous carbon nanospheres as excellent electrode materials for supercapacitor. Microporous and Mesoporous Materials. 2017; 253: 169—176. https://doi.org/10.1016/j.micromeso.2017.06.049; Zhao Y., Zhao Zh., Wei M., Jiang X., Li H., Gao J., Linxi H. Preparation of Si-doped and cross linked carbon nanofibers via electrospinning and their supercapacitive properties. Progress in Natural Science: Materials International. 2018; 28(3): 337—344. https://doi.org/10.1016/j.pnsc.2018.04.013; Bhosale R., Bhosale Sn., Kumbhar Pr.D., Narale D.K., Ghaware R., Jambhale Ch.L., Kolekar S. Design and development of a porous nanorod-based nickel-metal-organic framework (Ni-MOF) for high-performance supercapacitor application. New Journal of Chemistry. 2023; 47(14): 6749—6758. https://doi.org/10.1039/D3NJ00456B; Xue B., Li K., Guo Y., Lu J., Gu Sh., Zhang L. Construction of zeolitic imidazolate frameworks-derived NixCo3-xO4/reduced graphene oxides/Ni foam for enhanced energy storage performance. Journal of Colloid and Interface Science. 2019; 557(6): 112—123. https://doi.org/10.1016/j.jcis.2019.09.005; Iqbal R., Sultan M.Q., Hussain S., Hamza M., Tariq A., Akbar M.B., Ma Y., Zhi L. The different roles of cobalt and manganese in metal-organic frameworks for supercapacitors. Advanced Materials Technologies. 2021; 6(3): 2000941. https://doi.org/10.1002/admt.202000941; Uke S.J., Akhare V.P., Bambole D.R., Bodade A.B., Chaudhari G.N. Recent advancements in the cobalt oxides, manganese oxides, and their composite as an electrode material for supercapacitor: a review. Frontiers in Materials. 2017; 4: 21. https://doi.org/10.3389/fmats.2017.00021; Слепцов В.В., Гоффман В.Г., Дителева А.О., Ревенок Т.В., Дителева Е.О. Физическая модель электродного материала для гибридных конденсаторов. Физикохимия поверхности и защита материалов. 2023; 59(2): 149—154. https://doi.org/10.31857/S0044185623700171; Гоффман В.Г., Слепцов В.В., Гороховский А.В., Горшков Н.В., Ковынева Н.Н., Севрюгин А.В., Викулова М.А., Байняшев А.М., Макарова А.Д., Зо Лвин Ч. Накопители энергии с бусофитовыми электродами, модифицированными титаном. Электрохимическая энергетика. 2020; 20(1): 20—32. https://doi.org/10.18500/1608-4039-2020-20-1-20-32; Sleptsov V.V., Diteleva A.O., Kukushkin D.Yu., Tsyrkov R.A., Diteleva E.O. Vacuum as a continuum medium forming energy inhomogeneities with a high energy density in the liquid phase. Modern Electronic Materials. 2022; 8(2): 73—78. https://doi.org/10.3897/j.moem.8.2.97508; Пат. (РФ) № 2756189 C1. Дителева А.О., Кукушкин Д.Ю., Савкин А.В., Слепцов В.В. Установка для электроимпульсного управляемого получения наночастиц токопроводящих материалов. Заявл.: 19.12.2019; опубл.: 28.09.2021.; Diteleva A., Sleptsov V., Savilkin S., Matsykin S., Granko A. Hybrid capacitor based on carbon matrix for intelligent electric energy storage and transportation system. Journal of Physics Conference Series. 2021; 1925(1): 012083. https://doi.org/10.1088/1742-6596/1925/1/012083; Слепцов В.В., Кукушкин Д.Ю., Куликов С.Н., Дителева А.О., Цырков Р.А. Тонкопленочные технологии в создании электродных материалов для перспективных источников тока. Вестник машиностроения. 2021; (9): 63—66. https://doi.org/10.36652/0042-4633-2021-9-63-66; Пат. (РФ) № 191063 U1. Слепцов В.В., Кукушкин Д.Ю., Дителева А.О., Щур П.А. Химический источник тока с тонкопленочным токосборником. Заявл.: 06.03.2019; опубл. 23.07.2019.; Пат. (РФ) № 2696479 C1. Слепцов В.В., Кукушкин Д.Ю., Дителева А.О., Щур П.А. Способ изготовления электродов химического источника тока. Заявл.: 08.10.2018; опубл.: 02.08.2019.; Пат. (РФ) № 209747 U1. Кукушкин Д.Ю., Цырков Р.А., Слепцов В.В., Дителева А.О., Осипов В.В., Савилкин С.Б. Устройство для модификации поверхности материалов наночастицами металлов. Заявл.: 15.12.2021; опубл.: 22.03.2022.; https://met.misis.ru/jour/article/view/582

  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
    Dissertation/ Thesis

    Συγγραφείς: Ярушина, Є.В.

    Περιγραφή αρχείου: application/pdf

    Relation: Ярушина, Є.В. Перспективи розвитку сонячної енергетики [Текст] / Є.В. Ярушина; кер. В.В. Ярушин // Перший крок у науку: матеріали VІІ студентської конференції, м. Суми, 20 грудня 2015 р. / Відп. за вип. М.Б. Оприско. — Суми: СумДУ, 2015. — С. 68.; http://essuir.sumdu.edu.ua/handle/123456789/43580

  11. 11