Showing 1 - 20 results of 221 for search '"термоциклирование"', query time: 0.87s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
    Academic Journal

    Authors: Hubenko, S. I.

    Source: Metal Science and Heat Treatment of Metals; No. 4 (2020): Metal Science and Heat Treatment of Metals; 52-58
    Металловедение и термическая обработка металлов; № 4 (2020): Металловедение и термическая обработка металлов; 52-58
    Металознавство та термічна обробка металів; № 4 (2020): Металознавство та термічна обробка металів; 52-58

    File Description: application/pdf

  8. 8
    Academic Journal

    Source: Известия Томского политехнического университета
    Bulletin of the Tomsk Polytechnic University

    File Description: application/pdf

  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
    Academic Journal

    Contributors: Работа выполнена в рамках государственного задания Минобрнауки России № FSNM-2020-0026 на выполнение фундаментальных научных исследований и при финансовой поддержке РФФИ, грант № 19-48-590007.

    Source: NOVYE OGNEUPORY (NEW REFRACTORIES); № 10 (2022); 38-44 ; Новые огнеупоры; № 10 (2022); 38-44 ; 1683-4518 ; 10.17073/1683-4518-2022-10

    File Description: application/pdf

    Relation: https://newogneup.elpub.ru/jour/article/view/1843/1527; Saleh, B. 30 years of functionally graded materials: an overview of manufacturing methods, applications and future challenges / B. Saleh, J. Jiang, R. Fathi [et al.] // Composites. Part B: Engineering. ― 2020. ― Vol. 201. ― P. 1‒46. https://doi.org/10.1016/j.compositesb.2020.108376.; Besisa, D. H. Advances in functionally graded ceramics ― processing, sintering properties and applications / D. H. Besisa, E. M. Ewais // Advances in Functionally Graded Materials and Structures. ― L.: IntechOpen, 2016 [Online]. Available: https://www.intechopen.com/chapters/50055 doi:10.5772/62612.; Sobczak, J. J. Metal based functionally graded materials / J. J. Sobczak, L. B. Drenchev // Bentham Science Publishers. ― 2009. https://doi.org/10.2174/97816080503831090101.; Li, W. Research and application of functionally gradient materials / W. Li, B. Han // IOP conference series: materials science and engineering / IOP Publishing. ― 2018. ― Vol. 394, № 2. ― P. 22‒65. doi:10.1088/1757-899X/394/2/022065.; Azeem, P. Fabrication and mechanical properties of functionally graded materials: a review / P. Azeem, B. M. Rajaprakash // Materials Today: Proceedings. ― 2022. ― Vol. 52, part 3. ― P. 337‒387. https://doi.org/10.1016/j.matpr.2021.09.066.; Judе, S. A. A. Thermal barrier coatings for hightemperature application on superalloy substrates ― a review / S. A. A. Jude, J. T. Winowlin Jappes, M. Adamkhan // Materials Today: Proceedings. ― 2022. ― Vol.60, part 3. ― P. 1670‒1675. https://doi.org/10.1016/j.matpr.2021.12.223.; Abbas, M. R. M. R. Microstructural evaluation of a slurry based Ni/YSZ thermal barrier coating for automotive turbocharger turbine application / M. R. M. R. Abbas, M. B. Uday, Alias Mohd Noor, Norhayati Ahmad, Srithar Rajoo // Materials & Design. ― 2016. ― Vol. 109. ― P. 47‒56. https://doi.org/10.1016/j.matdes.2016.07.070.; Vagge, S. T. Thermal barrier coatings: review / S. T. Vagge, Suraj Ghogare // Materials Today: Proceedings. ― 2022. ― Vol. 56, part 3. ― P. 1201‒1216. https://doi.org/10.1016/j.matpr.2021.11.170.; Thakare, J. G. Thermal barrier coatings — a state of the art review / J. G. Thakare, C. Pandey, M. M. Mahapatra, R. S. Mulik // Met. Mater. Int. ― 2021. ― Vol. 27. ― P. 1947‒1968. https://doi.org/10.1007/s12540-020-00705-w.; Naebe, М. М. Functionally graded materials: a review of fabrication and properties / M. M. Naebe, K. Shirvanimoghaddam // Applied Materials Today. ― 2016. ― Vol. 5. ― P. 223‒245. https://doi.org/10.1016/j.apmt.2016.10.001.; Sam, M. Progression in manufacturing of functionally graded materials and impact of thermal treatment ― a critical review / M. Sam, R. Jojith, N. Radhika // Journal of Manufacturing Processes. ― 2021. ― Vol. 68, part A. ― P. 1339‒1377. https://doi.org/10.1016/j.jmapro.2021.06.062.; Allahyarzadeh, M. H. Gradient electrodeposition of Ni—Cu‒W (alumina) nanocomposite coating / M. H. Allahyarzadeh, M. Aliofkhazraei, A. R. Sabour Rouhaghdam, V. Torabinejad // Materials & Design. ― 2016. ― Vol. 107. ― P. 74‒81. https://doi.org/10.1016/j.matdes.2016.06.019.; Zhang, C. Additive manufacturing of functionally graded materials: a review / C. Zhang, F. Chen, Z. Huang [et al.] // Mater. Sci. Eng., A. ― 2019. ― Vol. 764. ― P. 138‒167. https://doi.org/10.1016/j.msea.2019.138209.; Tenuta, E. Material properties and mechanical behaviour of functionally graded steel produced by wire-arc additive manufacturing / E. Tenuta, A. Nycz, M. Noakes, S. Simunovic, M. H. A. Piro // Additive Manufacturing. ― 2021. ― Vol. 46. ― P. 1‒17. https://doi.org/10.1016/j.addma.2021.102175.; Li, K. A functionally graded material design from stainless steel to Ni-based superalloy by laser metal deposition coupled with thermodynamic prediction / K. Li, J. Zhan, M. Zhang [et al.] // Materials & Design. ― 2022. ― Vol. 217. ― P. 1‒11. https://doi.org/10.1016/j.matdes.2022.110612.; Hu, Z.-Y. A review of multi-physical fields induced phenomena and effects in spark plasma sintering: Fundamentals and applications / Z.-Y. Hu, Z.-H. Zhang, X. Cheng [et al.] // Materials & Design. ― 2020. ― Vol. 191. ― P. 1–54. https://doi.org/10.1016/j.matdes.2020.108662.; Cavaliere, P. Spark plasma sintering: process fundamentals / Р. Cavaliere, B. Sadeghi, A. Shabani // Spark Plasma Sintering of Materials. Springer, Cham. ― 2019. ― P. 3–20. https://doi.org/10.1007/978-3-030-05327-7_1.; Bose, S. Chapter 7 ― thermal barrier coatings (TBCs) / S. Bose // High Temperature Coatings (Second Edition). ― Butterworth-Heinemann, 2018. ― P. 199‒299. https:// doi.org/10.1016/B978-0-12-804622-7.00007-3.; Liu, B. Advances on strategies for searching for next generation thermal barrier coating materials / B. Liu, Y. Liu, C. Zhu [et al.] // J. Mater. Sci. Technol. ― 2019. ― Vol. 35, issue 5. ― P. 833‒851. https://doi.org/10.1016/j.jmst.2018.11.016.; Clarke, D. R. Thermal-barrier coatings for more efficient gas-turbine engines / D. R. Clarke, M. Oechsner, N. P. Padture // MRS Bulletin. ― 2012. ― Vol. 37. ― P. 891–898. https://doi.org/10.1557/mrs.2012.232.; Kul'met'eva, V. B. Synthesis of nanocrystalline zirconium dioxide stabilized with yttrium oxide for lowtemperature sintering / V. B. Kul'met'eva, S. E. Porozova, E. S. Gnedina // Russian Journal of Non-Ferrous Metals. ― 2013. ― Vol. 54, № 3. ― P. 239‒245. DOI:10.3103/S1067821213030097.; Abdelgawad, A. Effect of TGO thickness, pores, and creep on the developed residual stresses in thermal barrier coatings under cyclic loading using SEM imagebased finite element model / A. Abdelgawad, K. Al-Athel // Ceram. Int. ― 2021. ― Vol. 47, issue 14. ― P. 20064‒20076. https://doi.org/10.1016/j.ceramint.2021.03.336.; Mohammadzaki Goudarzi, Z. Effect of functionally graded structure design on durability and thermal insulation capacity of plasma-sprayed thick thermal barrier coating / Z. Mohammadzaki Goudarzi, Z. Valefi, P. Zamani // Ceram. Int. ― 2021. ― Vol. 47, issue 24. ― P. 34361‒34379. https://doi.org/10.1016/j.ceramint.2021.08.349.; Daroonparvar, M. Improvement of thermally grown oxide layer in thermal barrier coating systems with nano alumina as third layer / M. Daroonparvar, M. A. M Yajid, N. M. Yusof, M. S. Hussain // Trans. Nonferrous Met. Soc. China. ― 2013. ― Vol. 23. ― P. 1322‒1333. https://doi.org/10.1155/2013/520104.; Yajid, M. A. M. Formation of a dense and continuous Al2O3 layer in nano thermal barrier coating systems for the suppression of spinel growth on the Al2O3 oxide scale during oxidation / M. A. M. Yajid, N. M. Yusof, M. S. Hussain // J. Alloys Compd. ― 2013. ― Vol. 571. ― P. 205‒220. https://doi.org/10.1016/j.jallcom.2013.03.168.; Mahalingam, S. Thermal stability of rare earth-PYSZ thermal barrier coating with high-resolution transmission electron microscopy / S. Mahalingam, A. Manap, nS. Yunus, N. Afandi // Coatings. ― 2020. ― Vol. 10. ― Article № 1206. DOI:10.3390/coatings10121206.; Kumar, A. Nano-micro-structured 6–8 % YSZ thermal barrier coatings: a comprehensive review of comparative performance analysis / A. Kumar, J. Moledina, Y. Liu, K. Chen, P. C. Patnaik // Coatings. ― 2021. ― Vol. 11(12). ― P. 1474. https://doi.org/10.3390/coatings11121474.; Будиновский, С. А. Основные механизмы разрушения керамического слоя теплозащитных покрытий (обзор) / С. А. Будиновский, П. А. Стехов, О. Н. Доронин, Н. И. Артеменко // Труды ВИАМ. ― 2019. ― № 2. ― С. 105‒112. dx.doi.org/10.18577/2307-6046-2019-0-2-105-112.; https://newogneup.elpub.ru/jour/article/view/1843

  17. 17
    Academic Journal

    Source: NOVYE OGNEUPORY (NEW REFRACTORIES); № 12 (2021); 42-49 ; Новые огнеупоры; № 12 (2021); 42-49 ; 1683-4518 ; undefined

    File Description: application/pdf

    Relation: https://newogneup.elpub.ru/jour/article/view/1673/1399; Практикум по технологии керамики; под ред. И. Я. Гузмана. ― М. : РИФ «Стройматериалы», 2005. ― 336 с.; Вильк, Ю. Н. Устойчивость керамики Mg‒ЧСДЦ к термическим повреждениям / Ю. Н. Вильк // Огнеупоры и техническая керамика. ― 1997. ― № 10. ― С. 12‒14.; Osterstock, F. A method to compare the thermal shock resistances and the severity of quenching conditions of brittle solids / F. Osterstock, B. Legendre // J. Phis. III France. ― 1997. ― № 7. ― Р. 561‒574.; Awaji, H. Thermal shock testing of ceramics by infrared heating / H. Awaji, S. Honda, T. Nishikawa // Int. Ceram. J. ― 1998. ― № 5. ― Р. 55‒67.; Ivanov, D. A. Studying thermal shock resistance of ceramic materials based on their structural sensitivity to a stress concentrator / D. A. Ivanov // Refract. Ind. Ceram. ― 2021. ― Vol. 61, № 5. ― Р. 580‒586. Иванов, Д. А. Изучение термостойкости керамических материалов по чувствительности их структуры к концентратору напряжений / Д. А. Иванов // Новые огнеупоры. ― 2020. ― № 10. ― C. 39‒45.; Danzer, R. Fracture statistics of ceramics ― Weibull statistics and deviations from Weibull statistics / R. Danzer, P. Supancic, J. Pascual, T. Lube // Engineering Fracture Mechanics. ― 2007. ― № 74. ― P. 2919‒2932.; Ono, K. A simple estimation method of Weibull modulus and verification with strength data / K. Ono // Appl. Sci. ― 2019. ― № 9. ― P. 1575‒1614.; Bertalan, Z. Fracture strength: stress concentration, extreme value statistics, and the fate of the Weibull distribution / Z. Bertalan, A. Shekhawat, J. P. Sethua, S. Zapperi // Phys. Rev. Appl. ― 2014. ― № 2. ― P. 034008-1‒034008-8.; Zhang, S.-L. Statistical strength of brittle materials with strongly interacted collinear microcracks / S.-L. Zhang, Li Teng, Y. Wei // Int. J. Solids Structures. ― 1998. ― Vol. 35, № 11. ― P. 995‒1008.; Klein, C. A. Flexural strength of sapphire: Weibull statistical analysis of stressed area, surface coating, and polishing procedure effects / C. A. Klein // J. Appl. Phys. ― 2004. ― Vol. 96, № 6. ― P. 3172‒3179.; Pang, S.-D. Statistics of strength of ceramics: finite weakest-link model and necessity of zero threshold / S.-D. Pang, Z. P. Bažant, J.-L. Le / Int. J. Fract. ― 2008. ― № 154. ― P. 131‒ 145.; Nadarajah, S. Strength modeling using Weibull distributions / S. Nadarajah, S. Kotz // J. Mechanical Science and Technology. ― 2008. ― № 22. ― P. 1247‒1254.; Chaturvedi, A. Estimation and comparison of the stress-strength model with more than two states under Weibull distribution and type II censoring / A. Chaturvedi, K. Taruna // Communications in statistics ― theory and methods. ― 2019. ― Vol. 48, № 3. ― P. 537‒548.; Catangiu, A. Data scattering in strength measurement ot steels and glass/epoxy composite / A. Catangiu, D. N. Ungureanu, V. Despa // The scientific bulletin of Valahia University Materials and Mechanics. ― 2017. ― Vol. 15, № 12. ― P. 11‒16.; Zok, F. W. On weakest link theory and Weibull statistics / F. W. Zok // J. Am. Ceram. Soc. ― 2017. ― Vol. 100, № 4. ― P. 1265‒1268.; Песоцкая, Н. С. Исследование структурнопрочностных и фрактальных свойств СВС-корунда на мезоскопическом уровне / Н. С. Песоцкая, С. Е. Закиев, В. А. Веретенников [ и др.] // Вопросы материаловедения. ― 2002. ― № 1 (29). ― С. 406‒409.; Barbero, E. Statistical analysis of the mechanical properties of composite materials / E. Barbero, J. Fernández-Sáez, C. Navarro // Composites. Part B: Engineering. ― 2000. ― Vol. 31, № 5. ― P. 375‒381.; Quinn, J. B. A practical and systematic review of Weibull statistics for reporting strengths of dental materials / J. B. Quinn, G. D. Quinn // Dental Materials. ― 2010. ― № 26. ― P. 135‒147.; Никоноров, Н. В. Оптическое материаловедение: основы прочности оптического стекла / Н. В. Никоноров, С. К. Евстропьев. ― СПб. : СПбГУ ИТМО, 2009. ― 102 с.; Кирюшина, В. В. Исследование керамических материалов с применением методов вероятностного анализа при разработке и производстве элементов летательных аппаратов : дис. … канд. техн. наук / В. В. Кирюшина. ― Обнинск, 2014. ― 206 с.; Ballarini, R. The lower bound for glass strength and its interpretation with generalized Weibull statistics for structural applications / R. Ballarini, F. Asce, G. Pisano, G. Royer-Carfagni // J. Eng. Mech. ― 2016. ― Vol. 142, № 12. ― P. 04016100-1‒04016100-20.; Кирюшина, В. В. Исследование влияния масштабного фактора на прочностные свойства полимерных композиционных материалов / В. В. Кирюшина, Ю. Ю. Ковалева, П. А. Степанов, П. В. Коваленко // Изв. вузов. Ядерная энергетика. ― 2019. ― № 1. ― С. 97‒106.; Кирюшина, В. В. Оценка параметров распределения Вейбулла при анализе прочности керамических материалов для обтекателей / В. В. Кирюшина, В. С. Левашов, В. С. Фетисов, М. Ю. Русин // Механика композиционных материалов и конструкций. ― 2006. ― Т. 12, № 1. ― С. 76‒82.; Низовцев, В. Е. Некоторые модели оценки напряженно-деформированного состояния керамических композиционных материалов с учетом технологических пор / В. Е. Низовцев, О. Б. Сильченко, М. В. Силуянова [и др.] // Вестник Брянского гос. техн. ун-та. ― 2018. ― № 1 (62). ― С. 52‒64.; Малкин, А. И. Статистическая кинетика квазихрупкого разрушения / А. И. Малкин, Ф. А. КуликовКостюшко, Т. А. Шумихин // Журнал технической физики. ― 2008. ― Т. 78, вып. 3. ― С. 48‒56.; Разрушение. Т. 7. Часть 1 (неорганические материалы); под ред. Г. Либовица (пер. с англ.). ― М. : Мир, 1976. ― 634 с.; Иванов, Д. А. Композиционные материалы : уч. пособие для вузов / Д. А. Иванов, А. И. Ситников. ― М. : Юрайт, 2019. ― 253 с.; Шевченко, В. Я. Техническая керамика / В. Я. Шевченко, С. М. Баринов. ― М. : Наука, 1993. ― 187 с.; Баринов, С. М. Прочность технической керамики / С. М. Баринов, В. Я. Шевченко. ― М. : Наука, 1996. ― 159 с.; https://newogneup.elpub.ru/jour/article/view/1673

  18. 18
  19. 19
  20. 20
    Academic Journal

    Source: Proceedings of the National Academy of Sciences of Belarus. Physical-technical series; Том 66, № 3 (2021); 329-334 ; Известия Национальной академии наук Беларуси. Серия физико-технических наук; Том 66, № 3 (2021); 329-334 ; 2524-244X ; 1561-8358 ; 10.29235/1561-8358-2021-66-3

    File Description: application/pdf

    Relation: https://vestift.belnauka.by/jour/article/view/684/560; Pushin V. G., Yurchenko L. I., Kuranova N. N. Structure, phase transformations, properties, application. Trudy shkoly-seminara“Fazovye i strukturnye prevrashcheniya v stalyah” [Proceedings of the School-Seminar “Phase and Structural Transformations in Steels”], Magnitogorsk, 2001, issue 1, pp. 135–191 (in Russian).; Rubanik V. V., Rubanik V. V. Jr., Petrova-Burkina O. A. Thermokinetic EMF in nikelide titane. Materialy, tekhnologii, instrument = Materials, Technologies, Tools, 2012, vol. 17, no. 1, pp. 25–27 (in Russian).; Rubanik V. V., Rubanik V. V. jr., Petrova-Burkina O. A. Peculiarities of thermoelectric force behaviour in nikelide titane upon non-stationary heating. Materials Science Forum, 2013, vol. 738–739, pp. 292–296. https://doi.org/10.4028/www.scientific.net/MSF.738-739.292; Petrova-Burkina O. A., Rubanik V. V. Jr., Rubanik V. V. Changes in thermokinetic EMF and electrical resistance in TiNi alloys in thermoelastic phase transformations. Sovremennye metody i tekhnologii sozdaniya i obrabotki materialov. T. 1: Materialovedenie = Advanced Methods and Technologies of Materials Development and Processing. Vol. 1: Materials Science. Minsk, 2020, pp. 95–103 (in Russian).; Petrova-Burkina O. A., Rubanik V. V. Jr., Rubanik V. V. Use of thermokinetic EMF and electrical resistance for quality control of elongated products made of shape memory alloy. Pis’ma o materialah = Letters on Materials, 2020, vol. 10, no. 2, pp. 422–426 (in Russian). https://doi.org/10.22226/2410-3535-2020-4-422-426; Petrova-Burkina O. A., Rubanik V. V. Jr., Rubanik V. V., Gamzeleva T. V. Influence of heat treatment on thermokinetic EMF during reverse phase transition in titanium nickelide. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya fizika-technichnych navuk = Proceedings of the National Academy of Sciences of Belarus. Physical-technical series, 2020, vol. 65, no. 4, pp. 413–421 (in Russian). https://doi.org/10.29235/1561-8358-2020-65-4-413-421; Andreev V. A. Development of Production Technology and Research of Functional and Mechanical Properties of Wire Made of TiNi Alloys with the Effect of Shape Memory. St.-Petersburg, 2008. 136 p. (in Russian).; Uchil J., Kumara K. G., Mahesh K. K. Effect of thermal cycling on R-phase stability in a NiTi shape memory alloy. Materials Science and Engineering: A, 2002, vol. 332, pp. 25–28. https://doi.org/10.1117/12.514736; Belyaev S., Resnina N., Sibirev A., Lomakin I. Variation in kinetics of martensitic transformation during partial thermal cycling of the TiNi alloy. Thermochimica Acta, 2014, vol. 582, pp. 46–52. https://doi.org/10.1016/j.tca.2014.03.002; Indenbaum G. V., Novikov V. Y. Metal Recovery and Recrystallization. Moscow, Metallurgiya Publ., 1966. 326 p. (in Russian).; https://vestift.belnauka.by/jour/article/view/684