Showing 1 - 9 results of 9 for search '"термодинамическая оценка"', query time: 0.52s Refine Results
  1. 1
    Academic Journal

    Source: Science & Technique; Том 22, № 2 (2023); 103-112 ; НАУКА и ТЕХНИКА; Том 22, № 2 (2023); 103-112 ; 2414-0392 ; 2227-1031 ; 10.21122/2227-1031-2023-22-2

    File Description: application/pdf

    Relation: https://sat.bntu.by/jour/article/view/2648/2249; Viswanathan V., Katiyar N. K., Goel G., Matthews A., Goel S. (2021) Role of Thermal Spray in Combating Climate Change. Emergent Materials, 4 (6), 1515–1529. https://doi.org/10.1007/s42247-021-00307-1.; Bielyi A. V., Kalinitchenko A. S., Devoino O. G., Kukareko V. A. (2017) Surface Engineering of Structural Materials with Using of Plasma and Beam Technologies. Minsk, Belorusskaya Nauka Publ. 457 (in Russian).; Ilyushchenko A. F., Shevtsov A. I., Okovity V. A. (2011) The Formation of Thermal Coatings and their Modeling. Minsk, Belaruskaya Navuka Publ. 357 (in Russian).; Devoino O. G., Gorbunov A. V., Gorbunova V. A., Volod’ko A. S., Koval V. A., Yatskevich O. K., Halinouski A. A. (2021) Characterization of Opportunity for Upgrading of the System Based on Arc Plasma Torch for Thermal Spaying of Ceramic Materials, by Means of Use of Fuel Vortex Intensifier. Part I: Thermodynamic Modeling of the System Efficiency Parameters. Vestsi Natsyyanal’nai Akademii Navuk Belarusi. Seryya Fizika-Technichnych Navuk = Proceedings of the National Academy of Sciences of Belarus. Physical-Technical Series, 66 (4), 399–410. https://doi.org/10.29235/1561-8358-2021-66-4-399-410.; Devoino O. G., Gorbunov A. V., Volod’ko A. S., Yatskevich O. K., Gorbunova V. A. (2022) Characterization of Opportunity for Upgrading of the System Based on Arc Plasma Torch for Thermal Spaying of Ceramic Materials, by Means of Use of Fuel Vortex Intensifier. Part II. Thermal Engineering Estimation and Experimental Testing. Vestsi Natsyyanal’nai Akademii Navuk Belarusi. Seryya Fizika-Technichnych Navuk = Proceedings of the National Academy of Sciences of Belarus. Physical-Technical Series, 67 (1), 7–16. https://doi.org/10.29235/1561-8358-2022-67-1-7-16.; Gorbunov A. V., Devoino O. G., Gorbunova V. A., Yatskevitch O. K., Koval V. A. (2021) Thermodynamic Estimation of the Parameters for C–H–O–N–Me-Systems as Operating Fluid Simulants for New Processes of Powder Thermal Spraying and Spheroidizing. Nauka i Tekhnika = Science and Technique, 20 (5), 390–398. https://doi.org/10.21122/2227-1031-2021-20-5-390-398.; Pawlowski L. (2008) The Science and Engineering of Thermal Spray Coatings. Hoboken, John Wiley Sons Publ. 647. https://doi.org/10.1002/9780470754085.; Kuzmin V., Gulyaev I., Sergachev D., Vashchenko S., Kovalev O., Kornienko E., Tuezov A., Palagushkin B. (2019) Supersonic DC Plasma Torch for Deposition of High-Density Wear-Resistant Coatings. Materials Today: Proceedings, 19 (6), 2152–2156. https://doi.org/10.1016/j.matpr.2019.07.230.; Pershin L., Chen L., Mostaghimi J. (2008) Plasma Spraying of Metal Coatings Using CO2-Based Gas Mixtures. Journal of Thermal Spray Technology, 17 (5–6), 608–611. https://doi.org/10.1007/s11666-008-9265-2.; Salimijazi H., Hosseini M., Mostaghimi J., Pershin L., Coyle T. W., Samadi H., Shafyei A. (2012) Plasma Sprayed Coating Using Mullite and Mixed Alumina/Silica Powders. Journal of Thermal Spray Technology, 21 (5), 825–830. https://doi.org/10.1007/s11666-012-9766-x.; Pershin L., Mitrasinovic A., Mostaghimi J. (2013) Treatment of Refractory Powders by a Novel, High Enthalpy DC Plasma. Journal of Physics D: Applied Physics, 46 (22), 224019. https://doi.org/10.1088/0022-3727/46/22/224019.; Korzhik V. N., Borisova A. L., Popov V. V., Kolomiitsev M. V., Chaika A. A., Tkachuk V. I., Vigilyanskaya N. V. (2014) Cermet Coatings of Chromium Carbide-Nichrome System Produced by Supersonic Plasma Gas Air Spraying. The Paton Welding Journal, (12), 19–24. https://doi.org/10.15407/tpwj2014.12.05.; Yugeswaran S., Amarnath P., Ananthapadmanabhan P. V., Pershin L., Mostaghimi J., Chandra S., Coyle T. W. (2021) Thermal Conductivity and Oxidation Behavior of Porous Inconel 625 Coating Interface Prepared by Dual-Injection Plasma Spraying. Surface and Coating Technology, 411, 126990. https://doi.org/10.1016/j.surfcoat.2021.126990.; Borrell A., Carpio P., Salvador M. D., Mataix D. B., Carnicer V., Orts Tarí M. J. (2021) Modification of the Properties of Al2O3/TZ-3YS Thermal Barrier Coating by the Addition of Silicon Carbide Particles and Fructose. Coatings, 11 (4), 387. https://doi.org/10.3390/coatings11040387.; Kornienko E. E., Mul’ D. O., Rubtsova O. A., Vaschenko S. P., Kuzmin V. I., Gulyaev I. P., Sergachev D. V. (2016) Effect of Plasma Spraying Regimes on Structure and Properties of Ni3Al Coatings. Thermophysics and Aeromechanics, 23 (6), 919–928. https://doi.org/10.1134/S0869864316060147.; Kuzmin V., Gulyaev I., Sergachev D., Vaschenko S., Kornienko E., Tokarev A. (2017) Equipment and Technologies of Air-Plasma Spraying of Functional Coatings. MATEC Web of Conferences, 129, 01052. https://doi.org/10.1051/matecconf/201712901052.; Mostaghimi J., Pershin L., Salimijazi H., Nejad M., Ringuette M. (2021) Thermal Spray Copper Alloy Coatings as Potent Biocidal and Virucidal Surfaces. Journal of Thermal Spray Technology, 30 (1–2), 1–15. https://doi. org/10.1007/s11666-021-01161-7.; Yatskevitch O. K. (2019) Technique for Formation of Wear-Resistant Ceramic Coatings by Plasma Spray of Alumina Powders Doped with Molybdenum and Boron. Minsk, BNTU. 176 (in Russian).; Halinouski A. A., Gorbunov A. V., Mosse A. L. (2007) Thermophysical and Power Parameters of DC Electric Arc Plasma Torches with 200 kW Power for Reactors of Pyrolysis and Oxidation Pyrolysis of Hydrocarbons. Minsk, A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus. 42 (in Russian).; Dolatabadi A., Mostaghimi J., Pershin V. (2002) Effect of a Cylindrical Shroud on Particle Conditions in High Velocity Oxy-Fuel Spray Process. Science and Technology of Advanced Materials, 137 (3), 245–255. https://doi.org/10.1016/ S1468-6996(02)00023-2.; Chen M. J., Zhang P., Li Q. (2018) Design and Heat Transfer Analysis of a Compound Multi-Layer Insulations for Use in High Temperature Cylinder Thermal Protection Systems. Science China Technological Sciences, 61 (7), 994–1002. https://doi.org/10.1007/s11431-017-9250-x.; Barykin G., Parco M. (2009) The Oxy-Fuel Ionisation (OFI) Spray Process. Available at: https://www.researchgate.net/publication/267306937_The_Oxy-Fuel_Ionisation_OFI_ Spray_Process.; Martinez B., Mariaux G., Vardelle A., Barykin G., Parco M. (2009) Numerical Investigation of a Hybrid HVOF-Plasma Spraying Process. Journal of Thermal Spray Technology, 18 (5–6), 909–920. https://doi.org/10.1007/s11 666-009-9398-y.; Gorokhovski M., Karpenko E. I., Lockwood F. C., Messerle V. E., Trusov B. G., Ustimenko A. B. (2005) Plasma Technologies for Solid Fuels: Experiment and Theory. Journal of the Energy Institute, 78 (4), 157–171. https://doi.org/10.1179/174602205x68261.; Barbin N. M., Terentiev D. I., Alexeev S. G., Barbina T. M. (2015) Thermodynamic Analysis of Radionuclides Behaviour in Products of Vapour Phase Hydrothermal Oxidation of Radioactive Graphite. Journal of Radioanalytical and Nuclear Chemistry, 307 (2), 1459–1470. https://doi.org/10.1007/s10967-015-4587-2.; Mourao R., Marquesi A. R., Gorbunov A. V., Filho G. P., Halinouski A. A., Otani C. (2015). Thermochemical Assessment of Gasification Process Efficiency of Biofuels Industry Waste with Different Plasma Oxidants. IEEE Transactions on Plasma Science, 43 (10), 3760–3767. https://doi.org/10.1109/TPS.2015.2416129.; Wrona A., Bilewska K., Lis M., Kamińska M., Olszewski T., Pajzderski P., Więcław G., Jaśkiewicz M., Kamysz W. (2017) Antimicrobial Properties of Protective Coatings Produced by Plasma. Surface and Coating Technology, 318, 332–340. https://doi.org/10.1016/j.surfcoat. 2017.01.101.; Luzan S. A., Kyriienko M. M., (2015) Solutions to Problems of Increasing Resource Details for Tractors by Plasma Spraying with a View to Ensuring the Fire Explosion Safety Technology. Bulletin of the Petro Vasylenko Kharkiv National Technical University of Agriculture, 156, 581–587 (in Russian).; Antimicrobial Properties of Copper Surfaces. Available at: https://stormoff.ru/mediacenter/articles/article_43 (in Russian).; Benefits of Copper and BIO-C29: Technology that Eliminates up to 99.9 % of Fungi. Available at: https://decor.design/preimushhestva-medi-i-bio-c29-tehnologiya-ustranyayushhaya-do-999-gribkov (in Russian).; Meleshko A. A., Afinogenova A. G., Afinogenov G. E., Spiridonova A. A., Tolstoy V. (2020) Antibacterial Inorganic Agents: Efficiency of Using Multicomponent Systems. Russian Journal of Infection and Immunity, 10 (4), 639–654. https://doi.org/10.15789/2220-7619-AIA-1512 (in Russian).; https://sat.bntu.by/jour/article/view/2648

  2. 2
  3. 3
    Conference

    Contributors: Писаренко, Ю. А.

    Relation: Химия и химическая технология в XXI веке : материалы XIX Международной научно-практической конференции студентов и молодых ученых имени профессора Л. П. Кулёва, 21-24 мая 2018 г., г. Томск. — Томск, 2018.; http://earchive.tpu.ru/handle/11683/49688

  4. 4
  5. 5
  6. 6
  7. 7
    Academic Journal

    File Description: application/pdf

    Relation: Гринь Г. И. Термодинамическая оценка взаимодействия ионов никеля с восстановителями и окислителями в водных растворах / Г. И. Гринь, П. А. Козуб, Е. А. Семенов // Восточно-Европейский журнал передовых технологий = Eastern-Еuropean journal of enterprise technologies. – 2008. – № 3/4 (33). – C. 43-46.; http://repository.kpi.kharkov.ua/handle/KhPI-Press/29567; orcid.org/0000-0001-9280-947X

  8. 8
  9. 9