Showing 1 - 20 results of 304 for search '"термогравиметрический анализ"', query time: 0.70s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
    Academic Journal

    Source: Measurement Standards. Reference Materials; Том 20, № 3 (2024); 65-80 ; Эталоны. Стандартные образцы; Том 20, № 3 (2024); 65-80

    File Description: application/pdf

    Relation: https://www.rmjournal.ru/jour/article/view/505/347; Shaon Md T. R., Bogatova T. F. Carbon Footprint in Industry and Opportunities to Reduce It // Теплотехника и информатика в образовании, науке и производстве : сборник докладов X Всероссийской научно-практической конференции студентов, аспирантов и молодых учёных (TИМ’2022) с международным участием (Екатеринбург, 19–20 мая 2022 г.). Екатеринбург: УрФУ, 2022. С. 7–12.; Olivier J., Peters J. Trends in global CO 2 and total greenhouse gas emissions; 2020 report // PBL Netherlands Environmental Assessment Agency. 2020. P. 85.; Freund P. Making deep reductions in CO 2 emissions from coal-fired power plant using capture and storage of CO 2 // Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy. 2003. Vol. 217, № 1. P. 1–7. doi:10.1243/095765003321148628; Garg A., Shukla P. R. Coal and energy security for India: Role of carbon dioxide (CO 2 ) capture and storage (CCS) // Energy. 2009. Vol. 34, № 8. P. 1032–1041. doi:10.1016/j.energy.2009.01.005; Deep CCS: Moving beyond 90 % carbon dioxide capture / M. N. Dods [et al.] // Environmental Science & Technology. 2021. Vol. 55, № 13. P. 8524–8534. doi:10.1021/acs.est.0c07390; Singh B. Environmental evaluation of carbon capture and storage technology and large scale deployment scenarios : Doctoral thesis. Norges teknisk-naturvitenskapelige universitet, Fakultet for ingeniorvitenskap og teknologi, Program for industriell okologi, 2011.; Zhang Z. et al. A novel method for the preparation of CO 2 sorption sorbents with high performance // Applied Energy. 2014. Vol. 123. P. 179–184.; Webley P. A. Adsorption technology for CO2 separation and capture: a perspective // Adsorption. 2014. Vol. 20, № 2–3. P. 225–231.; Kuramoto K. et al. Repetitive Carbonation-Calcination Reactions of Ca-Based Sorbents for Efficient CO 2 Sorption at Elevated Temperatures and Pressures // Ind. Eng. Chem. Res. 2003. Vol. 42, № 5. P. 975–981.; Erans M., Manovic V., Anthony E. J. Calcium looping sorbents for CO 2 capture // Applied Energy. 2016. Vol. 180. P. 722–742.; Vaz S., Rodrigues De Souza A. P., Lobo Baeta B. E. Technologies for carbon dioxide capture: A review applied to energy sectors // Cleaner Engineering and Technology. 2022. Vol. 8. P. 100456.; Liu W. et al. Performance Enhancement of Calcium Oxide Sorbents for Cyclic CO 2 Capture – A Review // Energy Fuels. 2012. Vol. 26, № 5. P. 2751–2767.; Dunstan M. T. et al. CO 2 Capture at Medium to High Temperature Using Solid OxideBased Sorbents: Fundamental Aspects, Mechanistic Insights, and Recent Advances // Chem. Rev. 2021. Vol. 121, № 20. P. 12681–12745.; Halliday C., Hatton T. A. Sorbents for the Capture of CO 2 and Other Acid Gases: A Review // Ind. Eng. Chem. Res. 2021. Vol. 60, № 26. P. 9313–9346.; Naeem M. A. et al. Optimization of the structural characteristics of CaO and its effective stabilization yield high-capacity CO 2 sorbents // Nat Commun. 2018. Vol. 9, № 1. P. 2408.; Chen H. et al. Novel Optimized Process for Utilization of CaO-Based Sorbent for Capturing CO 2 and SO 2 Sequentially // Energy Fuels. 2012. Vol. 26, № 9. P. 5596–5603.; Bilton M., Brown A. P., Milne S. J. Investigating the optimum conditions for the formation of calcium oxide, used for CO 2 sequestration, by thermal decomposition of calcium acetate // J. Phys.: Conf. Ser. 2012. Vol. 371. P. 012075.; Arenas Castiblanco E. et al. A new approach to obtain kinetic parameters of corn cob pyrolysis catalyzed with CaO and CaCO 3 // Heliyon. 2022. Vol. 8, № 8. P. e10195.; Pojananukij N. et al. Synthesis of Alkali Metal/CaO Sorbent for CO 2 Capture at Low Temperature. 2010. Vol. 25, № 1. P. 77.; Ramezani M. et al. Determination of Carbonation / Calcination Reaction Kinetics of a Limestone Sorbent in low CO 2 Partial Pressures Using TGA Experiments // Energy Procedia. 2017. Vol. 114. P 259–270.; Mohamed M., Yusup S., Bustam M. A. Synthesis of CaO-based Sorbent from Biomass for CO 2 Capture in Series of Calcination-carbonation Cycle // Procedia Engineering. 2016. Vol. 148. P. 78–85.; Pimenidou P., Dupont V. Dolomite study for in situ CO 2 capture for chemical looping reforming // International Journal of Ambient Energy. 2015. Vol. 36, № 4. P. 170–182.; Danielsen S. P. O. et al. Molecular Characterization of Polymer Networks // Chem. Rev. 2021. Vol. 121, № 8. P. 5042–5092.; Haines P. J., Reading M., Wilburn F. W. Differential Thermal Analysis and Differential Scanning Calorimetry // Handbook of Thermal Analysis and Calorimetry. Elsevier, 1998. Vol. 1. P. 279–361.; Materazzi S., Risoluti R. Evolved Gas Analysis by Mass Spectrometry // Applied Spectroscopy Reviews. Taylor & Francis, 2014. Vol. 49, № 8. P. 635–665.; Tankov I. et al. Non-isothermal decomposition kinetics of pyridinium nitrate under nitrogen atmosphere // Thermochimica Acta. 2018. Vol. 665. P. 85–91.; Vyazovkin S. et al. ICTAC Kinetics Committee recommendations for analysis of multistep kinetics // Thermochimica Acta. 2020. Vol. 689. P. 178597.; Saadatkhah N. et al. Experimental methods in chemical engineering: Thermogravimetric analysis – TGA // Can J Chem Eng. 2020. Vol. 98, № 1. P. 34–43.; Šesták J., Hubík P., Mareš J. J. Thermal Physics and Thermal Analysis: From Macro to Micro, Highlighting Thermodynamics, Kinetics and Nanomaterials. Springer, 2017. 585 p.; Wiedemann H.-G., Bayer G. Trends and applications of thermogravimetry // Inorganic and Physical Chemistry. Berlin, Heidelberg: Springer, 1978. P. 67–140.; Никитин А. Д. Влияние водяного пара на физико-химические процессы в парогазовой установке с внутрицикловой газификацией твердого топлива : диссертация на соискание ученой степени кандидата технических наук: 01.04.14: Thesis. б. и., 2021.; Sun Z. et al. Density functional theory study on the thermodynamics and mechanism of carbon dioxide capture by CaO and CaO regeneration // RSC Adv. The Royal Society of Chemistry, 2016. Vol. 6, № 45. P. 39460–39468.; Li Z., Sun H., Cai N. Rate Equation Theory for the Carbonation Reaction of CaO with CO 2 // Energy Fuels. American Chemical Society, 2012. Vol. 26, № 7. P. 4607–4616.; Perrin C. L. Linear or Nonlinear Least-Squares Analysis of Kinetic Data? // J. Chem. Educ. American Chemical Society, 2017. Vol. 94, № 6. P. 669–672.; Rahman S. M. T., Hashan A. M., Rahman S. M. M. Numerical Analysis of the Equilibrium Composition and Structural Features of Coal Combustion Products: preprint. In Review, 2024.; Marland G., Rotty R. M. Carbon dioxide emissions from fossil fuels: a procedure for estimation and results for 1950–1982 // Tellus B: Chemical and Physical Meteorology. 1984. Vol. 36, № 4. P. 232.; Grasa G. et al. Application of the random pore model to the carbonation cyclic reaction // AIChE Journal. 2009. Vol. 55, № 5. P. 1246–1255.; Sedghkerdar M. H., Mahinpey N., Ellis N. The effect of sawdust on the calcination and the intrinsic rate of the carbonation reaction using a thermogravimetric analyzer (TGA) // Fuel Processing Technology. 2013. Vol. 106. P. 533–538.; Fedunik-Hofman L., Bayon A., Donne S. W. Comparative Kinetic Analysis of CaCO 3 /CaO Reaction System for Energy Storage and Carbon Capture: 21 // Applied Sciences. Multidisciplinary Digital Publishing Institute, 2019. Vol. 9, № 21. P. 4601.; Sun P. et al. Determination of intrinsic rate constants of the CaO-CO 2 reaction // Chemical Engineering Science. 2008. Vol. 63, № 1. P. 47–56.; https://www.rmjournal.ru/jour/article/view/505

  8. 8
    Academic Journal

    Contributors: The authors are grateful for the support of this research within the framework of the BRFFR projects No. F23ME-025 and No. F24MN-009., Авторы работы признательны за поддержку данного исследования в рамках проектов БРФФИ № Ф23МЭ-025 и № Ф24МН-009.

    Source: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 27, № 2 (2024); 107-116 ; Известия высших учебных заведений. Материалы электронной техники; Том 27, № 2 (2024); 107-116 ; 2413-6387 ; 1609-3577

    File Description: application/pdf

    Relation: https://met.misis.ru/jour/article/view/572/447; https://met.misis.ru/jour/article/downloadSuppFile/572/218; https://met.misis.ru/jour/article/downloadSuppFile/572/219; https://met.misis.ru/jour/article/downloadSuppFile/572/220; https://met.misis.ru/jour/article/downloadSuppFile/572/221; https://met.misis.ru/jour/article/downloadSuppFile/572/222; https://met.misis.ru/jour/article/downloadSuppFile/572/223; Wolf S.A., Awschalom D.D., Buhrman R.A., Daughton J.M., Von Molnar S., Roukes M.L., Chtchelkanova A.Y., Treger D.M. Spintronics: a spin-based electronic vision for the future. Science. 2001; 294(5546): 1488—1495. https://doi.org/10.1126/science.1065389; Zutic I., Fabian J., Das Sarma S. Spintronics: fundamentals and applications. Reviews of Modern Physics. 2004; 76(2): 323—410. https://doi.org/10.1103/RevModPhys.76.323; Kalanda N., Bobrikov I., Yarmolich M., Kuts V., Huang L., Hwang C., Kim D.-H. Interrelation among superstructural ordering, oxygen nonstoichiometry and lattice strain of double perovskite Sr2FeMoO6-δ materials. Journal of Materials Science. 2021; 56: 11698—11710. https://doi.org/10.1007/s10853-021-06072-0; Jungwirth T., Sinova J., Masek J., Kucera J., MacDonald A.H. Theory of ferromagnetic (III, Mn)V semiconductors. Reviews of Modern Physics. 2006; 78(3): 809—864. https://doi.org/10.1103/RevModPhys.78.809; Serrate D., DeTeresa J.M., Ibarra M.R. Double perovskites with ferromagnetism above room temperature. Journal of Physics: Condensed Matter. 2007; 19(2): 023201. https://doi.org/10.1088/0953-8984/19/2/023201; Topwal D., Sarma D.D., Kato H., Tokura Y.; Avignon M. Structural and magnetic properties of; Sr2Fe1+xMo1-xO6 (-1 ⩽ x ⩽ 0.25). Physical Review B. 2006; 73(9): 0944191. https://doi.org/10.1103/PhysRevB.73.094419; Karki S.B., Ramezanipour F. Magnetic and electrical properties of BaSrMMoO6 (M = Mn, Fe, Co, and Ni). Materials Today Chemistry. 2019; 13: 25—33. https://doi.org/10.1016/j.mtchem.2019.04.002; Balcells L., Navarro J., Bibes M., Roig A., Martinez B., Fontcuberta J. Cationic ordering control of magnetization in Sr2FeMoO6 double perovskite. Applied Physics Letters. 2001; 78(6): 14. https://doi.org/10.1063/1.1346624; Allub R., Navarro O., Avignon M., Alascio B. Effect of disorder on the electronic structure of the double perovskite Sr2FeMoO6. Physica B: Condensed Matter. 2002; 320(1–4): 13—17. https://doi.org/10.1016/S0921-4526(02)00608-7; Park B., Han H., Kim J., Kim Y.J., Kim C.S., Lee B.W. Correlation between anti-site disorder and magnetic properties in ordered perovskite Sr2FeMoO6. Journal of Magnetism and Magnetic Materials. 2004; 272–276(Pt 3): 1851—1852. https://doi.org/10.1016/j.jmmm.2003.12.429; Menéndez N., Garcia-Hernandez M., Sanchez D., Tornero J.D., Martinez J.L., Alonso J.A. Charge transfer and disorder in double perovskites. American Chemical Society. 2004; 16(18): 3565—3572. https://doi.org/10.1021/cm049305t; Sarma D.D. A new class of magnetic materials; Sr2FeMoO6 and related compounds. Current Opinion in Solid State and Materials Science. 2001; 5(4): 261—268. https://dx.doi.org/10.1016/S1359-0286(01)00014-6; Szotek Z., Temmerman W.M., Svane A., Petit L., Winter H. Electronic structure of half-metallic double perovskites. Physical Review B. 2003; 68(10): 104411. https://doi.org/10.1103/PhysRevB.68.104411; Sarma D.D., Mahadevan P., Saha-Dasgupta T., Ray S., Kumar A. Electronic structure of Sr2FeMoO6. Physical Review Letters. 2000; 85(12): 2549—2552. https://doi.org/10.1103/PhysRevLett.85.2549; Navarro J., Frontera C., Balcells LI., Martinez B., Fontcuberta J. Raising the Curie temperature in; Sr2FeMoO6 double perovskites by electron doping. Physical Review B. 2001; 64(9): 09241. https://doi.org/10.1103/PhysRevB.64.092411; Zhong W., Wu X.L., Tang N.J., Liu W., Chen W., Au C.T., Du Y.W. Magnetocaloric effect in ordered double-perovskite Ba2FeMoO6 synthesized using wet chemistry. The European Physical Journal B – Condensed Matter and Complex Systems. 2004; 41: 213—217. https://doi.org/10.1140/epjb/e2004-00312-9; Zhong W., Tang N.J., Wu X.L., Liu W., Chen W., Jiang H.Y., Du Y.W. Magnetocaloric effect above room temperature in the ordered double-perovskite Ba2Fe1+xMo1-xO6. Journal of Magnetism and Magnetic Materials. 2004; 282: 151—155. https://doi.org/10.1016/j.jmmm.2004.04.036; Tomioka Y., Okuda T., Okimoto Y., Kumai R., Kobayashi K.-I., Tokura Y. Magnetic and electronic properties of a single crystal of ordered double perovskite Sr2FeMoO6. Physical Review B. 2000; 61(1): 422. https://doi.org/10.1103/PhysRevB.61.422; Dhahri A., Dhahri J., Zemni S., Oumezzine M., Vincent H. Structural, magnetic and magnetocaloric effect in double perovskite Ba2CrMo1-xWxO6. Journal of Alloys and Compounds. 2006; 420(1–2): 15—19. https://doi.org/10.1016/j.jallcom.2005.10.030; Moritomo Y., Xu S., Akimoto T., Machida A., Hamada N., Ohoyama K., Nishibori E., Takata M., Sakata M. Electron doping effects in conducting Sr2FeMoO6. Physical Review B. 2000; 62(21): 14224. https://doi.org/10.1103/PhysRevB.62.14224; Garcia-Hernandez M., Martinez J.L., Martinez-Lope M.J., Casais M.T., Alonso J.A. Finding universal correlations between cationic disorder and low field magnetoresistance in FeMo double perovskite series. Physical Review Letters. 2001; 86(11–12): 2443. https://doi.org/10.1103/PhysRevLett.86.2443; Navarro J., Nogues J., Munoz J.S., Fontcuberta J. Antisites and electron-doping effects on the magnetic transition of Sr2FeMoO6 double perovskite. Physical Review B. 2003; 67(17): 174416. https://doi.org/10.1103/PhysRevB.67.174416; Kahoul A., Aziz A., Colis S., Stoelfer D., Moubah R., Schmerber G., Leuvrey C. Effect of La doping on the properties of Sr2-xLaxFeMoO6 double perovskite. Journal of Applied Physics. 2008; 104(12): 123903. https://doi.org/10.1063/1.3043586; Jana S., Meneghini C., Sanyal P., Sarkar S., Saha-Dasgupta T., Karis O., Ray S. Signature of an antiferromagnetic metallic ground state in heavily electron-doped Sr2FeMoO6. Physical Review B. 2012; 86(5): 054433. https://doi.org/10.1103/PhysRevB.86.054433; Sanyal P., Das H., Saha-Dasgupta T. Evidence of kinetic-energy-driven antiferromagnetism in double perovskites: a first-principles study of La-doped Sr2FeMoO6. Physical Review B. 2009; 80(22): 224412. https://doi.org/10.1103/PhysRevB.80.224412; Fang, T.-T., Lin J.-C. Formation kinetics; of Sr2FeMoO6 double perovskite. Journal of Materials Science. 2005; 40(1): 683—686. https://doi.org/10.1007/s10853-005-6307-8; Yarmolich M., Kalanda N., Demyanov S., Terryn H., Ustarroz J., Silibin M., Gorokh G. Influence of synthesis conditions on microstructure and phase transformations of annealed Sr2FeMoO6-x nanopowders formed by the citrate-gel method. Beilstein Journal of. Nanotechnology. 2016; 7: 1202—1207. https://doi.org/10.3762/bjnano.7.111; Cernea M., Vasiliu F., Bartha C., Plapcianu C., Merconiu I., Characterization of ferromagnetic double perovskite Sr2FeMoO6 prepared by various methods. Ceramics International. 2014; 40(8 Pt A): 11601—11609. https://doi.org/10.1016/j.ceramint.2014.03.142; Kalanda N.A., Gurskii A.L., Yarmolich M.V., Petrov A.V., Bobrikov I.A., Ivanshina O.Yu., Sumnikov S.V., Maia F., Zhaludkevich A.L., Demyanov S.E. Sequence of phase transformations at the formation of the stronitum chrome-molybdate compound. Modern Electronic Materials. 2019; 5(2): 69—75. https://doi.org/10.3897/j.moem.5.2.50758; Jurca B., Berthon J., Dragoe N., Berthet P., Influence of successive sintering treatments on high ordered Sr2FeMoO6 double perovskite properties. Journal of Alloys and Compounds. 2009; 474(1–2): 416—423. https://doi.org/10.1016/j.jallcom.2008.06.100; Kraus W., Nolze G. POWDERCELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography. 1996; 29: 301—303. https://doi.org/10.1107/S0021889895014920; Rodríguez-Carvajal J. Recent developments of the program FULLPROF in Commission on Powder Diffraction (IUCr). Newsletter. 2001; 26: 12—19.; https://met.misis.ru/jour/article/view/572

  9. 9
  10. 10
  11. 11
    Conference

    Contributors: Казьмина, Ольга Викторовна

    File Description: application/pdf

    Relation: Химия и химическая технология в XXI веке : материалы XXIV Международной научно-практической конференции студентов и молодых ученых имени выдающихся химиков Л. П. Кулёва и Н. М. Кижнера, посвященной 85-летию со дня рождения профессора А. В. Кравцова, Томск, 15-19 мая 2023 г. Т. 1; http://earchive.tpu.ru/handle/11683/76629

  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
    Academic Journal

    Contributors: The authors are grateful for the support of this study within the framework of the BRFFR projects No F21IZR-004 and No. F21U-003., Авторы работы признательны за поддержку данного исследования в рамках проектов БРФФИ № Ф21ИЗР-004 и № Ф21У-003.

    Source: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 26, № 1 (2023); 5-16 ; Известия высших учебных заведений. Материалы электронной техники; Том 26, № 1 (2023); 5-16 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2023-1

    File Description: application/pdf

    Relation: https://met.misis.ru/jour/article/view/506/406; Goodenough J.B. Electronic and ionic transport properties and other physical aspects of perovskites. Reports on Progress in Physics. 2004; 67: 1915—1994. https://doi.org/10.1088/0034-4885/67/11/R01; Balagurov A.M., Bushmeleva S.N., Pomjakushin V.Yu., Sheptyakov D.V., Amelichev V.A., Gorbenko O.Yu., Kaul A.R., Gan’shina E.A., Perkins N.B. Magnetic structure of NaMnO3 consistently doped with Sr and Ru. Physical Review B. 2004; 70: 014427. https://doi.org/10.1103/PhysRevB.70.014427; Дунаевский С.М. Магнитные фазовые диаграммы манганитов в области их электронного легирования (обзор). Физика твердого тела. 2004; 46(2): 193—211.; Kozlenko D.P., Glazkov V.P., Jirák Z., Savenko B.N. High pressure effects on the crystal and magnetic structure of Pr1-xSrxMnO3 manganites (x = 0.5–0.56). Journal of Physics: Condensed Matter. 2004; 16(13): 2381—2394. https://doi.org/10.1088/0953-8984/16/13/017; Янчевский О.З., Вьюнов О.И., Белоус А.Г., Товстолыткин А.И., Кравчик В.П. Синтез и свойства манганитов La0.7Sr0.3Mn1-xTixO3. Физика твердого тела. 2006; 48(4): 667—673.; McIntosh S., Vente J.F., Haije W.G., Blank D.H.A., Bouwmeester H.J.M. Structure and oxygen stoichiometry of SrCo0.8Fe0.2O3-δ and Ba0.5Sr0.5Co0.8Fe0.2O3-δ. Solid State Ionics. 2006; 177(19–25): 1737—1742. https://doi.org/10.1016/j.ssi.2006.03.041; Nagaev E.L. Lanthanum manganites and other giant-magnetoresistance magnetic conductors. Physics – Uspekhi. 1996; 39(8): 781—806. https://doi.org/10.1070/ PU1996v039n08ABEH000161; Maignan A., Martin C., Pelloquin D., Nguyen N., Raveau B. Structural and magnetic studies of ordered oxygen-deficient perovskites LnBaCo2O5+δ, closely related to the ‘‘112’’ structure. Journal of Solid State Chemistry. 1999; 142(2): 247—260. https://doi.org/10.1006/jssc.1998.7934; Yamazoe N., Furukawa S., Teraoka Y., Seiyama T. The effect of oxygen sorption on the crystal structure of La1-xSrxCoO3-δ. Chemistry Letters. 1982; 11(12): 2019—2022. https://doi.org/10.1246/cl.1982.2019; van den Brink, J., Khaliullin, G., Khomskii, D. Charge and orbital order in half-doped manganites. Physical Review Letters. 1999; 83(24): 5118. https://doi.org/10.1103/PhysRevLett.83.5118; Deshmukh A.V., Pati l S.I., Bhagat S.M., Sagdeo P.R., Choudhary R.J., Phase D.M. Effect of iron doping on electrical, electronic and magnetic properties of La0.7Sr0.3MnO3. Journal of Physics D: Applied Physics. 2009; 42(18): 185410. https://doi.org/10.1088/0022-3727/42/18/185410; Kuo J.H., Anderson H.U., Sparlin D.M. Oxidation-reduction behavior of undoped and Sr-doped LaMnO3: defect structure, electrical conductivity, and thermoelectric power. Journal of Solid State Chemistry. 1990; 87(1): 55—63. https://doi.org/10.1016/0022-4596(90)90064-5; Kruidhof H., Bouwmeester H. J.M., v. Doorn R.H.E., Burggraaf A.J. Influence of order-disorder transitions on oxygen permeability through selected nonstoichiometric perovskite-type oxides. Solid State Ionics. 1993; 63–65: 816—822. https://doi.org/10.1016/0167-2738(93)90202-E; Ritter C., Ibarra M.R., Morellon L., Blasco J., Garcia J., De Teresa J.M. Structural and magnetic properties of double perovskites AA’FeMoO6 (AA’ = Ba2, BaSr, Sr2 and Ca2). Journal of Physics: Condensed Matter. 2000; 12(38): 8295—8308. https://doi.org/10.1088/0953-8984/12/38/306; Goodenough J.B. Metallic oxides. Progress in Solid State Chemistry. 1971: 5: 145—399. https://doi.org/10.1016/0079-6786(71)90018-5; Troyanchuk I.O., Bushinsky M.V., Szymczak H., Bärner K., Maignan A. Magnetic interaction in Mg, Ti, Nb doped manganites. European Physical Journal B. 2002: 28(1): 75—80. https://doi.org/10.1140/epjb/e2002-00202-2; Ульянов А.Н., Мазур А.С., Янг Д.С., Криворучко В.Н., Даниленко И.А., Константинова Т.Е., Левченко Г.Г. Локальные структурные и магнитные неоднородности в наноразмерных La0.7Sr0.3MnO3 манганитах. Наносистемы, Наноматериалы, Нанотехнологии. 2011; 9(1): 107—114. https://www.imp.kiev.ua/nanosys/media/pdf/2011/1/nano_vol9_iss1_p0107p0114_2011.pdf; Каланда Н.А., Ярмолич М.В., Гурский А.Л., Петров А.В., Желудкевич А.Л., Игнатенко О.В., Сердечнова М. Кислородная нестехиометрия и магнитные свойства легированных манганитов La0.7Sr0.3Mn0.95Fe0.05O3-δ. Известия высших учебных заведений. Материалы электронной техники. 2022; 25(1): 52—63. https://doi.org/10.17073/1609-3577-2022-1-52-63; dos Santos-Gómez L., Leon-Reina L., Porras-Vazquez J.M., Losilla E.R., Marrero-Lopez D. Chemical stability and compatibility of double perovskite anode materials for SOFCs. Solid State Ionics. 2013; 239: 1—7. https://doi.org/10.1016/j.ssi.2013.03.005; Rodríguez-Carvajal J. Recent developments of the program FULLPROF. Commission on powder diffraction (IUCr). Newsletter. 2001; 26: 12—19.; Kraus W. POWDER CELL — a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography. 1996; 29(3): 301—303. https://doi.org/10.1107/S0021889895014920; Меrzhanov А.G., Barzykin V.V., Shteinberg A.S., Gontkovskayaт V.T. Methodological Principles in studying chemical reaction kinetics under conditions of programmed heating. Thermochimica Acta. 1977; 21(3): 301—332. https://doi.org/10.1016/0040-6031(77)85001-6; Sánchez-Rodríguez D., Eloussifi H., Farjas J., Roura P., Dammak M. Thermal gradients in thermal analysis experiments: Criterions to prevent inaccuracies when determining sample temperature and kinetic parameters. Thermochimica Acta. 2014; 589: 37—46. https://doi.org/10.1016/j.tca.2014.05.001; Каланда Н.А. Термостимулированная десорбция кислорода в Sr2FeMoO6-δ. Известия высших учебных заведений. Материалы электронной техники. 2019: 21(1): 48—53. https://doi.org/10.17073/1609-3577-2018-1-48-53; Третьяков Ю.Д. Развитие неорганической химии как фундаментальной основы создания новых поколений функциональных материалов. Успехи химии. 2004: 73(9): 899—916.; Штиллер В. Уравнение Аррениуса и неравновесная кинетика. Изд-во Мир. 2000. 176 c.; Mizusaki J., Mori N., Takai H., Yonemura Y., Minamiue H., Tagawa H., Dokiya M., Inaba H., Naraya K., Sasamoto T., Hashimoto T. Oxygen nonstoichiometry and defect equilibrium in the perovskite-type oxides La1-xSrxMnO3+d. Solid State Ionics, 2000; 129(1-4): 163—177. https://doi.org/10.1016/S0167-2738(99)00323-9; https://met.misis.ru/jour/article/view/506

  19. 19
    Conference

    Contributors: Суржиков, Анатолий Петрович

    File Description: application/pdf

    Relation: info:eu-repo/grantAgreement/RSF//19-72-10078-П; Ресурсоэффективные системы в управлении и контроле: взгляд в будущее : сборник научных трудов XI Международной конференции школьников, студентов, аспирантов, молодых ученых, 8-10 ноября 2022 г., г. Томск; http://earchive.tpu.ru/handle/11683/74767

  20. 20
    Conference

    Contributors: Видяев, Дмитрий Геннадьевич

    File Description: application/pdf

    Relation: Изотопы: технологии, материалы и применение : сборник тезисов докладов VII Международной научной конференции молодых ученых, аспирантов и студентов, г. Томск, 25-28 октября 2021 г.; http://earchive.tpu.ru/handle/11683/69050