-
1Academic Journal
Θεματικοί όροι: антибактериальная активность, биоцидные глазури, полуфриттованная глазурь, растекаемость, температурный коэффициент линейного расширения, химическая устойчивость
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://elib.belstu.by/handle/123456789/71450
-
2Academic Journal
Συγγραφείς: A. R. Muzafarov, V. I. Savander
Πηγή: Глобальная ядерная безопасность, Vol 0, Iss 3, Pp 62-72 (2024)
Θεματικοί όροι: serpent, борный поглотитель, избыточная реактивность, плотностной коэффициент реактивности, ввэр, твэл, TK9001-9401, гадолиний, коэффициент размножения, Nuclear engineering. Atomic power, полный температурный коэффициент реактивности, эрбий
Σύνδεσμος πρόσβασης: https://doaj.org/article/cc697760d520439dbe00809b8eb0472f
-
3Academic Journal
Θεματικοί όροι: электродные стекла, синтез электродных стекол, ТКЛР, электрическое сопротивление, химическая стойкость, температурный коэффициент линейного расширения
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://elib.belstu.by/handle/123456789/69926
-
4Academic Journal
Θεματικοί όροι: лазерные кристаллы, анизотропия ТКЛР, бериллат лантана, ТКЛР, кристалл бериллата лантана, температурный коэффициент линейного расширения, термическое расширение
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://elib.belstu.by/handle/123456789/69913
-
5Academic Journal
Θεματικοί όροι: глазурные покрытия, диоксид титана, рентгенофазовый анализ, температурный коэффициент линейного расширения, титансодержащие глазурные покрытия, электронная микроскопия, ИК спектроскопия, инфракрасная спектроскопия
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://elib.belstu.by/handle/123456789/69439
-
6Academic Journal
Θεματικοί όροι: температурные зависимости, температурный коэффициент линейного преломления, оптические стекла, оксид калия, вязкость стекол, показатель преломления, боросиликатные стекла, оксид бора
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://elib.belstu.by/handle/123456789/69382
-
7Academic Journal
Θεματικοί όροι: вакуумплотное соединение, легкоплавкие стекла, стеклокристаллические цементы, фазовые превращения, оксид цинка, оптоэлектронные устройства, температурный коэффициент линейного расширения
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://elib.belstu.by/handle/123456789/69254
-
8Academic Journal
Θεματικοί όροι: оксиды-модификаторы, волоконная оптика, импортозамещение, оксид кобальта, оптичнеское стекловолокно, температурный коэффициент линейного расширения
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://elib.belstu.by/handle/123456789/69240
-
9Academic Journal
Θεματικοί όροι: электродные стекла, устойчивость в растворах HF, стеклянные электроды, фторсодержащие среды, температурный коэффициент линейного расширения, стабилизация потерь массы
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://elib.belstu.by/handle/123456789/69053
-
10Academic Journal
Θεματικοί όροι: легкоплавкие стекла, элементный анализ, температурное расширение, оксид цинка, температурный коэффициент линейного расширения, термообработка стекла
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://elib.belstu.by/handle/123456789/69004
-
11Academic Journal
Θεματικοί όροι: изделия хозяйственно-бытового назначения, термостойкие керамические материалы, термостойкая керамика, температурный коэффициент линейного расширения, керамические массы, фазовый состав
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://elib.belstu.by/handle/123456789/68885
-
12Academic Journal
Θεματικοί όροι: нефриттованные цветные глазури, температурный коэффициент линейного расширения, майолика, легкоплавкие глазури, керамика, Околовское месторождение
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://elib.belstu.by/handle/123456789/68867
-
13Academic Journal
Θεματικοί όροι: микротвердость стекол, химическая стойкость, бор, кальцийсодержащие стекла, температурный коэффициент линейного расширения, рентгеноспектральный анализ, боросиликатные стекла, цинксодержащие стекла
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://elib.belstu.by/handle/123456789/68640
-
14Academic Journal
Θεματικοί όροι: циркониевые глазури, рентгенофазовый анализ, нефриттованные глазури, санитарная керамика, температурный коэффициент линейного расширения, воллостонит
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://elib.belstu.by/handle/123456789/68643
-
15Academic Journal
Συγγραφείς: Levitskiy, I., Dyadenko, M., Trusova, E.
Πηγή: CHEMISTRY AND CHEMICAL ENGINEERING. 2024
Θεματικοί όροι: antibacterial activity, heat resistance, гомогенная антибактериальная активность, thermal expansion coefficient, термостойкость, полуфриттованная глазурь, semi-fritted glaze, температурный коэффициент линейного расширения, химическая устойчивость, износостойкость, wear resistance, chemical resistance
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://elib.belstu.by/handle/123456789/70109
https://doi.org/10.70189/1992-9498.1631 -
16Academic Journal
Θεματικοί όροι: температурный коэффициент лиинейного расширения, антибактериальная активность, оксиды металлов, переменная валентность, полуфриттованные глазури, термостойкость, микротвердость, износостойкость, химическая устойчивость
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://elib.belstu.by/handle/123456789/67102
-
17
-
18Academic Journal
Πηγή: Труды БГТУ: Серия 2. Химические технологии, биотехнологии, геоэкология, Iss 2, Pp 57-64 (2023)
Θεματικοί όροι: блеск, Chemical engineering, антибактериальная активность, термостойкость, биоцидные глазури, растекаемость, полуфриттованная глазурь, TP155-156, температурный коэффициент линейного расширения, износостойкость, химическая устойчивость, белизна
Περιγραφή αρχείου: application/pdf
-
19Academic Journal
Συγγραφείς: A. V. Markov, A. E. Zverev, V. A. Markov, А. В. Марков, А. Е. Зверев, В. А. Марков
Συνεισφορές: This work was carried out in accordance with the 195-ITKhT Initiative Research Program., Работа выполнена в соответствии с программой инициативной научно-исследовательской работы 195-ИТХТ.
Πηγή: Fine Chemical Technologies; Vol 19, No 5 (2024); 429-440 ; Тонкие химические технологии; Vol 19, No 5 (2024); 429-440 ; 2686-7575 ; 2410-6593
Θεματικοί όροι: отрицательный температурный коэффициент электрического сопротивления (ОТК), self-regulating heaters, polyolefins, electrically conductive carbon black, positive temperature coefficient of electrical resistance (PTC), negative temperature coefficient of electrical resistance (NTC), саморегулирующиеся нагреватели, полиолефины, электропроводный технический углерод, положительный температурный коэффициент электрического сопротивления (ПТК)
Περιγραφή αρχείου: application/pdf
Relation: https://www.finechem-mirea.ru/jour/article/view/2161/2067; https://www.finechem-mirea.ru/jour/article/view/2161/2066; https://www.finechem-mirea.ru/jour/article/downloadSuppFile/2161/1455; Рагушина М.Д., Евсеева К.А., Калугина Е.В., Ушакова О.Б. Полимерные композиционные материалы с антистатическими и электропроводящими свойствами. Пластические массы. 2021;(3–4):6–9. https://doi.org/10.35164/0554-2901-2021-3-4-6-9; Bregman A., Taub A., Michielssen E. Computational design of composite EMI shields through the control of pore morphology. MRS Communications. 2018;8(3):1153–1157. https://doi.org/10.1557/mrc.2018.171; Chen J., Zhu Y., Huang J., Zhang J., Pan D., Zhou J., Ryu J., Umar A., Guo Z. Advances in Responsively Conductive Polymer Composites and Sensing Applications. Polym. Rev. 2021;61(1):157–193. https://doi.org/10.1080/15583724.2020.1734818; Chen L., Zhang J. Designs of conductive polymer composites with exceptional reproducibility of positive temperature coefficient effect: A review. J. Appl. Polym. Sci. 2021;138(3):49677. https://doi.org/10.1002/app.49677; Zhang P., Wang B. Positive temperature coefficient effect and mechanism of compatible LLDPE/HDPE composites doping conductive graphite powders. J. Appl. Polym. Sci. 2018;135(27):46453. https://doi.org/10.1002/app.46453; Zhang C., Ma C.A., Wang P., Sumita M. Temperature dependence of electrical resistivity for carbon black filled ultra-high molecular weight polyethylene composites prepared by hot compaction. Carbon. 2005;43(12):2544–2553. https://doi.org/10.1016/j.carbon.2005.05.006; Shen L., Wang F.Q., Yang H., Meng Q.R. The combined effects of carbon black and carbon fiber on the electrical properties of composites based on polyethylene or polyethylene/ polypropylene blend. Polym. Test. 2011;30(4):442–448. https://doi.org/10.1016/j.polymertesting.2011.03.007; Марков В.А., Кандырин Л.Б., Марков А.В. Влияние деформирования на электрическое сопротивление композитов на основе полиэтилена и технического углерода. Конструкции из композиционных материалов. 2013;4:40–44.; Марков А.В., Тарасова К.С., Марков В.А. Влияние релаксационных процессов при деформировании на электрическое сопротивление полипропиленовых композитов с техническим углеродом. Тонкие химические технологии. 2021;16(4):345–351. https://doi.org/10.32362/2410-6593-2021-16-4-345-351; Марков А.В., Гущин В.А., Марков В.А. Термоэлектрические характеристики электропроводящих композитов на основе смесей кристаллизующихся и аморфных полимеров с техническим углеродом. Пластические массы. 2019;(1–2):44–47.; Марков А.В., Марков В.А., Чижов А.С. Влияние характеристик полиэтилена на термоэлектрические свойства полиэтиленовых композитов с техническим углеродом. Пластические массы. 2021;(5–6):18–23. https://doi.org/10.35164/0554-2901-2021-5-6-18-23; Zeng Y., Lu G., Wang H., Du J., Ying Z., Liu C. Positive temperature coefficient thermistors based on carbon nanotube/polymer composites. Sci. Rep. 2014;4(1):6684. https://doi.org/10.1038/srep06684; Luo S., Wong C.P. Study on effect of carbon black on behavior of conductive polymer composites with positive temperature coefficient. IEEE Trans. Compon. Packag. Technol. 2000;23(1):151–156. https://doi.org/10.1109/6144.833054; Vigueras-Santiago E., Hernnández-López S., Camacho-Lopez M., Lara-Sanjuan O. Electric anisotropy in high density polyethylene + carbon black composites induced by mechanical deformation. J. Phys.: Conf. Ser. 2009;167(1):012039. https://doi.org/10.1088/1742-6596/167/1/012039; Chen Y., Song Y., Zhou J., Zheng Q. Effect of uniaxial pressure on conduction behavior of carbon black filled poly(methyl vinyl siloxane) composites. Chinese Sci. Bull. 2005;50: 101–107. https://doi.org/10.1007/BF02897510; De Focatiis D.S.A., Hull D., Sánchez-Valencia A. Roles of prestrain and hysteresis on piezoresistance in conductive elastomers for strain sensor applications. Plastics, Rubber and Composites. 2012;41(7):301–309. https://doi.org/10.1179/1743289812Y.0000000022; Lee G.J., Suh K.D., Im S.S. Study of electrical phenomena in carbon black–filled HDPE composite. Polym. Eng. Sci. 1998;38(3):471–477. https://doi.org/10.1002/pen.10209; Choi H.J., Kim M.S., Ahn D., Yeo S.Y., Lee S. Electrical percolation threshold of carbon black in a polymer matrix and its application to antistatic fibre. Sci. Rep. 2019;9(1):6338. https://doi.org/10.1038/s41598-019-42495-1; Tang H., Chen X., Luo Y. Studies on the PTC/NTC effect of carbon black filled low density polyethylene composites. Eur. Polym. J. 1997;33(8):1383–1386. https://doi.org/10.1016/S0014-3057(96)00221-2; Brigandi P.J., Cogen J.M., Pearson R.A. Electrically conductive multiphase polymer blend carbon‐based composites. Polym. Eng. Sci. 2014;54(1):1–16. https://doi.org/10.1002/PEN.23530; Заикин А.Е., Жаринова Е.А., Бикмуллин Р.С. Особенности локализации технического углерода на границе раздела полимерных фаз. Высокомолекулярные соединения. Серия А. 2007;49(3):499–509.; Марков А.В., Чижов Д.С. Электропроводящие саморегулирующиеся материалы на основе полиэтиленовых композиций с СВМПЭ и техническим углеродом. Тонкие химические технологии. 2019;14(2):60–69. https://doi.org/10.32362/2410-6593-2019-14-2-60-69; Zhou P., Yu W., Zhou C., Liu F., Hou L., Wang J. Morphology and electrical properties of carbon black filled LLDPE/EMA composites. J. Appl. Polym. Sci. 2007;103(1):487–492. https://doi.org/10.1002/app.25020; Bao Y., Xu L., Pang H., Yan D.X., Chen C., Zhang W.Q., Tang J.H., Li Z.M. Preparation and properties of carbon black/ polymer composites with segregated and double-percolated network structures. J. Mater. Sci. 2013;48:4892–4898. https://doi.org/10.1007/s10853-013-7269-x; Юркин А.А., Харламова К.И., Абрамушкина О.И., Суриков П.В. Технология переработки пластических масс: учебно-методическое пособие. М.: РТУ МИРЭА; 2023. 95 с. ISBN 978-5-7339-1995-9; Марков В.А., Кандырин Л.Б., Марков А.В. Влияние кристаллизации полимеров на электрическое сопротивление их композиций с техническим углеродом. Конструкции из композиционных материалов. 2013;3:35–40.; Knite M., Teteris V., Kiploka A., Kaupuzs J. Polyisoprenecarbon black nanocomposites as tensile strain and pressure sensor materials. Sens. Actuators A: Phys. 2004;110(1–3): 142–149. https://doi.org/10.1016/j.sna.2003.08.006; Starý Z., Krückel J., Schubert D., Münstedt H. Behavior of Conductive Particle Networks in Polymer Melts under Deformation. AIP Conf. Proc. 2011;1375:232–239. https://doi.org/10.1063/1.3604483; Xie H., Dong L., Sun J. Influence of radiation structures on positive-temperature-coefficient and negative-temperaturecoefficient effects of irradiated low-density polyethylene/carbon black composites. J. Appl. Polym. Sci. 2005;95(3): 700–704. https://doi.org/10.1002/app.21220; Yi X.S., Zhang J.F., Zheng Q., Pan Y. Influence of irradiation conditions on the electrical behavior of polyethylene carbon black conductive composites. J. Appl. Polym. Sci. 2000;77(3):494–499. https://doi.org/10.1002/(SICI)1097-4628(20000718)77:33.0.CO;2-K; Lee G.J., Han M.G., Chung S.Ch., Suh K.D., Im S.S. Effect of crosslinking on the positive temperature coefficient stability of carbon black-filled HDPE/ethylene-ethyalacrylate copolymer blend system. Polym. Eng. Sci. 2002;42(8):1740–1747. https://doi.org/10.1002/PEN.11067; Xie H., Deng P., Dong L., Sun J. LDPE/Carbon black conductive composites: Influence of radiation crosslinking on PTC and NTC properties. J. Appl. Polym. Sci. 2002;85(13):2742–2749. https://doi.org/10.1002/app.10720; Seo M.K., Rhee K.Y., Park S.J. Influence of electro-beam irradiation on PTC/NTC behaviors of carbon blacks/ HDPE conducting polymer composites. Curr. Appl. Phys. 2011;11(3):428–433. https://doi.org/10.1016/j.cap.2010.08.013; Марков В.А., Кандырин Л.Б., Марков А.В., Сорокина Е.А. Влияние силанольного сшивания на электрические характеристики и теплостойкость ПЭ композитов с техническим углеродом. Пластические массы. 2013;(10):21–24.
-
20Academic Journal
Θεματικοί όροι: трепел, известь, огнеприпас, маршалит, волластонит синтетический, керамические материалы, синтезированная керамика, температурный коэффициент линейного расширения
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://elib.belstu.by/handle/123456789/63784