Showing 1 - 5 results of 5 for search '"температурная зависимость намагниченности"', query time: 0.52s Refine Results
  1. 1
  2. 2
    Academic Journal

    Contributors: A support of the work in frames of the European Union project H2020-MSCA-RISE-2018-823942 – FUNCOAT and in frames of the project of the Belarusian Republican Foundation for Fundamental Research No. F21ISR-0004 are gratefully acknowledged., Коллектив авторов выражает благодарность за поддержку работы в рамках проекта Европейского Союза H2020-MSCA-RISE-2018-823942 – FUNCOAT и в рамках проекта Белорусского республиканского фонда фундаментальных исследований № F21ISR-0004.

    Source: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 25, № 1 (2022); 52-63 ; Известия высших учебных заведений. Материалы электронной техники; Том 25, № 1 (2022); 52-63 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2022-1

    File Description: application/pdf

    Relation: https://met.misis.ru/jour/article/view/471/370; Goodenough J.B. Electronic and ionic transport properties and other physical aspects of perovskites. Reports on Progress in Physics. 2004; 67: 1915—1994. https://doi.org/10.1088/0034-4885/67/11/R01; Дунаевский С.М. Магнитные фазовые диаграммы манганитов в области их электронного легирования (обзор). Физика твердого тела. 2004; 46(2): 193—211.; Balagurov A.M., Bushmeleva S.N., Pomja­ku­shin V.Yu., Sheptyakov D.V., Amelichev V.A., Gorbenko O.Yu., Kaul A.R., Gan’shina E.A., Perkins N.B. Magnetic structure of NaMnO3 consistently doped with Sr and Ru. Phys. Rev. B. 2004; 70: 014427. https://doi.org/10.1103/PhysRevB.70.014427; Kozlenko D.P., Glazkov V.P., Jirák Z., Savenko B.N. High pressure effects on the crystal and magnetic structure of Pr1-xSrxMnO3 manganites (x = 0.5–0.56). J. Phys.: Condensed Matter. 2004; 16(13): 2381—2394. https://doi.org/10.1088/0953-8984/16/13/017; Nagaev E.L. Lanthanum manganites and other giant-magnetoresistance magnetic conductors. Physics – Uspekhi. 1996; 39(8): 781—806. https://doi.org/10.1070/ PU1996v039n08ABEH000161; Янчевский О.З., Вьюнов О.И., Белоус А.Г., Товстолыткин А.И., Кравчик В.П. Синтез и свойства манганитов La0.7Sr0.3Mn1-xTixO3. Физика твердого тела. 2006; 48(4): 667—673.; McIntosh S., Vente J.F., Haije W.G., Blank D.H.A., Bouwmeester H.J.M. Structure and oxygen stoichiometry of SrCo0.8Fe0.2O3-δ and Ba0.5Sr0.5Co0.8Fe0.2O3-δ. Solid State Ionics. 2006; 177(19–25): 1737—1742. https://doi.org/10.1016/j.ssi.2006.03.041; Maignan A., Martin C., Pelloquin D., Nguyen N., Raveau B. Structural and magnetic studies of ordered oxygen-deficient perovskites LnBaCo2O5+δ, closely related to the ‘‘112’’ structure. J. Solid State Chem. 1999; 142(2): 247—260. https://doi.org/10.1006/jssc.1998.7934; Yamazoe N., Furukawa S., Teraoka Y., Seiyama T. The effect of oxygen sorption on the crystal structure of La1-xSrxCoO3-δ. Chem. Lett. 1982; 11(12): 2019—2022. https://doi.org/10.1246/cl.1982.2019; Deshmukh A.V., Patil S.I., Bhagat S.M., Sagdeo P.R., Choudhary R.J., Phase D.M. Effect of iron doping on electrical, electronic and magnetic properties of La0.7Sr0.3MnO3. J. Phys. D: Appl. Phys. 2009; 42(18): 185410. https://doi.org/10.1088/0022-3727/42/18/185410; Barik S.K., Mahendiran R. Ac magnetotransport in La0.7Sr0.3Mn0.95Fe0.05O3 at low dc magnetic fields. Solid State Communications. 2011; 151(24): 1986—1989. https://doi.org/10.1016/j.ssc.2011.09.007; Ritter C., Ibarra M.R., Morellon L., Blasco J., Garcia J., De Teresa J.M. Structural and magnetic properties of double perovskites AA’FeMoO6 (AA’ = Ba2, BaSr, Sr2 and Ca2). J. Phys.: Condensed Matter. 2000; 12(38): 8295—8308. https://doi.org/10.1088/0953-8984/12/38/306; dos Santos–Gómez L., Leon-Reina L., Porras-Vazquez J.M., Losilla E.R., Marrero-Lopez D. Chemical stability and compatibility of double perovskite anode materials for SOFCs. Solid State Ionics. 2013; 239: 1—7. https://doi.org/10.1016/j.ssi.2013.03.005; Huang Q., Li Z.W., Li J., Ong, C.K. The magnetic, electrical transport and magnetoresistance properties of epitaxial La0.7Sr0.3Mn1-xFexO3 (x = 0–0.20) thin films prepared by pulsed laser deposition. J. Phys.: Condensed Matter. 2001; 13(18): 4033—4048. https://doi.org/10.1088/0953-8984/13/18/312; Kruidhof H., Bouwmeester H.J.M., v. Doorn R.H.E., Burggraaf A.J. Influence of order-disorder transitions on oxygen permeability through selected nonstoichiometric perovskite-type oxides. Solid State Ionics. 1993; 63–65: 816—822. https://doi.org/10.1016/0167-2738(93)90202-E; Kuo J.H., Anderson H.U., Sparlin D.M. Oxidation-reduction behavior of undoped and Sr-doped LaMnO3: defect structure, electrical conductivity, and thermoelectric power. J. Solid State Chem. 1990; 87(1): 55—63. https://doi.org/10.1016/0022-4596(90)90064-5; Ульянов А.Н., Мазур А.С., Янг Д.С., Криворучко В.Н., Даниленко И.А., Константинова Т.Е., Левченко Г.Г. Локальные структурные и магнитные неоднородности в наноразмерных La0.7Sr0.3MnO3 манганитах. Наносистемы, Наноматериалы, Нанотехнологии. 2011; 9(1): 107—114. https://www.imp.kiev.ua/nanosys/media/pdf/2011/1/nano_vol9_iss1_p0107p0114_2011.pdf; Криворучко В.Н., Марченко М.А. Моделирование гистерезисных свойств наноструктурированных образцов (LаSr)MnО3. Физика низких температур. 2008; 34(9): 947—955. http://fnt.ilt.kharkov.ua/index.php/fnt/article/view/f34-0947r/6205; Ziese M., Vrejoiu I., Setzer A., Lotnyk A., Hesse D. Coupled magnetic and structural transitions in La0.7Sr0.3MnO3 films on SrTiO3. New J. Phys. 2008; 10: 063024. https://doi.org/10.1088/1367-2630/10/6/063024; Mizusaki J., Mori N., Takai H., Yonemura Y., Minamiue H., Tagawa H., Dokiya M., Inaba H., Naraya K., Sasamoto T., Hashi­moto T. Oxygen nonstoichiometry and defect equilibrium in the perovskite-type oxides La1-xSrxMnO3+d. Solid State Ionics, 2000; 129(1–4): 163—177. https://doi.org/10.1016/S0167-2738(99)00323-9; Jimenes M., Martinez J.L., Herrero E., Alonso J., Prieto C., de Andres A., Vallet-Regi M., Gonzalez-Calbet J., Fernandez-Diaz M.T. Structural and magnetoresistance study of LaxMnyO3±z. Phys. B: Condensed Matter, 1997; 234–236: 708—709. https://doi.org/10.1016/S0921-4526(96)01110-6; Aruna S.T., Muthuraman M., Patil K.C. Combustion synthesis and properties of strontium substituted lanthanum manganites La1-xSrxMnO3 (0≤x≤0.3). J. Mater. Chem., 1997; 7(12): 2499—2503. https://doi.org/10.1039/A703901H; De Leon-Guevara A.M., Berthet P., Berthon J., Millot F., Revcolevschi A., Anane A., Dupas C., Le Dang K., Renard J.P., Veillet P. Influence of controlled oxygen vacancies on the magnetotransport and magnetostructural phenomena in La0.85Sr0.15MnO3-δ single crystals. Phys. Rev. B, 1997; 56(10): 6031. https://doi.org/10.1103/PhysRevB.56.6031; Veverka P., Kaman O., Knížek K., Novák P., Maryško M., Jirák Z. Magnetic properties of rare-earth-doped La0.7Sr0.3MnO3. J. Phys.: Condensed Matter, 2016; 29(3): 035803. https://doi.org/10.1088/1361-648X/29/3/035803; Mizusaki J., Tagawa H., Naraya K., Sasamoto T. Nonstoichiometry and thermochemical stability of the perovskite-type La1-xSrxMnO3-δ. Solid State Ionics. 1991; 49: 111—118. https://doi.org/10.1016/0167-2738(91)90076-N; Rodríguez-Carvajal J. Recent developments of the program FULLPROF. Commission on powder diffraction (IUCr). Newsletter, 2001; 26: 12—19.; Kraus W. POWDER CELL — a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl. Crystallography, 1996; 29(3): 301—303. https://doi.org/10.1107/S0021889895014920; Dyson F.J. Thermodynamic behavior of an ideal ferromagnet. Phys. Rev., 1956; 102(5): 1230—1244. https://doi.org/10.1103/PhysRev.102.1230; https://met.misis.ru/jour/article/view/471

  3. 3
  4. 4
  5. 5