-
1Academic Journal
Συγγραφείς: Suhas R. Kale, Dipak P. Patil, Сухас Р. Кале, Дипак П. Патил
Πηγή: Devices and Methods of Measurements; Том 15, № 4 (2024); 269-286 ; Приборы и методы измерений; Том 15, № 4 (2024); 269-286 ; 2414-0473 ; 2220-9506 ; 10.21122/2220-9506-2024-15-4
Θεματικοί όροι: беспроводная связь 5G, bending analysis, body-centric wireless communications, 5G wireless communication, анализ изгиба, телоцентрическая беспроводная связь
Περιγραφή αρχείου: application/pdf
Relation: https://pimi.bntu.by/jour/article/view/898/702; Cisco Visual Networking Index (VNI) Mobile Forecast Projects Nearly 10-fold Global Mobile Data Traffic Growth Over Next Five Years, 2015.; Wearable Technology Market Size, Share, Growth, Report 2032.; Paracha KN, Abdul Rahim SK, Soh PJ, and Khalily M. Wearable Antennas: A Review of Materials, Structures, and Innovative Features for Autonomous Communication and Sensing. IEEE Access. Institute of Electrical and Electronics Engineers Inc. 2019;(7):5669456712.; P.S. Hall and Y. Hao. Antennas and propagation for body centric communications. European Space Agency, (Special Publication) ESA SP. 2006. DOI:10.1109/eucap.2006.4584864; P. Thesis, B. Akowuah, K. Panagiotis, and E. Kallos. King’s College London Novel Antenna Designs For Body-Centric Applications, 2017.; K. Ito, C.-H. Lin, and H.-Y. Lin, “Evaluation of Wearable and Implantable Antennas with Human Phantoms,” in Handbook of Antenna Technologies, Springer Singapore, 2015, pp. 1–24. DOI:10.1007/978-981-4560-75-7_83-1; K.S. Nikita, Handbook of Biomedical Telemetry. Wiley, 2014. DOI:10.1002/9781118893715.; N.A. Kamaruddin, S.N. Azemi, S.Z. Ibrahim, A.H. Azremi, and N.F. Kahar. Antenna for In-Body Communications, 2019.; F. Merli, L. Bolomey, E. Meurville, andA.K. Skrivervik. Implanted Antenna for Biomedical Applications. IEEE, 2008.; W.-C. Chen, C.W.L. Lee, A. Kiourti, and J.L. Volakis. A Multi-Channel Passive Brain Implant for Wireless Neuropotential Monitoring. IEEE J Electromagn RF Microw Med Biol. 2018; 2(4):262-269. DOI:10.1109/JERM.2018.2877330; M. Särestöniemi, M. Sonkki, S. Myllymäki, and C. Pomalaza-Raez. Wearable Flexible Antenna for UWB On-Body and Implant Communications. Telecom. 2021;2(3):285-301. DOI:10.3390/t10.3390/elecom2030019; A. Sani, M. Rajab, R. Foster, and Y. Hao. Antennas and propagation of implanted RFIDs for pervasive healthcare applications. Proceedings of the IEEE. 2010;98(9):1648-1655. DOI:10.1109/JPROC 2010 .2051010; J. Zhang [et al.]. A Compact Dual-Band Implantable Antenna for Wireless Biotelemetry in Arteriovenous Grafts. IEEE Trans Antennas Propag. 2023;71(6):47594771. DOI:10.1109/TAP.2023.3266786; Chow EY, Chlebowski AL, Chakraborty S, Chappell WJ, and Irazoqui PP. Fully wireless implantable cardiovascular pressure monitor integrated with a medical stent. IEEE Trans Biomed Eng. 2010;57(6):1487-1496. DOI:10.1109/TBME.2010.2041058; Zeng FG. Challenges in improving cochlear implant performance and accessibility. IEEE Trans Biomed Eng. 2017;64(8):1662-1664. DOI:10.1109/TBME.2017.2718939; D. Reynolds [et al.]. A Leadless Intracardiac Transcatheter Pacing System. New England Journal of Medicine. 2016;374(6):533-541. DOI:10.1056/nejmoa1511643; Amar A. Ben, Kouki AB, and Cao H. Power approaches for implantable medical devices. Sensors (Switzerland). 2015;15(11):28889-28914. DOI:10.3390/s151128889; Agarwal K, Jegadeesan R, Guo YX, and Thakor NV. Wireless Power Transfer Strategies for Implantable Bioelectronics. IEEE Reviews in Biomedical Engineering. Institute of Electrical and Electronics Engineers. 2017;10:136-161. DOI:10.1109/RBME.2017.2683520; R. Kangeyan and M. Karthikeyan. Miniaturized meander-line dual-band implantable antenna for biotelemetry applications. ETRI Journal, 2023. DOI:10.4218/etrij.2023-0050; R. Kangeyan and M. Karthikeyan. A novel wideband fractal‐shaped MIMO antenna for brain and skin implantable biomedical applications. International Journal of Communication Systems. 2023;36(11). DOI:10.1002/dac.5509; Jing D, Li H, Ding X, Shao W, and Xiao S. Compact and Broadband Circularly Polarized Implantab-le Antenna for Wireless Implantable Medical Devices. IEEE Antennas Wirel Propag Lett. 2023;22(6):1236-1240. DOI:10.1109/LAWP.2023.3237558; Feng Y, Li Z, Qi L, Shen W, and Li G. A compact and miniaturized implantable antenna for ISM band in wireless cardiac pacemaker system. Sci Rep. 2022;12(1). DOI:10.1038/s41598-021-04404-3; Kangeyan R, Karthikeyan M. Implantable dual band semi‐circular slotted patch with DGS antenna for biotelemetry applications. Microw Opt Technol Lett. 2023;65(1):225-230. DOI:10.1002/mop.33462; Shah SAA, Yoo H. Scalp-Implantable Antenna Systems for Intracranial Pressure Monitoring. IEEE Trans Antennas Propag. 2018;66(4):2170-2173. DOI:10.1109/TAP.2018.2801346; Iqbal A, Al-Hasan M, Mabrouk I Ben, Nedil M. A Compact Implantable MIMO Antenna for High-Data-Rate Biotelemetry Applications. IEEE Trans Antennas Propag. 2022;70(1):631-640. DOI:10.1109/TAP.2021.3098606; 26. Ahmad S [et al.]. A Metasurface-Based SingleLayered Compact AMC-Backed Dual-Band Antenna for Off-Body IoT Devices. IEEE Access. 2021;9:159598159615. DOI:10.1109/ACCESS.2021.3130425; Roudjane M, Khalil M, Miled A, Messaddeq Y. New generation wearable antenna based on multimaterial fiber for wireless communication and real-time breath detection. Photonics. 2018;5(4). DOI:10.3390/photonics5040033; 28. Shakib MN, Moghavvemi M, Binti Wan Mahadi WNL. Design of a Tri-Band Off-Body Antenna for WBAN Communication. IEEE Antennas Wirel Propag Lett. 2017;16:210-213. DOI:10.1109/LAWP .2016.2569819; Scarpello Maria Lucia [et al.]. High-Gain Textile Antenna Array System for Off-Body Communication. International Journal of Antennas and Propagation, Hindawi Limited, Crossref, 2012, pp. 1–12. DOI:10.1155/2012/573438; Hertleer C, Rogier H, Vallozzi L, Van Langenhove L. A textile antenna for off-body communication integrated into protective clothing for firefighters. IEEE Trans Antennas Propag. 2009;57(4):919-925. DOI:10.1109/TAP.2009.2014574; Lin CH [et al.]. Dual-Mode Antenna for on-/offBody Communications (10 MHz/2.45 GHz). The 2014 International Workshop on Antenna Technology.; Al-Sehemi A, Al-Ghamdi A, Dishovsky N, Atanasova G, Atanasov N. A Flexible Multiband Antenna for Biomedical Telemetry. IETE J Res. 2023;69(1):189202. DOI:10.1080/03772063.2020.1808536; Sabti HA, Thiel DV. A study of wireless communication links on a body-centric network during running. Procedia Engineering, Elsevier Ltd. 2014, pp. 3–8. DOI:10.1016/j.proeng.2014.06.005; Kumar P, Ali T, SharmaA. Flexible Substrate based Printed Wearable Antennas for Wireless Body Area Networks Medical Applications (Review). Radioelectronics and Communications Systems. 2021;64(7):337-350. DOI:10.3103/S0735272721070013; Scarpello ML, Kazani I, Hertleer C, Rogier H, Ginste D. Vande. Stability and efficiency of screen-printed wearable and washable antennas. IEEE Antennas Wirel Propag Lett. 2012;11:838-841. DOI:10.1109/LAWP.2012.2207941; Anbalagan A, Sundarsingh EF, Ramalingam VS, Samdaria A, Gurion D. Ben, Balamurugan K. Realization and Analysis of a Novel Low-Profile Embroidered Textile Antenna for Real-time Pulse Monitoring. IETE J Res. 2022;68(6):4142-4149. DOI:10.1080/03772063.2020.1787877; Chahat N, Zhadobov M, Sauleau R, Ito K. A compact UWB antenna for on-body applications. IEEE Trans Antennas Propag. 2011;59(4):1123-1131. DOI:10.1109/TAP.2011.2109361; Kumar Vivek, Bharat Gupta. On-Body Measurements of SS-UWB Patch Antenna for WBAN Applications. AEU – International Journal of Electronics and Communications, no. 5, Elsevier BV, May 2016, pp. 668– 75. DOI:10.1016/j.aeue.2016.02.003; Hazarika Bidisha [et al.]. A Multi-Layered DualBand on-Body Conformal Integrated Antenna for WBAN Communication. AEU – International Journal of Electronics and Communications, Elsevier BV, Oct. 2018, pp. 226–35. DOI:10.1016/j.aeue.2018.08.021; Qas Elias, Bashar, and Ping Jack Soh. Design of a Wideband Spring Textile Antenna for Wearable 5G and IoT Applications Using Characteristic Mode Analysis. Progress In Electromagnetics Research M, The Electromagnetics Academy, 2022, pp. 177–89. DOI:10.2528/pierm22062909; Gupta Anupma [et al.]. Design of a Patch Antenna with Square Ring-Shaped-Coupled Ground for on-/off Body Communication. International Journal of Electronics, no. 12, Informa UK Limited, June 2019, pp. 1814–28. DOI:10.1080/00207217.2019.1625970; Randall Kirschman. Fabrication of Passive Components for High Temperature Instrumentation. WileyIEEE Press, 1999.; Das Goutam Kumar V[et al.]. Gain‐enhancement Technique for Wearable Patch Antenna Using Grounded Metamaterial. IET Microwaves, Antennas & Propagation, no. 15, Institution of Engineering and Technology (IET), Oct. 2020, pp. 2045–52. DOI:10.1049/iet-map.2020.0083; Potey Pranita Manish and Kushal Tuckley. Design of Wearable Textile Antenna with Various Substrate and Investigation on Fabric Selection. 2018 3rd International Conference on Microwave and Photonics (ICMAP), IEEE, Feb. 2018. DOI:10.1109/icmap.2018.8354539; Bakir Mete. Quartz Fiber Radome And Substrate For Aerospace Applications. Eskişehir Technical University Journal of Science and Technology A Applied Sciences and Engineering, no. 1, Anadolu Universitesi Bilim ve Teknoloji Dergisi-A: Uygulamali Bilimler ve Muhendislik, Mar. 2023, pp. 48–56. DOI:10.18038/estubtda.1247951; Sreelakshmy R. [et al.]. A Wearable Type Embroidered Logo Antenna at ISM Band for Military Applications. Microwave and Optical Technology Letters, no. 9, Wiley, June 2017, pp.2159–63. DOI:10.1002/mop.30697; Jalil Mohd Ezwan Bin [et al.]. Fractal Koch Multiband Textile Antenna Performance With Bending, Wet Conditions And On The Human Body. Progress In Electromagnetics Research, The Electromagnetics Academy, 2013, pp. 633–52. DOI:10.2528/pier13041212; Monirujjaman Khan M [et al.]. Various TextilesBased Comparative Analysis of a Millimeter Wave Miniaturized Novel Antenna Design for Body-Centric Communications. Int J Antennas Propag. 2021;(2021). DOI:10.1155/2021/2360440; Dirk Hohnholz Alan G. MacDiarmid 2001. Line patterning of conducting polymers New horizons for inexpensive, disposable electronic devices.; Y. Tao, Y. Tao, L. Wang, B. Wang, Z. Yang, and Y. Tai. High-reproducibility, flexible conductive patterns fabricated with silver nanowire by drop or fitto-flow method, 2013. [Online]. Available: http://www. nanoscalereslett.com/content/8/1/147; Roshni SB, Jayakrishnan MP, Mohanan P, Surendran KP. Design and fabrication of an E-shaped wearable textile antenna on PVB-coated hydrophobic polyester fabric. Smart Mater Struct. 2017;26(10). DOI:10.1088/1361-665X/aa7c40; N. Board, Handbook On Printing Technology, 2nd edition. Offset, Gravure, Flexo,Screen, 2011.; E. Halonen, K. Kaija, M. Mantysalo, A. Kemppainen, A. Kemppainen, and N. Bjorklund. Evaluation of printed electronics manufacturing line with sensor platform application. European Microelectronics and Packaging Conference, Rimini, Italy, 2009, pp. 1–8.; Faddoul R [et al.]. Optimisation of silver paste for flexography printing on LTCC substrate. Microelectronics Reliability. 2012;52(7):1483-1491. DOI:10.1016/j.microrel.2012.03.004; Hasni U, Piper ME, Lundquist J, Topsakal E. Screen-Printed Fabric Antennas for Wearable Applications. IEEE Open Journal of Antennas and Propagation, Institute of Electrical and Electronics Engineers Inc., 2021, pp. 591–598. DOI:10.1109/OJAP.2021.3070919; Hayes GJ, So JH, Qusba A, Dickey MD, Lazzi G. Flexible liquid metal alloy (EGaIn) microstrip patch antenna. IEEE Trans Antennas Propag. 2012;60(5):21512156. DOI:10.1109/TAP.2012.2189698; Wang F, Arslan T. Inkjet-printed antenna on a flexible substrate for wearable microwave imaging applications. 2016 Loughborough Antennas & Propagation Conference (LAPC), IEEE, Nov. 2016, pp. 1–4. DOI:10.1109/LAPC.2016.7807499; Joshi JG, Pattnaik SS, Devi S. Metamaterial embedded wearable rectangular microstrip patch antenna. Int J Antennas Propag. 2012;(2012). DOI:10.1155/2012/974315; Desai A, Upadhyaya T, Patel J, Patel R, Palandoken M. Flexible CPW fed transparent antenna for WLAN and sub-6 GHz 5G applications. Microw Opt Technol Lett. 2020;62(5,):2090-2103. DOI:10.1002/mop.32287; A. Kumar, A. De, and R.K. Jain. Size Miniaturization and Isolation Enhancement of Two-Element Antenna for Sub-6 GHz Applications. IETE J Res, 2021. DOI:10.1080/03772063.2021.1987994; Tighezza M, Rahim SKA,Islam MT. Flexible wideband antenna for 5G applications.Microw Opt Technol Lett. 2017;60:38-44.; Karad KV, Hendre VS. A flower bud-shaped flexible UWB antenna for healthcare applications. EURASIP J Wirel Commun Netw. 2023;2023(1). DOI:10.1186/s13638-023-02239-2; Usman M [et al.]. The Impact of Bending on Radiation Characteristics of Polymer-Based Flexible Antennas for General IoT Applications, 2021. DOI:10.3390/app; Ali U [et al.]. Design and comparative analysis of conventional and metamaterial-based textile antennas for wearable applications. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields. 2019;32(6). DOI:10.1002/jnm.2567; Karad Kailash Vaijinath, Vaibhav S. Hendre. A Foam-Based Compact Flexible Wideband Antenna For Healthcare Applications. Progress In Electromagnetics Research C, The Electromagnetics Academy, 2022, pp. 197–212. DOI:10.2528/pierc22061201; H.K. Bhaldar, S.K. Gowre, M.S. Ustad. Design of Circularly Polarized Compact Size Wearable Antenna for UWB and 5G Application. IETE J Res, 2022. DOI:10.1080/03772063.2022.2054868; Aun NFM [et al.]. Revolutionizing Wearables for 5G: 5G Technologies: Recent Developments and Future Perspectives for Wearable Devices and Antennas. IEEE Microw Mag. 2017;18(3):108-124. DOI:10.1109/MMM.2017.2664019; Ericsson Mobility Report November 2020.; R. Azim, R. Aktar, A.K.M.M.H. Siddique, L.C. Paul, and M.T. Islam. Circular patch planar ultrawideband antenna for 5G sub-6 GHz wireless communication applications.; Riaz A, Khan S, Arslan T. Design and Modelling of Graphene-Based Flexible 5G Antenna for Next-Generation Wearable Head Imaging Systems. Micromachines (Basel). 2023;14(3). DOI:10.3390/mi14030610; Shoaib N, Shoaib S, Khattak RY, Shoaib I, Chen X, Perwaiz A. MIMO antennas for smart 5G devices. IEEE Access. 2018;6:77014-77021. DOI:10.1109/ACCESS.2018.2876763; Mahajan RC, Vyas V. Wine Glass Shaped Microstrip Antenna with Woodpile Structure for Wireless Applications. Majlesi Journal of Electrical Engineering. 2019;13(1):37-44.; Sufian MA [et al.]. Isolation Enhancement of a Metasurface-Based MIMO Antenna Using Slots and Shorting Pins. IEEE Access. 2021;(9):73533-73543. DOI:10.1109/ACCESS.2021.3079965; Anbarasu M, Nithiyanantham J. Performance Analysis of Highly Efficient Two-Port MIMO Antenna for 5G Wearable Applications. IETE J Res, 2021. DOI:10.1080/03772063.2021.1926345; T. Addepalli, T. Vidyavathi, K. Neelima, M. Sharma, D. Kumar. Asymmetrical fed Calendula flowershaped four-port 5G-NR band (n77, n78, and n79) MIMO antenna with high diversity performance. Int J Microw Wirel Technol, May 2022. DOI:10.1017/S1759078722000800; Peng Xiaoxu, Chengzhu Du. A Flexible CPWFed Tri-Band Four-Port MIMO Antenna for 5G/WIFI 6E Wearable Applications. AEU – International Journal of Electronics and Communications, Elsevier BV, Jan. 2024, p. 155036. DOI:10.1016/j.aeue.2023.155036; Ericsson White Paper. 6G spectrum – enabling the future mobile life beyond 2030. March 2023.; J. Park, B. Kim, and W. Hong. 24‐1: Invited Paper: Optically Invisible Antenna‐on‐Display (AoD) Technologies: Review, Demonstration and Opportunities for Microwave, Millimeter‐Wave and Sub‐THz Wireless Applications. SID Symposium Digest of Technical Papers. 2021;52(1):293-296. DOI:10.1002/sdtp.14672; https://pimi.bntu.by/jour/article/view/898