-
1Academic Journal
Authors: A. A. Lobanova, A. N. Korovina, D. O. Koshkina, P. A. Chernikova, A. V. Feofanov, V. M. Studitsky, D. K. Nilov, N. V. Maluchenko, А. А. Лобанова, А. Н. Коровина, Д. О. Кошкина, П. А. Черникова, А. В. Феофанов, В. М. Студитский, Д. К. Нилов, Н. В. Малюченко
Contributors: The study was supported by the scientific project of Lomonosov Moscow State University research and education schools (project No. 23-Sh04-57, study of inhibitors by gel electrophoresis) and by the Russian Science Foundation (project No. 19-74-30003, expression and purification of PARP1 and PARP2 proteins)., Работа поддержана в рамках Междисциплинарных научно-образовательных школ Московского государственного университета (проект № 23-Ш04-57, исследование ингибиторов методом гель-электрофореза), а также Российским научным фондом (проект № 19-74-30003, экспрессия и очистка белков PARP1 и PARP2).
Source: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 79, № 4 (2024); 322-329 ; Вестник Московского университета. Серия 16. Биология; Том 79, № 4 (2024); 322-329 ; 0137-0952
Subject Terms: велипариб, inhibitors, electrophoresis, talazoparib, olaparib, veliparib, ингибиторы, электрофорез, талазопариб, олапариб
File Description: application/pdf
Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/1440/705; Langelier M.F., Eisemann T., Riccio A.A., Pascal J.M. PARP family enzymes: regulation and catalysis of the poly(ADP-ribose) posttranslational modification. Curr. Opin. Struct. Biol. 2018;53:187–198.; Szanto M., Yelamos J., Bai P. Specific and shared biological functions of PARP2 – is PARP2 really a lil’ brother of PARP1? Expert. Rev. Mol. Med. 2024;3(26)e13.; Kutuzov M.M., Belousova E.A., Ilina E.S., Lavrik O.I. Impact of PARP1, PARP2 & PARP3 on the base excision repair of nucleosomal DNA. Mechanisms of genome protection and repair. Advances in experimental medicine and biology, vol 1241. Ed. D. Zharkov. Cham Springer, 2020:47–57.; Alemasova E.E., Lavrik O.I. Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins. Nucleic Acids Res. 2019;47(8):3811–3827.; Cohen M.S., Chang P. Insights into the biogenesis, function, and regulation of ADP-ribosylation. Nat. Chem. Biol. 2018;14(3):236–243.; Maluchenko N.V., Koshkina D.O., Feofanov A.V., Studitsky V.M., Kirpichnikov M.P. Poly(ADP-ribosyl) code functions. Acta Naturae. 2021;13(2):58–69.; Pan L., Penney J., Tsai L.H. Chromatin regulation of DNA damage repair and genome integrity in the central nervous system. J. Mol. Biol. 2014;426(20):3376–3388.; Ko H.L., Ren E.C. Functional aspects of PARP1 in DNA repair and transcription. Biomolecules. 2012:2(4):524–548.; Das B., Choudhury B., Kumar A., Jyoti Baruah V. Genomic instability and DNA repair in cancer. DNA: Damages and repair mechanisms. Ed. P. Behzadi. IntechOpen; 2021:189–202.; Pazzaglia S., Pioli C. Multifaceted role of PARP-1 in DNA repair and inflammation: Pathological and therapeutic implications in cancer and non-cancer diseases. Cells. 2019;9(1):41.; Frederick M.I., Abdesselam D., Clouvel A., Croteau L., Hassan S. Leveraging PARP-1/2 to target distant metastasis. Int. J. Mol. Sci. 2024;25(16):9032.; Spiegel J.O., Van Houten B., Durrant J.D. PARP1: structural insights and pharmacological targets for inhibition. DNA Repair (Amst.). 2021;103:103125.; Zandarashvili L., Langelier M.F., Velagapudi U.K., Hancock M.A., Steffen J.D., Billur R., Hannan Z.M., Wicks A.J., Krastev D.B., Pettitt S.J., Lord C.J., Talele T.T., Pascal J.M., Black B.E. Structural basis for allosteric PARP-1 retention on DNA breaks. Science. 2020;368(6486):eaax6367.; Langelier M.F., Lin X., Zha S., Pascal J.M. Clinical PARP inhibitors allosterically induce PARP2 retention on DNA. Sci. Adv. 2023;9(12):eadf7175.8.; Rudolph J., Jung K., Luger K. Inhibitors of PARP: number crunching and structure gazing. Proc. Natl. Acad. Sci. U.S.A. 2022;119(11):e2121979119.; Malyuchenko N.V., Kotova E.Y., Kulaeva O.I., Kirpichnikov M.P., Studitsky V.M. PARP1 Inhibitors: antitumor drug design. Acta Naturae. 2015;7(3):27–37.; Velagapudi U.K., Langelier M.F., Delgado-Martin C., Diolaiti M.E., Bakker S., Ashworth A., Patel B.A., Shao X., Pascal J.M., Talele T.T. Design and synthesis of poly(ADP-ribose) polymerase inhibitors: impact of adenosine pocket-binding motif appendage to the 3-oxo-2,3-dihydrobenzofuran-7-carboxamide on potency and selectivity. J. Med. Chem. 2019;62(11):5330–5357.; Kaufman B., Shapira-Frommer R., Schmutzler R.K., Audeh M.W., Friedlander M., Balmaña J., Mitchell G., Fried G., Stemmer S.M., Hubert A., Rosengarten O., Steiner M., Loman N., Bowen K., Fielding A., Domchek S.M. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J. Clin. Oncol. 2015;33(3):244–250.; Harvey-Jones E., Raghunandan M., RobbezMasson L., et al. Longitudinal profiling identifies cooccurring BRCA1/2 reversions, TP53BP1, RIF1 and PAXIP1 mutations in PARP inhibitor-resistant advanced breast cancer. Ann. Oncol. 2024;35(4):364–380.; Murthy P., Muggia F. PARP inhibitors: clinical development, emerging differences, and the current therapeutic issues. Cancer Drug Resist. 2019;2(3):665–679.; Bruin M.A.C., Sonke G.S., Beijnen J.H., Huitema A.D.R. Pharmacokinetics and pharmacodynamics of PARP inhibitors in oncology. Clin. Pharmacokinet. 2022;61(12):1649–1675.; Loehr A., Hussain A., Patnaik A., Bryce A.H., et al. Emergence of BRCA reversion mutations in patients with metastatic castration-resistant prostate cancer after treatment with rucaparib. Eur. Urol. 2023;83(3):200–209.; Maluchenko N., Koshkina D., Korovina A., Studitsky V., Feofanov A. Interactions of PARP1 inhibitors with PARP1-nucleosome complexes. Cells. 2022;11(21):3343.; Kutuzov M.M., Khodyreva S.N., Ame J.C., Ilina E.S., Sukhanova M.V., Schreiber V., Lavrik O.I. Interaction of PARP-2 with DNA structures mimicking DNA repair intermediates and consequences on activity of base excision repair proteins. Biochimie. 2013;95(6):1208–1215.; Deeksha W., Abhishek S., Giri J., Rajakumara E. Regulation of PARP1 and its apoptotic variant activity by single-stranded DNA. FEBS J. 2023; 290(18):4533–4542.; Laspata N., Kaur P., Mersaoui S.Y., Muoio D., Liu Z.S., Bannister M.H., Nguyen H.D., Curry C., Pascal J.M., Poirier G.G., Wang H., Masson J.Y., Fouquerel E. PARP1 associates with R-loops to promote their resolution and genome stability. Nucleic Acids Res. 2023;51(5):2215–2237.; Andreeva T.V., Maluchenko N.V., Efremenko A.V., Lyubitelev A.V., Korovina A.N., Afonin D.A., Kirpichnikov M.P., Studitsky V.M., Feofanov A.V. Epigallocatechin gallate affects the structure of chromatosomes, nucleosomes and their complexes with PARP1. Int. J. Mol. Sci. 2023;24(18):14187.; Langelier M.F., Steffen J.D., Riccio A.A., McCauley M., Pascal J.M. Purification of DNA damage-dependent PARPs from E. coli for structural and biochemical analysis. Poly(ADP-Ribose) Polymerase. Methods in Molecular Biology, vol 1608. Ed. A. Tulin. N.Y.: Humana Press, 2017: 431–444.; Maluchenko N., Saulina A., Geraskina O., Kotova E., Korovina A., Feofanov A., Studitsky V. Zinc-dependent nucleosome reorganization by PARP2. bioRxiv. 2023.; Maluchenko N.V., Nilov D.K., Pushkarev S.V., Kotova E.Y., Gerasimova N.S., Kirpichnikov M.P., Langelier M.F., Pascal J.M., Akhtar M.S., Feofanov A.V., Studitsky V.M. Mechanisms of nucleosome reorganization by PARP1. Int. J. Mol. Sci. 2021;22(22):12127.; Chappidi N., Quail T., Doll S., Vogel L.T., Aleksandrov R., Felekyan S., Kuhnemuth R., Stoynov S., Seidel C.A.M., Brugues J., Jahnel M., Franzmann T.M., Alberti S. PARP1-DNA co-condensation drives DNA repair site assembly to prevent disjunction of broken DNA ends. Cell. 2024;187(4):945-961.e18.; Vasil’eva I., Moor N., Anarbaev R., Kutuzov M., Lavrik O. Functional roles of PARP2 in assembling proteinprotein complexes involved in base excision DNA repair. Int. J. Mol. Sci. 2021;22(9):4679.; Murai J., Huang S.Y., Das B.B., Renaud A., Zhang Y., Doroshow J.H., Ji J., Takeda S., Pommier Y. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 2012;72(21):5588–5599.; Murai J. Targeting DNA repair and replication stress in the treatment of ovarian cancer. Int. J. Clin. Oncol. 2017;22:619–628.; Murai J., Huang S.Y., Renaud A., Zhang Y., Ji J., Takeda S., Morris J., Teicher B., Doroshow J.H., Pommier Y. Stereospecific PARP trapping by BMN 673 and comparison with olaparib and rucaparib. Mol. Cancer Ther. 2014;13(2):433–443.
-
2Academic Journal
Authors: E. V. Lubennikova, A. L. Kornietskaya, N. S. Dorofeeva, E. I. Rossokha, E. V. Markarova, I. V. Yudina, I. Y. Bazaeva, L. V. Bolotina, T. I. Deshkina, Ya. A. Zhulikov, E. V. Stasenko, T. V. Ustinova, A. S. Tsareva, E. V. Artamonova, Е. В. Лубенникова, А. Л. Корниецкая, Н. С. Дорофеева, Е. И. Россоха, Е. В. Маркарова, И. В. Юдина, И. Я. Базаева, Л. В. Болотина, Т. И. Дешкина, Я. А. Жуликов, Е. В. Стасенко, Т. В. Устинова, А. С. Царева, Е. В. Артамонова
Source: Meditsinskiy sovet = Medical Council; № 22 (2022); 21-29 ; Медицинский Совет; № 22 (2022); 21-29 ; 2658-5790 ; 2079-701X
Subject Terms: олапариб, BRCA mutation, PARP inhibitors, talazoparib, Talzenna, olaparib, мутация BRCA, PARP-ингибиторы, талазопариб, Талценна
File Description: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/7240/6483; Rizzolo P., Silvestri V., Falchetti M., Ottini L. Inherited and acquired alterations in development of breast cancer. Appl Clin Genet. 2011;(4):145-158. https://doi.org/10.2147/TACG.S13226.; Godet I., Gilkes D.M. BRCA1 and BRCA2 mutations and treatment strategies for breast cancer. Integr Cancer Sci Ther. 2017;4(1):10.15761/ ICST.1000228. https://doi.org/10.15761/ICST.1000228.; Tung N., Lin N.U., Kidd J., Allen B.A., Singh N., Wenstrup R.J. et al. Frequency of Germline Mutations in 25 Cancer Susceptibility Genes in a Sequential Series of Patients With Breast Cancer. J Clin Oncol. 2016;34(13):1460-1468. https://doi.org/10.1200/JCO.2015.65.0747.; Winter M.P., Nilsson E., Olsson A.M., George Y., Chen A., Kvist T. et al. Targeted sequencing of BRCA1 and BRCA2 across a large unselected breast cancer cohort suggests that one-third of mutations are somatic. Ann Oncol. 2016;27(8):1532-1538. https://doi.org/10.1093/annonc/mdw209.; Kuchenbaecker K.B., Hopper J.L., Barnes D.R., Phillips K.A., Mooij T.M., Roos-Blom M.J. et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA. 2017;317(23):2402-2416. https://doi.org/10.1001/jama.2017.7112.; Имянитов Е.Н. Наследственный рак молочной железы. Практическая онкология. 2010;11(4):258-266. Режим доступа: http://practical-oncology.ru/articles/191.pdf.; Водолажкий Д.И., Шатова Ю.С., Комова Е.А., Двадненко К.В. Частота встречаемости BRCA-мутаций в Южном федеральном округе у больных с клиническими признаками рака молочной железы. Современные проблемы науки и образования. 2015;(3). Режим доступа: https://science-education.ru/ru/article/view?id=17860.; Налётов А.А., Молокова О.А., Зырянов А.В., Фёдоров Н.М., Бурханова Л.А. Оптимизация диагностики, индивидуализация лечения и диспансерного наблюдения больных с BRCA-обусловленными формами РМЖ. Тюменский медицинский журнал. 2015;17(3):49-51. Режим доступа: https://cyberleninka.ru/article/n/optimizatsiya-diagnostiki-individualizatsiya-lecheniya-i-dispansernogo-nablyudeniya-bolnyh-s-brca-obuslovlennymi-formami-rmzh.; Lee H.B., Han W. Unique features of young age breast cancer and its management. J Breast Cancer. 2014;17(4):301-307. https://doi.org/10.4048/jbc.2014.17.4.301.; Caulfield S.E., Davis C.C., Byers K.F. Olaparib: a novel therapy for metastatic breast cancer in patients with a BRCA1/2 mutation. J Adv Pract Oncol. 2019;10(2):167-174. https://doi.org/10.6004/jadpro.2019.10.2.6.; Robson M., Im S.A., Senkus E., Xu B., Domchek S.M., Masuda N. et al. Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation. N Engl J Med. 2017;377(6):523-533. https://doi.org/10.1056/NEJMoa1706450.; Litton J.K., Rugo H.S., Ettl J., Hurvitz S.A., Goncalves A., Lee K.H. et al. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N Engl J Med. 2018;379(8):753-763. https://doi.org/10.1056/NEJMoa1802905.; Rugo H.S., Ettl J., Hurvitz S.A., Gonpalves A., Lee K.H., Fehrenbacher L. et al. Outcomes in clinically relevant patient subgroups from the EMBRACA study: Talazoparib vs. Physician's Choice Standard-of-Care Chemotherapy. JNCI Cancer Spectr. 2019;4(1):pkz085. https://doi.org/10.1093/jncics/pkz085.; Ettl J., Quek R.G.W., Lee K.H., Rugo H.S., Hurvitz S., Gonpalves A. et al. Quality of life with talazoparib versus physician's choice of chemotherapy in patients with advanced breast cancer and germline BRCA1/2 mutation: patient-reported outcomes from the EMBRACA phase III trial. Ann Oncol. 2018;29(9):1939-1947. https://doi.org/10.1093/annonc/mdy257.; De Bono J., Ramanathan R.K., Mina L., Chugh R., Glaspy J., Rafii S. et al. Phase I, Dose-Escalation, Two-Part Trial of the PARP Inhibitor Talazoparib in Patients with Advanced Germline BRCA1/2 Mutations and Selected Sporadic Cancers. Cancer Discov. 2017;7(6):620-629. https://doi.org/10.1158/2159-8290.CD-16-1250.; Atchley D.P., Albarracin C.T., Lopez A., Valero V., Amos C.I., Gonzalez-Angulo A.M. et al. Clinical and pathologic characteristics of patients with BRCA-positive and BRCA-negative breast cancer. J Clin Oncol. 2008;26(26):4282-4288. https://doi.org/10.1200/JCO.2008.16.6231.; Garber H.R., Raghavendra A.S., Lehner M., Qiao W., Gutierrez-Barrera A.M., Tripathy D., et al. Incidence and impact of brain metastasis in patients with hereditary BRCA1 or BRCA2 mutated invasive breast cancer. NPJ Breast Cancer. 2022;8(1):46. https://doi.org/10.1038/s41523-022-00407-z.; Litton K.J., Ettl J., Hurvitz S.A., Martin M., Roche H., Lee K.-H. et al. Clinical outcomes in patients (pts) with a history of central nervous system (CNS) metastases receiving talazoparib (TALA) or physician's choice of chemotherapy (PCT) in the phase 3 EMBRACA trial. J Clin Oncol. 39(15_Suppl.):1090-1090. http://doi.org/10.1200/JCO.2021.39.15_suppl.1090.; Poggio F., Bruzzone M., Ceppi M., Conte B., Martel S., Maurer C. et al. Single-agent PARP inhibitors for the treatment of patients with BRCA-mutated HER2-negative metastatic breast cancer: a systematic review and meta-analysis. ESMO Open. 2018;3(4):e000361. https://doi.org/10.1136/esmoopen-2018-000361.; Robson M., Im S.A., Senkus E., Xu B. H., Domchek S., Masuda N. et al. OlympiAD extended follow-up for overall survival and safety: olaparib versus chemotherapy treatment of physician's choice in patients with a germline BRCA mutation and HER2- negative metastatic breast cancer. Cancer Research. 2020;80(4):PD4-03. https://doi.org/10.1158/1538-7445.sabcs19-pd4-03.; Robson M., Ruddy K.J., Im S.A., Senkus E., Xu B., Domchek S.M. et al. Patient-reported outcomes in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer receiving olaparib versus chemotherapy in the OlympiAD trial. Eur J Cancer. 2019;(120):20-30. https://doi.org/10.1016/j.ejca.2019.06.023.; Molife L.R., Mateo J., McGoldrick T., Krebs M., Drew Y., Banerjee S.M. et al. Safety and efficacy results from two randomized expansions of a phase I study of a tablet formulation of the PARP inhibitor, olaparib, in ovarian and breast cancer patients with BRCA1/2 mutations. J Clin Oncol. 2012;30(15):3048. https://doi.org/10.1200/jco.2012.30.15_suppl.3048.; Menezes M.C.S., Raheem F., Mina L., Ernst B., Batalini F. PARP Inhibitors for Breast Cancer: Germline BRCA1/2 and Beyond. Cancers. 2022;14(17),4332:2-18. https://doi.org/10.3390/cancers14174332.; Семиглазова Т.Ю., Лубенникова Е.В., Болотина Л.В., Орлова Р.В., Моисеенко Ф.В., Авраменко А.И. и др. Отечественный многоцентровой опыт применения талазопариба в лечении больных BRCA-ассоциированным метастатическим раком молочной железы. Медицинский совет. 2020;(20):143-146. https://doi.org/10.21518/2079-701X-2020-20-143-149.; Martin M., Eiermann W., Rugo H.S. EMBRACA: comparison of efficacy and safety of talazoparib and physician's choice of therapy in patients with advanced breast cancer, a germline BRCA1/2 mutation, and prior platinum treatment. Ann Oncol. 2018;29(8). https://doi.org/10.1093/annonc/mdy272.293.; Martin M., Rugo H.S., Hurvitz S.A., Ettl J., Roche H., Lee K. et al. Outcomes of Patients (Pts) Who Had Received Prior Platinum (PP) Therapy in the Phase 3 EMBRACA Trial of Talazoparib (TALA) vs Physician's Choice of Chemotherapy (PCT) in Patients With Germline BRCA1/2 Mutated (gBRCA1/2mut) Advanced Breast Cancer (ABC). Ann Oncol. 2021;(32):S481. https://doi.org/10.1016/j.annonc.2021.08.555.
-
3Academic Journal
Source: Meditsinskiy sovet = Medical Council; № 9 (2020); 57-61 ; Медицинский Совет; № 9 (2020); 57-61 ; 2658-5790 ; 2079-701X
Subject Terms: талазопариб, PARP inhibitors, metastatic triple negative breast cancer, olaparib, talazoparib, PARP-ингибиторы, метастатический тройной негативный рак молочной железы, олапариб
File Description: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/5701/5199; Economopoulou P., Dimitriadis G., Psyrri A. Beyond BRCA: new hereditary breast cancer susceptibility genes. Cancer Treat Rev. 2015;41(1):1–8. doi:10.1016/j.ctrv.2014.10.008.; Kennedy R.D., Quinn J.E., Johnston P.G., Harkin D.P. BRCA1: mechanisms of inactivation and implications for management of patients. Lancet. 2002;360(9338):1007–1014. doi:10.1016/S0140-6736(02)11087-7.; Kuchenbaecker K.B., Hopper J.L., Barnes D.R., Phillips K.A., Mooij T.M., Roos-Blom M.J. et al. Risks of breast, ovarian, and contralateral breast Cancer for BRCA1 andBRCA2 mutation carriers. JAMA. 2017;317(23):2402– 2416. doi:10.1001/jama.2017.7112.; Atchley D.P., Albarracin C.T., Lopez A., Valero V., Amos A.I., Gonzales-Angulo A.M. et al. Clinical and pathologic characteristics of patients with BRCA-positive and BRCA-negative breast cancer. J Clin Oncol. 2008;26(26):4282–4288. doi:10.1200/JCO.2008.16.6231.; Comen E., Davids M., Kirchhoff T., Hudis C., Offit K., Robson M. et al. Relative contributions of BRCA1 and BRCA2 mutations to «triple-negative» breast cancer in Ashkenazi Women. Breast Cancer Res Treat. 2011;129(l):185–190. doi:10.1007/s10549-011-1433-2.; Robertson L., Hanson H., Seal S., Warren-Perry M., Hughes D., Howell I. et al. BRCA1 testing should be offered to individuals with triple-negative breast cancer diagnosed below 50 years. Br J Cancer. 2012;106(6): 1234– 1238. doi:10.1038/bjc.2012.31.; Gonzalez-Angulo A.M., Timms K.M., Liu S., Shuying L., Huiqin C., Litton J. et al. Incidence and outcome of BRCA mutations in unselected patients with triple receptor-negative breast. Clin Cancer Res. 2011;17(5):1082–1089. doi:10.1158/1078-0432.CCR-10-2560.; Sharma P., Klemp J.R., Kimler B.F., Mahnken J.D., Geier L.J. et al. Germline BRCA mutation evaluation in a prospective triple-negative breast cancer registry: implications for hereditary breast and/or ovarian cancer syndrome testing. Breast Cancer Res Treat. 2014;145(3):707–714. doi:10.1007/s10549-014-2980-0.; Andres R., Pajares I., Balmana J., Llort G., Cajal R.T., Chirivella I. et al. Association of BRCA1 germline mutations in young onset triple-negative breast cancer (TNBC). Clin Transl Oncol. 2014;16(3):280–284. doi:10.1007/s12094-013-1070-9.; Evans D.G., Howell A., Ward D., Lalloo F., Jones J.L., Eccles D.M. Prevalence of BRCA1 and BRCA2 mutations in triple negative breast cancer. J Med Genet. 2011;48(8):520–522. doi:10.1136/jmedgenet-2011-100006.; Young S.R., Pilarski R.T., Donenberg T., Shapiro C., Hammond L.S., Miller J. et al. The prevalence of BRCA1 mutations among young women with triple-negative breast cancer. BMC Cancer. 2009;9:86. doi:10.1186/1471-2407-9-86.; Couch F.J., Hart S.N., Sharma P., Toland A.E., Wang X., Miron P. et al. Inherited mutations in 17 breast cancer susceptibility genes among a large triple-negative breast cancer cohort unselected for family history of breast cancer. J Clin Oncology. 2015;33(4):304–311. doi:10.1200/JCO.2014.57.1414.; Mavaddat N., Barrowdale D., Andrulis I.L., Domchek S.M., Eccles D., Nevanlinna H. et al. Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the consortium of investigators of modifiers of BRCA1/2 (CIMBA). Cancer Epidemiol Biomark Prev. 2012;21(1):134–147. doi:10.1158/1055-9965.EPI-11-0775.; Karami F., Mehdipour P. A comprehensive focus on global spectrum of BRCA1 and BRCA2 mutations in breast cancer. Biomed Res Int. 2013;2013:928562. doi:10.1155/2013/928562.; Имянитов Е.Н. Наследственный рак молочной железы. Практическая онкология. 2010;11(4):258–266. Imyanitov E.N. Hereditary breast cancer. Prakticheskaya onkologiya = Practical Oncology. 2010;11(4):258–266. (In Russ.); Мандельштам М.Ю., Голубков В.И., Ламбер Е.П., Шапиро И.М., Брежнева Т.В., Семиглазов В.Ф. и др. Поиск часто встречающихся мутаций в генах предрасположенности к раку молочной железы. Генетика. 2001;37(12):1681–1686. Mandelshtam M.Ju., Golubkov V.I., Lamber E.P., Gaitskhoki V.S., Brezhneva T.V., Hanson K.P. et al. Search for frequent mutations in genes predisposing to breast cancer. Russian Journal of Genetics. 2001;37(12):1415–1420. doi:10.1023/A:1013204214638.; Ratnam K., Low J.A. Current development of clinical inhibitors of poly(ADP-ribose) polymerase in oncology. Clin Cancer Res. 2007;13(5):1383–1388. doi:10.1158/1078-0432.CCR-06-2260.; Lord C.J., Ashworth A. Targeted therapy for cancer using PARP inhibitors. Curr Opin Pharmacol. 2008;8(4):363–369. doi:10.1016/j.coph.2008.06.016.; Pommier Y., O’Connor M.J., de Bono J. Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. Sci Transl Med. 2016;8(362):362ps17. doi:10.1126/scitranslmed.aaf9246.; Chaudhuri A.R., Nussenzweig A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol. 2017;18(10):610–621. doi:10.1038/nrm.2017.53.; Ashworth A. A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J Clin Oncol. 2008;26(22):3785–3790. doi:10.1200/JCO.2008.16.0812.; Lord C.J., Ashworth A. PARP inhibitors: synthetic lethality in the clinic. Science. 2017;355(6330):1152–1158. doi:10.1126/science.aam7344.; Murai J., Huang S.Y.N., Das B.B., Renaud A., Zhang Y., Doroshow J.H. et al. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 2012;72(21):5588–5599. doi:10.1158/0008-5472.CAN-12-2753.; Murai J., Huang S.Y., Renaud A., Zhang Y., Ji J., Takeda S. et al. Stereospecific PARP trapping by BMN 673 and comparison with olaparib and rucaparib. Mol Cancer Ther. 2014;13(2):433–443. doi:10.1158/1535-7163.MCT-13-0803.; Molife L.R., Mateo J., McGoldrick T., Krebs M., Drew Y., Banerjee S.M. et al. Safety and efficacy results from two randomized expansions of a phase I study of a tablet formulation of the PARP inhibitor, olaparib, in ovarian and breast cancer patients with BRCA1/2 mutations. J Clin Oncol. 2012;30(15):3048. doi:10.1200/jco.2012.30.15_suppl.3048.; Molife L.R., Forster M.D., Krebs M., Twint P., Middleton M.R., Kaye S.B. et al. A phase I study to determine the comparative bioavailability of two different oral formulations of the PARP inhibitor, olaparib (AZD2281), in patients with advanced solid tumors. J Clin Oncol. 2010;28(15):2599. doi:10.1200/jco.2010.28.15_suppl.2599.; Fong P.C., Boss D.S., Yap T.A., Tutt A., Wu P., Mergui-Roelvink M. et al. Inhibition of Poly(ADP-Ribose) Polymerase in Tumors from BRCA Mutation Carriers. New England J Med. 2009;361(2):123–134. doi:10.1056/NEJMoa0900212.; Tutt A., Robson M., Garber J.E., Domchek S.M., Audeh M.W., Weitzel J.N. et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet. 2010;376(9737):235–244. doi:10.1016/S0140-6736(10)60892-6.; Robson M., Im S.A., Senkus E., Xu B., Domchek S.M., Masuda N. et al. Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation. N Engl J Med. 2017;377(6):523–533. doi:10.1056/NEJMoa1706450.; Shen Y., Rehman F.L., Feng Y., Boshuizen J., Bajrami I., Eliott R. et al. BMN673, a novel and highly potent PARP1/2 inhibitor for the treatment of human cancers with DNA repair deficiency. Clin Cancer Res. 2013;19(18):5003–5015. doi:10.1158/1078-0432.CCR-13-1391.; Litton J.K., Rugo H.S., Ettl J., Hurvitz S.A., Goncalves A., Lee K.H. et al. Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation. N Engl J Med. 2018;379(8):753–763. doi:10.1056/NEJMoa1802905.; Rugo H.S., Ettl J., Hurvitz S.A., Gonçalves A., Lee K.-H., Fehrenbacher L. et al. Outcomes in Clinically Relevant Patient Subgroups From the EMBRACA Study: Talazoparib vs Physician’s Choice Standard-of-Care Chemotherapy. JNCI Cancer Spectrum. 2020;4(1):1–12. doi:10.1093/jncics/pkz085.; Poggio F., Bruzzone M., Ceppi M., Conte B., Martel S., Maurer C. et al. Singleagent PARP inhibitors for the treatment of patients with BRCA-mutated HER2-negative metastatic breast cancer: A systematic review and meta-analysis. ESMO Open. 2018;3:e000361. doi:10.1136/esmoopen-2018-000361.