Εμφανίζονται 1 - 20 Αποτελέσματα από 66 για την αναζήτηση '"с-пептид"', χρόνος αναζήτησης: 0,71δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
    Academic Journal
  4. 4
  5. 5
  6. 6
    Academic Journal

    Πηγή: SCIENTIFIC JOURNAL OF APPLIED AND MEDICAL SCIENCES; Vol. 2 No. 10 (2023): AMALIY VA TIBBIYOT FANLARI ILMIY JURNALI; 1-8 ; НАУЧНЫЙ ЖУРНАЛ ПРИКЛАДНЫХ И МЕДИЦИНСКИХ НАУК; Том 2 № 10 (2023): AMALIY VA TIBBIYOT FANLARI ILMIY JURNALI; 1-8 ; 2181-3469

    Περιγραφή αρχείου: application/pdf

  7. 7
    Academic Journal
  8. 8
    Academic Journal

    Συγγραφείς: Г. K. Каримова

    Πηγή: SCIENTIFIC JOURNAL OF APPLIED AND MEDICAL SCIENCES; Vol. 2 No. 12 (2023): AMALIY VA TIBBIYOT FANLARI ILMIY JURNALI; 913-919 ; НАУЧНЫЙ ЖУРНАЛ ПРИКЛАДНЫХ И МЕДИЦИНСКИХ НАУК; Том 2 № 12 (2023): AMALIY VA TIBBIYOT FANLARI ILMIY JURNALI; 913-919 ; 2181-3469

    Περιγραφή αρχείου: application/pdf

  9. 9
    Academic Journal

    Συνεισφορές: The work was carried out within the framework of the topic of fundamental research no. 122020300043-1, the work was performed using the equipment of the Center for Collective Use “Medical Genomics”., Работа выполнена в рамках темы фундаментальных исследований № 122020300043-1, в работе использовано оборудование Центра коллективного пользования «Медицинская геномика».

    Πηγή: Siberian Journal of Clinical and Experimental Medicine; Том 38, № 1 (2023); 64-74 ; Сибирский журнал клинической и экспериментальной медицины; Том 38, № 1 (2023); 64-74 ; 2713-265X ; 2713-2927

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/1714/788; Iacobellis G. Epicardial adipose tissue in contemporary cardiology. Nature Reviews. Cardiology. 2022;19(9):593–606. DOI:10.1038/s41569-022-00679-9.; Yanai H., Yoshida H. Beneficial effects of adiponectin on glucose and lipid metabolism and atherosclerotic progression: mechanisms and perspectives. International Journal of Molecular Sciences. 2019;20(5):1190. DOI:10.3390/ijms20051190.; Koshelskaya O.A., Suslova T.E., Kologrivova I.V., Margolis N.Y., Zhuravleva O.A., Kharitonova O.A. et al. Epicardial fat thickness and biomarkers of inflammation in patients with stable coronary artery disease: correlation with the severity of coronary atherosclerosis. Russian Journal of Cardiology. 2019;(4):20–26. DOI:10.15829/1560-4071-2019-4-20-26.; Carbone F., Lattanzio MS., Minetti S., Ansaldo AM., Ferrara D., Molina-Molina E. et al. Circulating CRP levels are associated with epicardial and visceral fat depots in women with metabolic syndrome criteria. International Journal of Molecular Sciences. 2019;20(23):5981. DOI:10.3390/ijms20235981.; Stenkula K.G., Erlanson-Albertsson C. Adipose cell size: importance in health and disease. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 2018;315(2):R284–R295. DOI:10.1152/ajpregu.00257.2017.; Ishii Y., Abe I., Kira S., Harada T., Takano M., Oniki T. et al. Detection of fibrotic remodeling of epicardial adipose tissue in patients with atrial fibrillation: Imaging approach based on histological observation. Heart Rhythm O2. 2021;2(4):311–323. DOI:10.1016/j.hroo.2021.05.006.; Vianello E., Dozio E., Arnaboldi F., Marazzi M.G., Martinelli C., Lamont J. et al. Epicardial adipocyte hypertrophy: Association with M1-polarization and toll-like receptor pathways in coronary artery disease patients. Nutrition, Metabolism, and Cardiovascular Diseases. 2016;26(3):246–253. DOI:10.1016/j.numecd.2015.12.005.; Naryzhnaya N.V., Koshelskaya O.A., Kologrivova I.V., Kharitonova O.A., Evtushenko V.V., Boshchenko A.A. Hypertrophy and insulin resistance of epicardial adipose tissue adipocytes: Association with the coronary artery disease severity. Biomedicines. 2021;9(1):64. DOI:10.3390/biomedicines9010064.; Murdolo G., Smith U. The dysregulated adipose tissue: a connecting link between insulin resistance, type 2 diabetes mellitus and atherosclerosis. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD. 2006;16(1):S35–S38. DOI:10.1016/j.numecd.2005.10.016.; Klein M., Varga I. Microenvironment of immune cells within the visceral adipose tissue Sensu Lato vs. epicardial adipose tissue: What do we know? Inflammation. 2018;41(4):1142–1156. DOI:10.1007/s10753-018-0798-3.; Wadey R.M., Connolly K.D., Mathew D., Walters G., Rees D.A., James P.E. Inflammatory adipocyte-derived extracellular vesicles promote leukocyte attachment to vascular endothelial cells. Atherosclerosis. 2019;283:19–27. DOI:10.1016/j.atherosclerosis.2019.01.013.; Aitken-Buck H.M., Babakr A.A., Coffey S., Jones P.P., Tse R.D., Lamberts R.R. Epicardial adipocyte size does not correlate with body mass index. Cardiovascular Pathology. 2019;43:107144. DOI:10.1016/j.carpath.2019.07.003.; Ахмеджанов Н.М., Бутрова С.А., Дедов И.И., Кисляк О.А., Звенигородская Л.А., Кошельская О.А. и др. Консенсус российских экспертов по проблеме метаболического синдрома в Российской Федерации: определение, диагностические критерии, первичная профилактика и лечение. Профилактическая медицина. 2010;13(5):27–32.; Franck N., Stenkula K.G., Ost A., Lindström T, Strålfors P, Nystrom F.H. Insulin-induced GLUT4 translocation to the plasma membrane is blunted in large compared with small primary fat cells isolated from the same individual. Diabetologia. 2007;50(8):1716–1722. DOI:10.1007/s00125-007-0713-1.; Villasante Fricke A.C., Iacobellis G. Epicardial Adipose Tissue: Clinical biomarker of cardio-metabolic risk. International Journal of Molecular Sciences. 2019;20(23):E5989. DOI:10.3390/ijms20235989.; Leighton E., Sainsbury C.A., Jones G.C. A practical review of C-peptide testing in diabetes. Diabetes Ther. 2017;8(3):475–487. DOI:10.1007/s13300-017-0265-4.; Kim G.R., Choi D.W., Nam C.M., Jang S.I., Park E.C. Synergistic association of high-sensitivity C-reactive protein and body mass index with insulin resistance in non-diabetic adults. Scientific Reports. 2020;10(1):18417. DOI:10.1038/s41598-020-75390-1.; Bambace C., Sepe A., Zoico E., Telesca M., Olioso D., Venturi S. et al. Inflammatory profile in subcutaneous and epicardial adipose tissue in men with and without diabetes. Heart Vessels. 2014;29(1):42–48. DOI:10.1007/s00380-012-0315-9.; Yim J., Rabkin S.W. Differences in gene expression and gene associations in epicardial fat compared to subcutaneous fat. Horm. Metab. Res. 2017;49(5):327–337. DOI:10.1055/s-0042-119202.; McAninch E.A., Fonseca T.L., Poggioli R., Panos A.L., Salerno T.A., Deng Y. et al. Epicardial adipose tissue has a unique transcriptome modified in severe coronary artery disease. Obesity (Silver Spring). 2015;23(6):1267–1278. DOI:10.1002/oby.21059.; https://www.sibjcem.ru/jour/article/view/1714

  10. 10
    Academic Journal

    Συγγραφείς: Каримова, Г. K.

    Πηγή: SCIENTIFIC JOURNAL OF APPLIED AND MEDICAL SCIENCES; Vol. 1 No. 6 (2022): AMALIY VA TIBBIYOT FANLARI ILMIY JURNALI; 180-192 ; НАУЧНЫЙ ЖУРНАЛ ПРИКЛАДНЫХ И МЕДИЦИНСКИХ НАУК; Том 1 № 6 (2022): AMALIY VA TIBBIYOT FANLARI ILMIY JURNALI; 180-192 ; 2181-3469

    Περιγραφή αρχείου: application/pdf

  11. 11
    Academic Journal

    Συγγραφείς: Каримова, Г. K.

    Πηγή: BARQARORLIK VA YETAKCHI TADQIQOTLAR ONLAYN ILMIY JURNALI; Vol. 2 No. 8 (2022): БАРҚАРОРЛИК ВА ЕТАКЧИ ТАДҚИҚОТЛАР ОНЛАЙН ИЛМИЙ ЖУРНАЛИ; 199-212 ; 2181-2608

    Περιγραφή αρχείου: application/pdf

  12. 12
    Academic Journal

    Πηγή: Medical Genetics; Том 20, № 1 (2021); 25-36 ; Медицинская генетика; Том 20, № 1 (2021); 25-36 ; 2073-7998

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/1839/1468; Аметов А.С. Сахарный диабет 2 типа: проблемы и решение. 2-е издание. М.: ГЭОТАР-Медиа, 2013. 1032 с.; Saeedi P., Petersohn I., Salpea P., Malanda B., Karuranga S., Unwin N. et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. Diabetes research and clinical practice 2019; (157): 107843. doi: A10.1016/j.diabres.2019.107843.; Fuchsberger C., Flannick J., Teslovich T.M., Mahajan A., Agarwala V., Gaulton K.J. et al. The genetic architecture of type 2 diabetes. Nature 2016; 536(7614): 41-47. doi.org/10.1038/nature18642.; Zaccardi F., Webb D.R., Yates T., Davies M.J. Pathophysiology of type 1 and type 2 diabetes mellitus: a 90-year perspective. Postgraduate medical journal 2016; 92(1084): 63-69. doi:10.1136/postgradmedj-2015-133281.; Азарова Ю.Э., Клёсова Е.Ю., Самгина Т.А., Сакали С.Ю., Коломоец И.И., Азарова В.А. и др. Роль полиморфных вариантов гена CYBA в патогенезе сахарного диабета 2 типа. Медицинская генетика 2019; 18(8): 37-48. doi:10.25557/2073-7998.2019.08.37-48.; Rains J.L., Jain S.K. Oxidative stress, insulin signaling, and diabetes. Free Radical Biology and Medicine 2011; 50(5): 567-575. doi:10.1016/j.freeradbiomed.2010.12.006.; Gudmundsson J., Sulem P., Steinthorsdottir V., Bergthorsson J.T., Thorleifsson G., Manolescu A. et al. Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet 2007; 39(8): 977-983. doi:10.1038/ng2062.; Miyake K., Yang W., Hara K., Yasuda K., Horikawa Y., Osawa H. et al. Construction of a prediction model for type 2 diabetes mellitus in the Japanese population based on 11 genes with strong evidence of the association. J Hum Genet 2009; 54(4): 236-241. doi:10.1038/jhg.2009.17.; Deng X., Liu H., Nalima A.Q., Zhu J. Association of polymorphisms rs290487, rs864745, rs4430796 and rs23136 with type 2 diabetes in the Uyghur population in China. Int J Clin Exp Pathol 2017; 10(8): 8813-8819.; Edghill E.L., Bingham C., Ellard S., Hattersley A.T. Mutations in hepatocyte nuclear factor-1beta and their related phenotypes. J Med Genet 2006; 43(1): 84-90. doi:10.1136/jmg.2005.032854.; Horikawa Y., Iwasaki N., Hara M., Furuta H., Hinokio Y., Cockburn B.N. et al. Mutation in hepatocyte nuclear factor-1-beta gene (TCF2) associated with MODY. Nature Genet 1997; 17(4): 384-385. doi:10.1038/ng1297-384.; Lindner T.H., Njolstad P.R., Horikawa Y., Bostad L., Bell G.I., Sovik O. A novel syndrome of diabetes mellitus, renal dysfunction and genital malformation associated with a partial deletion of the pseudo-POU domain of hepatocyte nuclear factor-1-beta. Hum Molec Genet 1999; 8(11): 2001-2008. doi:10.1093/hmg/8.11.2001.; Wu C., Jin X., Tsueng G., Afrasiabi C., Su A.I. BioGPS: building your own mash-up of gene annotations and expression profiles. Nucleic acids research 2016; 44(D1): D313-D316. doi:10.1093/nar/gkv1104.; Holmkvist J., Almgren P., Lyssenko V., Lindgren C.M., Eriksson K.F., Isomaa B. et al. Common variants in maturity-onset diabetes of the young genes and future risk of type 2 diabetes. Diabetes. 2008; 57(6): 1738-1744. doi:10.2337/db06-1464.; Brito E.C., Lyssenko V., Renström F., Berglund G., Nilsson P.M., Groop L. et al. Previously associated type 2 diabetes variants may interact with physical activity to modify the risk of impaired glucose regulation and type 2 diabetes: a study of 16,003 Swedish adults. Diabetes 2009; 58(6): 1411-1418. doi:10.2337/db08-1623.; Азарова Ю.Э., Клёсова Е.Ю., Сакали С.Ю., Ковалев А.П. Вклад полиморфизма rs11927381 гена IGF2BP2 в патогенез сахарного диабета 2 типа. Научные результаты биомедицинских исследований 2020; 6(1): 9-19. doi:10.18413/2658-6533-2020-6-1-0-2.; Solé X., Guinó E., Valls J., Iniesta R., Moreno V. SNPStats: a web tool for the analysis of association studies. Bioinformatics 2006; 22(15): 1928-1929. doi:10.1093/bioinformatics/btl268.; Lonsdale J., Thomas J., Salvatore M., Phillips R., Lo E., Shad S. et al. The genotype-tissue expression (GTEx) project. Nature genetics 2013; 45(6): 580-585. doi:10.1038/ng.2653.; Gaunt T.R., Shihab H.A., Hemani G., Min J.L., Woodward G., Lyttleton O. et al. Systematic identification of genetic influences on methylation across the human life course. Genome Biology 2016; 17(1): 1-14. doi:10.1186/s13059-016-0926-z.; Szklarczyk D., Gable A.L., Lyon D., Junge A., Wyder S., Huerta-Cepas J. et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019; 47(D1): D607-D613. doi:10.1093/nar/gky1131.; Mi H., Huang X., Muruganujan A., Tang H., Mills C., Kang D. et al. PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic acids research 2017; 45(D1): D183-D189. doi:10.1093/nar/gkw1138.; Ek J., Grarup N., Urhammer S.A., Gæde P.H., Drivsholm T., Borch-Johnsen K. et al. Studies of the variability of the hepatocyte nuclear factor-1β (HNF-1β/TCF2) and the dimerization cofactor of HNF-1 (DcoH/ PCBD) genes in relation to type 2 diabetes mellitus and β-cell function. Hum Mutat 2001; 18(4): 356-357. doi:10.1002/humu.1201.; Kim E.K., Lee J.S., Cheong H.I., Chung S.S., Kwak S.H., Park K.S. Identification and functional characterization of P159L mutation in HNF1B in a family with maturity-onset diabetes of the young 5 (MODY5). Genomics and informatics 2014; 12(4): 240. doi:10.5808/GI.2014.12.4.240.; Chan S.C., Zhang Y., Shao A., Avdulov S., Herrera J., Aboudehen K. et al. Mechanism of fibrosis in HNF1B-related autosomal dominant tubulointerstitial kidney disease. Journal of the American Society of Nephrology 2018; 29(10): 2493-2509. doi:10.1681/ASN.2018040437.; Clissold R.L., Hamilton A.J., Hattersley A.T., Ellard S., Bingham C. HNF1B-associated renal and extra-renal disease-an expanding clinical spectrum. Nature Reviews Nephrology 2015; 11(2): 102. doi:10.1038/nrneph.2014.232.; Kanikarla-Marie P., Micinski D., Jain S.K. Hyperglycemia (high-glucose) decreases l-cysteine and glutathione levels in cultured monocytes and blood of Zucker diabetic rats. Molecular and cellular biochemistry 2019; 459(1-2): 151-156. doi:10.1007/s11010-019-03558-z.; Lagman M., Ly J., Saing T., Singh M.K., Tudela E.V., Morris D. et al. Investigating the causes for decreased levels of glutathione in individuals with type II diabetes. PLoS One 2015; 10(3): e0118436. doi:10.1371 / journal.pone.0118436.; Axelsson A.S., Mahdi T., Nenonen H.A., Singh T., Hänzelmann S., Wendt A. et al. Sox5 regulates beta-cell phenotype and is reduced in type 2 diabetes. Nature communications 2017; 18(1): 1-16. doi:10.1038/ncomms15652.; Turner N., Kowalski G.M., Leslie S.J., Risis S., Yang C., Lee-Young R.S. et al. Distinct patterns of tissue-specific lipid accumulation during the induction of insulin resistance in mice by high-fat feeding. Diabetologia 2013; 56(7): 1638-1648. doi:10.1007/s00125-013-2913-1.; Corkey B.E. Diabetes: Have We Got It All Wrong?: Insulin hypersecretion and food additives: cause of obesity and diabetes?. Diabetes care 2016; 35(12): 2432-2437. doi:10.2337/dc12-0825.; Czech M.P. Insulin action and resistance in obesity and type 2 diabetes. Nature medicine 2017; 23(7): 804-814. doi:10.1038/nm.4350.

  13. 13
  14. 14
    Academic Journal

    Συνεισφορές: the staff of the endocrinological department of the Elizabethan city hospital and the staff of the laboratory of cellular and humoral immunity of the Nikiforov Russian Center for Emergency and Radiation Medicine, St. Petersburg, коллектив эндокринологического отделения Елизаветинской городской больницы и сотрудники лаборатории клеточного и гуморального иммунитета Всероссийского центра экстренной и радиационной медицины им. А.М. Никифорова г. Санкт-Петербурга

    Πηγή: Medical Immunology (Russia); Том 22, № 1 (2020); 123-134 ; Медицинская иммунология; Том 22, № 1 (2020); 123-134 ; 2313-741X ; 1563-0625

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/1834/1229; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1834/5215; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1834/5216; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1834/5217; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1834/5218; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1834/5219; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1834/5220; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1834/5221; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1834/5222; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1834/5223; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1834/5224; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1834/5225; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1834/5403; Васина Л.В., Иванов Г.А., Луговая А.В., Морозова Л.Ю. Изменение циркулирующих CD59+- лимфоцитов периферической крови при остром коронарном синдроме // Вестник Санкт-Петербургского государственного университета, 2008. № 1. С. 6-12. [Vasina L.V., Ivanov G.A., Lugovaya A.V., Morozova L.Yu. Change of content of circulating CD59+ cells of peripheral blood at acute coronary syndrome. Vestnik SanktPeterburgskogo gosudarstvennogo universiteta = Bulletin of St. Petersburg State University, 2008, no. 1, pp. 6-12. (In Russ.)]; Васина Л.В., Луговая А.В., Петрищев Н.Н., Серебряная Н.Б. Патогенетическое значение изменения относительного содержания аннексин V+-мононуклеаров и CD59+-лимфоцитов периферической крови при остром коронарном синдроме // Медико-биологические и социально-психологические проблемы безопасности в чрезвычайных ситуациях, 2008. № 1. С. 74-80. [Vasina L.V., Lugovaya A.V., Petrischev N.N., Serebryanaya N.B. Pathogenic significance of relative alteration in V-binding mononuclears and CD 59+ lymphocytes of peripheral blood in patients with acute coronary syndrome. Mediko-biologicheskie i sotsialno-psikhologicheskie problemy bezopasnosti v chrezvychaynykh situatsiyakh = Medicо-Biological and Socio-Psychological Problems of Safety in Emergency Situation, 2008, no. 1, pp. 74-80. (In Russ.)]; Зурочка А.В., Давыдова Е.В., Альтман Д.А. Интенсивность процессов апоптоза и пролиферации лимфоцитов в условиях дислипидемии при ранних формах хронической ишемии мозга // Медицинская иммунология, 2014. Т. 16, № 1. С. 27-34. [Zurochka A.V., Davydova E.V., Altman D.A. Intensity of apoptotic and proliferative events in lymphocytes under dyslipidemic conditions at early stages of chronic brain ischemia. Meditsinskaya immunologiya = Medical Immunology (Russia), 2014, Vol. 16, no. 1, pp. 27-34. (In Russ.)] doi:10.15789/1563-0625-2014-1-27-34.; Зурочка А.В., Хайдуков С.В., Кудрявцев И.В., Черешнев В.А. Проточная цитометрия в биомедицинских исследованиях. Екатеринбург: РИО УрО РАН, 2018. 720 с. [Zurochka A.V., Khaidukov S.V., Kudriavtsev I.V., Chereshev V.A. Flow cytometry in biomedical research]. Ekaterinburg: RIO UB RAS, 2018. 720 p.; Иммунология: в 3-х т. Т. 1. Пер. с англ. / Под ред. У. Пола. М.: Мир, 1988. 476 с. [Fundamental Immunology. Ed. William E. Paul, M.D]. Moscow: Mir, 1988. 476 p.; Кудрявцев И.В., Головкин А.С., Зурочка А.В., Хайдуков С.В. Современные методы и подходы к изучению апоптоза в экспериментальной биологии // Медицинская иммунология, 2012. Т. 14, № 6. С. 461-482. [Kudriavtsev I.V., Golovkin A.S., Zurochka A.V., Khaidukov S.V. Modern technologies and approaches to apoptosis studies in experimental biology. Meditsinskaya immunologiya = Medical Immunology (Russia), 2012, Vol. 14, no. 6, pp. 461-482. (In Russ.)] doi:10.15789/1563-0625-2012-6-461-482.; Петрищев Н.Н., Васина Л.В., Луговая А.В. Содержание растворимых маркеров апоптоза и циркулирующих аннексин V-связанных апоптотических клеток в крови больных острым коронарным синдромом // Вестник Санкт-Петербургского государственного университета, 2008. № 1. С. 14-24. [Petrishchev N.N., Vasina L.V., Lugovaya A.V. Content of soluble markers of apoptosis and circulating V annexin-connected apoptotic cells in the blood of patients with acute coronary syndrome. Vestnik Sankt-Peterburgskogo gosudarstvennogo universiteta = Bulletin of St. Petersburg State University, 2008, no. 1, pp. 14-24. (In Russ.)]; Хаитов Р.М. Иммунология: учебник. М.: ГЭОТАР-Медиа, 2018. 496 с. [Khaitov R.M. Immunology: textbook]. Moscow: GEOTAR-Media, 2018. 496 p.; Ярилин А.А., Никонова М.Ф., Ярилина А.А., Варфоломеева М.И., Григорьева Т.Ю. Апоптоз, роль в патологии и значимость его оценки при клинико-иммунологическом обследовании больных // Медицинская иммунология, 2000. Т. 2, № 1. С. 7-16. [Yarilin A.A., Nikonova M.F., Yarilina A.A., Varfolomeeva M.I., Grigorieva T.Yu. Apoptosis, importance of its evaluation in immunopathlogical states. Meditsinskaya immunologiya = Medical Immunology (Russia), 2000, Vol. 2, no. 1, pp. 7-16. (In Russ.)]; Ardestani A., Maedler K. MST1: a promising therapeutic target to restore functional beta cell mass in diabetes. Diabetologia, 2016, Vol. 59, no. 9, pp. 1843-1849.; Baidwan S., Chekuri A., Hynds D.L., Kowluru A. Glucotoxicity promotes aberrant activation and mislocalization of Ras-related C3 botulinum toxin substrate 1 [Rac1] and metabolic dysfunction in pancreatic islet β-cells: reversal of such metabolic defects by metformin. Apoptosis, 2017, Vol. 22, no. 11, pp. 1380-1393.; Banfalvi G. Methods to detect apoptotic cell death. Apoptosis, 2017, Vol. 22, no. 2, pp. 306-323.; Birge R.B., Boeltz S., Kumar S., Carlson J., Wanderley J., Calianese D., Barcinski M., Brekken R.A., Huang X., Hutchins J.T., Freimark B., Empig C., Mercer J., Schroit A.J., Schett G., Herrmann M. Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer. Cell Death Differ., 2016, Vol. 23, pp. 962-978.; Blander J.M. The many ways tissue phagocytes respond to dying cells. Immunol. Rev., 2017, Vol. 277, no. 1, pp. 158-173.; Brozzi F., Nardelli T.R., Lopes M., Millard I., Barthson J., Mariana I., Grieco A.F., Villate O., Oliveira J.M., Casimir M., Bugliani M., Engin F., Hotamisligil G.S., Marchetti P., Eizirik D.L. Cytokines induce endoplasmic reticulum stress in human, rat and mouse beta cells via different mechanisms. Diabetologia, 2015, Vol. 58, no. 10, pp. 2307-2316.; Elmore S.A., Dixon D., Hailey J.R., Harada T., Herbert R.A., Maronpot R.R., Nolte T., Rehg J.E., Rittinghausen S., Rosol T.J., Satoh H., Vidal J.D., Willard-Mack C.L., Creasy D.M. Abstract Recommendations from the INHAND Apoptosis/Necrosis Working Group. Toxicol. Pathol., 2016, Vol. 44, no. 2, pp. 173-188.; Fu D., Yu J.Y., Yang S., Wu M., Hammad S.M., Connel A. R., Du M., Chen J., Lyons T. J. Survival or death: a dual role for autophagy in stress-induce pericyte loss in diabetic retinopathy. Diabetologia, 2016, Vol. 59, no. 10, pp. 2251-2261.; Garg A.D., Romano E., Rufo N., Agostinis P. Immunogenic versus tolerogenic phagocytosis during anticancer therapy mechanisms and clinical translation. Cell Death Differ., 2016, Vol. 23, pp. 938-951.; Green D.R. Cell death and the immune system: getting to how and why. Immunol. Rev., 2017, Vol. 277, no. 1, pp. 4-8.; Green D.R., Oguin T.H., Martinez J. The clearance of dying cells: table for two. Cell Death Differ., 2016, Vol. 23, pp. 915-926.; Hakonen E., Chandral V., Fogarty C.L., Yu N.Y., Ustinov J., Katayama S., Galli E., Danilova T., Lindholm P., Vartiainen A., Einarsdottir E., Krjutškov K., Kere J., Saarma M., Lindah M., Otonkoski T. MANF protects human pancreatic beta cells against stress-induced cell death. Diabetologia, 2018, Vol. 61, no. 10, pp. 2202-2214.; Hammes H.P. Diabetic retinopathy: hyperglycaemia, oxidative stress and beyond. Diabetologia, 2018, Vol. 61, no. 1, pp. 29-38.; Kumagai J., Akiyama H., Iwashita S., Iida H., Yahara I. In vitro regeneration of resting lymphocytes from stimulated lymphocytes and its inhibition by insulin. J. Immunol., 1981, Vol. 126, no. 4, pp. 1249-1254.; Pasparakis M., Vandenabeele P. Necroptosis and its role in inflammation. Nature, 2015, Vol. 517, pp. 311- 320.; Purwana I., Liu J.J., Portha B., Buteau J. HSF1 acetylation decreases its transcriptional activity and enhances glucolipotoxicity-induced apoptosis in rat and human beta cells. Diabetologia, 2017, Vol. 60, no. 8, pp. 1432-1441.; Ryan A., Murphy M., Godson C., Hickey F.B. Diabetes mellitus and apoptosis: inflammatory cells. Apoptosis, 2009, Vol. 14, no. 12, pp. 1435-1450.; Sachet M., Liang Y.Y., Oehler R. The immune response to secondary necrotic cells. Apoptosis, 2017, Vol. 22, no. 10, pp. 1189-1204.; Sidarala V., Kowluru A. Exposure to chronic hyperglycemic conditions results in Ras-related C3 botulinum toxin substrate 1 (Rac1)-mediated activation of p53 and ATM kinase in pancreatic β-cells. Apoptosis, 2017, Vol. 22, no. 5, pp. 597-607.; Tchorzewski H., Glowacka M., Banasik P., Lewkowicz M., Szalapska-Zawodniak M. Activated T lymphocytes from patients with high risk of type I diabetes mellitus have different ability to produce interferon-γ, interleukin-6 and interleukin-10 and undergo anti-CD95 induced apoptosis after insulin stimulation. Immunol. Lett., 2001, Vol. 75, pp. 225-234.; Thomas H.E., Trapani J.A., Kay T.W.H. The role of perforin and granzymes in diabetes. Cell Death Differ., 2010, Vol. 17, pp. 577-585.; Vives-Pi M., Rodrıguez-Fernandez S., Pujol-Autonell I. How apoptotic β-cells direct immune response to tolerance or to autoimmune diabetes: a review. Apoptosis, 2015, Vol. 20, no. 3, pp. 263-272.; Weinlich R., Oberst A., Beere H.M., Green D.R. Necroptosis in development, inflammation and disease. Nat. Rev. Mol. Cell. Biol., 2016, Vol. 18, pp. 127-136.; Zhang M., Zhang L., Hu J., Lin J., Tingting W., Duan Y., Man W., Feng J., Sun L., Jia H., Li C., Zhang R., Wang H., Sun D. MST1 coordinately regulates autophagy and apoptosis in diabetic cardiomyopathy in mice. Diabetologia, 2016, Vol. 59, no. 11, pp. 2435-2447.; Zhao Y., Scott N.A., Fynch S., Elkerbout L., Wong W.W., Mason K.D., Strasser A., Huang D.C., Kay T.W.H., Thomas H.E. Autoreactive T cells induce necrosis and not BCL-2-regulated or death receptor-mediated apoptosis or RIPK3-dependent necroptosis of transplanted islets in a mouse model of type 1 diabetes. Diabetologia, 2015, Vol. 58, no. 1, pp. 140-148.; https://www.mimmun.ru/mimmun/article/view/1834

  15. 15
  16. 16
    Academic Journal

    Πηγή: Medical Herald of the South of Russia; Том 9, № 1 (2018); 23-31 ; Медицинский вестник Юга России; Том 9, № 1 (2018); 23-31 ; 2618-7876 ; 2219-8075 ; 10.21886/2219-8075-2018-9-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medicalherald.ru/jour/article/view/642/441; Решетняк Т.М., Середавкина Н.В., Дыдыкина И.С., Насонов Е.Л. // Глюкокортикоиды в терапии системной красной волчанки. Клиницист. - 2013. - № 3-4. - С. 14-26.; Lupi I, Cosottini M, Caturegli P, Manetti L, Urbani C, Cappellani D et al. Diabetes insipidus is an unfavorable prognostic factor for response to glucocorticoids in patients with autoimmune hypophysitis. Eur J Endocrinol. 2017; 177(2):127-135. doi:10.1530/EJE-17-0123.; Suh S, Park MK. Glucocorticoid-Induced Diabetes Mellitus: An Important but Overlooked Problem. Endocrinol Metab (Seoul). 2017; 32(2):180-189. doi:10.3803/EnM.2017.32.2.180.; Румянцева С.А., Силина Е.В., Орлова А.С., Орлов В.А., Болевич С.Б. Гипергликемия и свободнорадикальный дисбаланс как прогностические маркеры острого нарушения мозгового кровообращения. // Анналы клинической и экспериментальной неврологии. - 2012. - Т. 6. № 4. - С. 26-29.; Martínez BB, Pereira AC, Muzetti JH, Telles FP, Mundim FG, Teixeira MA. Experimental model of glucocorticoid-induced insulin resistance. Acta Cir Bras. 2016; 31(10):645-649. doi:10.1590/S0102-865020160100000001.; Кондратьева Л.В., Панафидина Т.А., Герасимова Е.В., Горбунова Ю.Н., Попкова Т.В., Насонов Е.Л. Сахарный диабет и гипергликемия у больных ревматоидным артритом. // Современная ревматология. - 2014. - № 3. - С. 23-27. doi.org/10.14412/1996-7012-2014-3-23-27.; JensenDH, Aaboe K, Henriksen JE, Vølund A, Holst JJ, Madsbad S et al. Steroid-induced insulin resistance and impaired glucose tolerance are both associated with progressive decline of incretin effect in firstdegree relatives of patients with type 2 diabetes. Diabetologia. 2012;55(5):1406-16. doi:10.1007/s00125-012-2459-7.; Ha CH, Swearingin B, Jeon YK. Relationship of visfatin level to pancreatic endocrine hormone level, HOMA-IR index, and HOMA β-cell index in overweight women who performed hydraulic resistance exercise. J Phys Ther Sci. 2015; 27(9):2965-9. doi:10.1589/jpts.27.2965.; Tuzun S, Oner C, Dabak MR, Kasikci HO, Sargin M. Relation of Muscle Indices with Metabolic Parameters and C-Peptide in Type 2 Diabetes Mellitus. J Coll Physicians Surg Pak. 2017; 27(11):673-677. doi: 2740.; Leighton E, Sainsbury CA, Jones GC. A Practical Review of C-Peptide Testing in Diabetes. Diabetes Ther. 2017; 8 (3):475-487. doi:10.1007/s13300-017-0265-4.; Caplan A, Fett N, Rosenbach M, Werth VP, Micheletti RG. Prevention and management of glucocorticoid-induced side effects: A comprehensive review: Ocular, cardiovascular, muscular, and psychiatric side effects and issues unique to pediatric patients. J Am Acad Dermatol. 2017;76(2):201-207. doi:10.1016/j.jaad.2016.02.1241.; Oray M, Abu Samra K, Ebrahimiadib N, Meese H, Foster CS. Long-term side effects of glucocorticoids. Expert Opin Drug Saf. 2016; 15 (4):457-65. doi:10.1517/14740338.2016.1140743.; Movahedi M, Beauchamp ME, Abrahamowicz M, Ray DW, Michaud K, Pedro S et al. Risk of Incident Diabetes Mellitus Associated With the Dosage and Duration of Oral Glucocorticoid Therapy in Patients With Rheumatoid Arthritis. Arthritis Rheumatol. 2016; 68 (5):1089-98. doi:10.1002/art.39537.; https://www.medicalherald.ru/jour/article/view/642

  17. 17
  18. 18
    Academic Journal
  19. 19
    Academic Journal

    Πηγή: Scientific Herald of Uzhhorod University. Series Medicine; Vol. 58 No. 2 (2018); 81-84
    Науковий вісник Ужгородського університету. Серія Медицина; Том 58 № 2 (2018); 81-84

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: http://visnyk-med.uzhnu.edu.ua/article/view/184935

  20. 20