-
1Academic Journal
Συγγραφείς: E. G. Borisov, Е. Г. Борисов
Πηγή: Civil Aviation High Technologies; Том 23, № 2 (2020); 8-19 ; Научный вестник МГТУ ГА; Том 23, № 2 (2020); 8-19 ; 2542-0119 ; 2079-0619 ; 10.26467/2079-0619-2020-23-2
Θεματικοί όροι: среднеквадратическая ошибка, rangefinding, sum of distances, radial speed, location, velocity vector, standard error, дальномерные, суммарно - дальномерные, радиальная скорость, местоположение, вектор скорости
Περιγραφή αρχείου: application/pdf
Relation: https://avia.mstuca.ru/jour/article/view/1671/1197; Черняк В.С. Многопозиционная радиолокация. М.: Радио и связь, 1993. 416 с.; Черняк В.С., Заславский Л.П., Осипов Л.В. Многопозиционные радиолокационные станции и системы // Зарубежная радиоэлектроника. 1987. № 1. С. 9-69.; Зайцев Д.В. Многопозиционные радиолокационные системы. Методы и алгоритмы обработки информации в условии помех. М.: Радиотехника, 2007. 114 с.; Кирсанов Э.А., Сирота А.А. Обработка информации в пространственно-распределённых системах радиомониторинга: статистический и нейросетевой подходы. М.: ФИЗМАТЛИТ, 2012. 344 с.; Кондратьев В.С., Котов А.Ф., Марков Л.Н. Многопозиционные радиотехнические системы / Под ред. В.В. Цветнова. М.: Радио и связь, 1986. 264 с.; Кондрашов В.И., Кондрашов Я.В. Принципы и структуры мобильных, локальных, многопозиционных навигационно-посадочных авиационных радиосистем наземного базирования // Научный Вестник МГТУ ГА, серия Радиофизика и радиотехника. 2004. № 76. С. 84-92.; Затучный Д.А. Повышение точности определения местоположения воздушных судов на основе учёта ошибок 1 и 2 рода при выборе набора спутников // Вестник Санкт-Петербургского государственного университета гражданской авиации. 2017. № 1 (14). С. 39-46.; Затучный Д.А., Маслов А.К., Эрич М.Й. Выбор топологии расположения наземных средств обеспечения полетов для улучшения точности выявления навигационной погрешности // Информатизация и связь. 2019. № 4. С. 169-173. DOI:10.34219/2078-8320-2019-10-4-169-173; Шестаков И.Н. Повышение точности позиционирования подвижных объектов с применением нескольких приёмных устройств СРНС на борту ВС // Научный Вестник МГТУ ГА. 2006. № 107. С. 180-189.; Ji C. An efficient adaptive clutter compensation algorithm for bistatic airborne radar based on improved omp application / C. Ji, M. Shen, C. Liang, D. Wu, D.-Y. Zhu // Progress in Electromagnetics Research M. 2017. Vol. 59. Pp. 203-212. DOI:10.2528/PIERM17060801; Kilani M.B., Gagnon G., Gagnon F. Multistatic radar placement optimization for cooperative radar-communication systems // IEEE Communications Letters. 2018. Vol. 22, iss. 8. Pp. 1576-1579. DOI:10.1109/LCOMM.2018.2837913; Xu Z. A MLAT algorithm based on target pressure altitude / Z. Xu, D. He, Y. Tang, J. Li // IEEE International Conference on Mechatronics and Automation (ICMA). 2015. Pp. 1800-1804. DOI:10.1109/ICMA.2015.7237759; Webster T, Higgins T. Detection aided multistatic velocity back projection for passive radar // IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2015. Pp. 5580-5584. DOI:10.1109/ICASSP.2015.7179039; Webster T., Higgins T., Mokole E.L. Passive multistatic radar experiment using WiMAX signals of opportunity. Part 2: Multistatic velocity backprojection // Radar Sonar & Navigation IET. 2016. Vol. 10, no. 2. Pp. 248-255. DOI:10.1049/iet-rsn.2015.0021; Tong J. Cramer-Rao lower bound analysis for stochastic model based target parameter estimation in multistatic passive radar with direct-path interference / J. Tong, H. Gaoming, T. Wei, P. Huafu // IEEE Access. 2019. Vol. 7. Pp. 106761-106772. DOI:10.1109/ACCESS.2019.2926353; Wang J. Target localisation in multistatic radar using BR, TDOA, and AOA measurements / J.Wang, Z. Qin, Y. Bi, S. Wei, F. Luo // The Journal of Engineering. 2019. Vol. 2019, iss. 19. Pp. 6052-6056. DOI:10.1049/joe.2019.0128; Меркулов В.И., Садовский П.А. Оценивание дальности и ее производных в двухпо-зицонной пассивной радиолокационной системе // Труды СПИИРАН. 2018. № 1 (56). С. 122143. DOI:10.15622/sp.56.6; Верба В.С., Меркулов В.И., Садовский П.А. Многодиапазонные радиолокационные системы. Проблемы многоцелевого сопровождения [Электронный ресурс] // Радиостроение. 2015. № 5. С. 37-51. URL: https://www.radiovega.su/jour/article/view/44?locale=ru_RU (дата обращения: 15.01.2020). DOI:10.7463/rdopt.0515.0817948; Кузьмин С.З. Основы проектирования систем цифровой обработки радиолокационной информации. М.: Радио и связь, 1986. 352 с.; Васильев К.К., Павлыгин Э.Д., Гуторов А.С. Построение траекторий маневрирующих целей на основе сплайнов и фильтра Калмана // Автоматизация процессов управления. 2016. № 1 (43). С. 67-75.; Охрименко А.Е. Основы обработки и передачи информации. Минск: Воениздат, 1990. 180 с.; Борисов Е.Г., Машков Г.М., Турнецкий Л.С. Повышение точности определения координат цели при реализации кооперативной обработки в многопозиционной радиолокационной системе // Радиотехника. 2013. № 5. С. 4-9.; Borisov E., Mashkov G., Fokin G. Experimental validation of multipoint joint processing of range measurements via software-defined radio testbed // 18th International Conference on Advanced Communication Technology (ICACT), Pyeongchang, 2016. Pp. 268-273. DOI:10.1109/ICACT.2016.7423356; Шебшаевич В.С., Дмитриев П.П., Иванцевич Н.В. Сетевые спутниковые радионавигационные системы / Под ред. В.С. Шебшаевича. 2-е изд., перераб. и доп. М.: Радио и связь, 1993. 408 с.; Ширман Я.Д. Теоретические основы радиолокации: учеб. пособие для вузов. М.: «Советское радио», 1970. 560 с.; https://avia.mstuca.ru/jour/article/view/1671
-
2Academic Journal
Συγγραφείς: E. G. Borisov, Е. Г. Борисов
Πηγή: Civil Aviation High Technologies; Том 21, № 5 (2018); 105-116 ; Научный вестник МГТУ ГА; Том 21, № 5 (2018); 105-116 ; 2542-0119 ; 2079-0619 ; 10.26467/2079-0619-2018-21-5
Θεματικοί όροι: полуактивная радиолокация, least square method, total long distance, angular measurements, locate positions, accuracy, semiactive radiolocation, метод наименьших квадратов, суммарно-дальномерные, угломерные измерения, определение местоположения, точность
Περιγραφή αρχείου: application/pdf
Relation: https://avia.mstuca.ru/jour/article/view/1376/1114; Bendjama L., Laroussi T. GLRT-based passive bistatic radar: A performance comparison of illuminators of opportunity // 2018 International Conference on Advanced Systems and Electric Technologies (IC ASET). 2018. Pp. 54–59. DOI:10.1109/ASET.2018.8379834.; Capria A. DVB-T passive radar for vehicles detection in urban environment / D. Petri, M. Martorella, M. Conti, E. Dalle Mese, F. Berizzi // 2010 IEEE International Geoscience and Remote Sensing Symposium. 2010. Pp. 3917–3920. DOI:10.1109/IGARSS.2010.5649675.; Howland P.E., Maksimiuk D., Reitsma G. FM radio based bistatic radar // IEE Proceedings – Radar, Sonar and Navigation. 2005. Pр. 107–115. DOI:10.1049/ip-rsn:20045077.; Zaimbashi A., Derakhtian M., Sheikhi A. Invariant Target Detection in Multiband FMBased Passive Bistatic Radar // IEEE Transactions on Aerospace and Electronic Systems. 2014. Pp. 720–736. DOI:10.1109/TAES.2013.120248.; Conti M. High range resolution multichannel DVB-T passive radar / F. Berizzi, M. Martorella, E. Dalle Mese, D. Petri, A. Capria // IEEE Aerospace and Electronic Systems Magazine. 2012. Pp. 37–42.; Conti M. Ambiguity function sidelobes mitigation in multichannel DVB-T Passive Bistatic Radar / D. Petri, A. Capria, M. Martorella, F. Berizzi, E. Dalle Mese // 12th International Radar Symposium (IRS). 2011. Pp. 339–344.; Christiansen J.M., Olsen K.E. Range and Doppler walk in DVB-T based Passive Bistatic Radar // IEEE Radar Conference. 2010. Pp. 620–626. DOI:10.1109/RADAR.2010.5494548.; Samczyński P., Wilkowski M., Kulpa K. Trial results on bistatic passive radar using noncooperative pulse radar as illuminator of opportunity // INTL – International Journal of Electronics and Telecommunications. 2012. Pp. 171–176.; Honda J., Otsuyama T. Feasibility study on aircraft positioning by using ISDB-T signal delay // IEEE Antennas and Wireless Propagation Letter. 2016. Pp. 1787–1790.; Krysik P. Doppler-only tracking in GSM-based passive radar / M. Wielgo, J. Misiurewicz, A. Kurowska // 17th International Conference on Information Fusion (FUSION). 2014. Pp. 1–7.; Howland P.E. Target tracking using television-based bistatic radar // IEE Proceedings – Radar, Sonar and Navigation. 1999. Pр. 166–174.; Salah A. Experimental study of LTE signals as illuminators of opportunity for passive bistatic radar applications / Abdullah R.S.A. Raja, A. Ismail, F. Hashim, Aziz N.H. Abdul // Electronics Letters. 2014. Pp. 545–547. DOI:10.1049/el.2014.0237.; Аверьянов В.Я. Разнесенные радиолокационные станции и системы. Минск: Техника, 1978. 148 с.; Черняк В.С. Многопозиционная радиолокация. М.: Радио и связь, 1993. 416 с.; Охрименко А.Е. Основы обработки и передачи информации. Минск: МВИЗРУ ПВО, 1990. 180 с.; Борисов Е.Г., Поддубный С.С. Применение пространственно-временных сигналов для определения координат целей в бистатической локационной системе // Вопросы радиоэлектроники. 2017. № 1. С. 9–14.; Машков Г.М., Борисов Е.Г., Владыко А.Г. Анализ точности определения местоположения объектов дальномерными системами различного типа // Авиационная техника. Сер. Известия высших учебных заведений. 2015. № 4. С. 401–406.; Kulpa K., Malanowski M. Two Methods for Target Localization in Multistatic Passive Radar // IEEE Transactions on Aerospace and Electronic Systems. 2012. Vol. 48, № 1. Pp. 572–580. DOI:10.1109/TAES.2012.6129656.; Mellen G., Pachter M., Raquet J. Closed-form solution for determining emitter location using time difference of arrival measurements // IEEE Transactions on Aerospace and Electronic Systems. 2003. July. Pp. 1056–1058. DOI:10.1109/TAES.2003.1238756.; Ширман Я.Д., Манжос В.Н. Теория и техника обработки радиолокационной информации на фоне помех. М.: Радио и связь, 1981. 416 с.; Кузьмин С.З. Основы теории цифровой обработки радиолокационной информации. М.: Сов. Радио, 1974. 432 с.; https://avia.mstuca.ru/jour/article/view/1376
-
3Academic Journal
Συγγραφείς: E. G. Borisov
Πηγή: Научный вестник МГТУ ГА, Vol 23, Iss 2, Pp 8-19 (2020)
Θεματικοί όροι: многопозиционная радиолокация, дальномерные, суммарно - дальномерные, радиальная скорость, местоположение, вектор скорости, среднеквадратическая ошибка, Motor vehicles. Aeronautics. Astronautics, TL1-4050, info, geo
Διαθεσιμότητα: https://doi.org/10.26467/2079-0619-2020-23-2-8-19