Showing 1 - 15 results of 15 for search '"структурные фазовые переходы"', query time: 0.56s Refine Results
  1. 1
  2. 2
    Academic Journal

    Contributors: Работа выполнена при поддержке РНФ (23-19-00347), эксперименты, проведенные методами электронной микроскопии, выполнены при поддержке БРФФИ (Ф23КИ-005).

    Source: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 26, № 4 (2023); 332-341 ; Известия высших учебных заведений. Материалы электронной техники; Том 26, № 4 (2023); 332-341 ; 2413-6387 ; 1609-3577

    File Description: application/pdf

    Relation: https://met.misis.ru/jour/article/view/547/472; Banoth P., Narsaiah B.P., De Los Santos Valladares L., Kargin J., Kollu P. Single-phase BiFeO3 and BiFeO3–Fe2O3 nanocomposite photocatalysts for photodegradation of organic dye pollutants. Nanoscale Advances. 2023; 5(9): 2646–2656. https://doi.org/10.1039/d2na00881e; Catalan G., Scott J.F. Physics and applications of bismuth ferrite. Advanced Materials. 2009;21(24):2463–2485. https://doi.org/10.1002/adma.200802849; Banoth P., Sohan A., Kandula C., Kollu P. Structural, dielectric, magnetic, and ferroelectric properties of bismuth ferrite (BiFeO3) synthesized by a solvothermal process using hexamethylenetetramine (HMTA) as precipitating agent. Ceramics International. 2022; 48(22): 32817–32826. http://dx.doi.org/10.2139/ssrn.4084619; Pyatakov A.P., Zvezdin A.K. Magnetoelectric and multiferroic media. Physics-Uspekhi. 2012; 55(6): 557. https://doi.org/10.3367/UFNe.0182.201206b.0593; Chu Y.H., Martin L.W., Holcomb M.B., Ramesh R. Controlling magnetism with multiferroics. Materials Today. 2007; 10(10): 16–23. http://dx.doi.org/10.1016/S1369-7021(07)70241-9; Sando D., Barthélémy A., Bibes M. BiFeO3 epitaxial thin films and devices: past, present and future. Journal of Physics: Condensed Matter. 2014; 26(47): 473201. https://doi.org/10.1088/0953-8984/26/47/473201; Fischer P., Polomska M., Sosnowska I., Szymanski M. Temperature dependence of the crystal and magnetic structures of BiFeO3. Journal of Physics C: Solid State Physics. 1980; 13(10): 1931. https://doi.org/10.1088/0022-3719/13/10/012; Phong P.T., Salazar-Kuri U., Van H.T., Khien N.V., Dang N.V., Tho P.T. Influence of isothermal structural transition on the magnetic properties of Cr doped Bi0.86Nd0.14FeO3 multiferroics. Journal of Alloys and Compounds. 2020; 823: 153887. https://doi.org/10.1016/j.jallcom.2020.153887; Tho P.T., Clements E.M., Kim D.H., Tran N., Osofsky M.S., Phan M.-H., Phan T.L., Lee B.W. Crystal structure and magnetic properties of Ti-doped Bi0.84La0.16FeO3 at morphotropic phase boundary. Journal of Alloys and Compounds. 2018; 741: 59–64. https://doi.org/10.1016/j.jallcom.2018.01.140; Karpinsky D.V., Troyanchuk I.O., Tovar M., Sikolenko V., Efimov V., Efimova E., Shur V.Ya., Kholkin A.L. Temperature and composition‐induced structural transitions in Bi1-xLa(Pr)xFeO3 ceramics. Journal of the American Ceramic Society. 2014; 97(8): 2631–2638. https://doi.org/10.1111/jace.12978; Karpinsky D.V., Troyanchuk I.O., Sikolenko V., Efimov V., Efimova E., Willinger M., Salak A.N., Kholkin A.L. Phase coexistence in Bi1-x(Pr)xFeO3 ceramics. Journal of Materials Science. 2014; 49(20): 6937–6943. https://doi.org/10.1007/s10853-014-8398-6; Khomchenko V.A., Troyanchuk I.O.,. Karpinsky D.V, Das S., Amaral V.S., Tovar M., Sikolenko V., Paixão J.A. Structural transitions and unusual magnetic behavior in Mn-doped Bi1-xLaxFeO3 perovskites. Journal of Applied Physics. 2012; 112(8): 084102. https://doi.org/10.1063/1.4759435; Kitagawa Y., Hiraoka Y., Honda T., Ishikura T., Nakamura H., Kimura T. Low-field magnetoelectric effect at room temperature. Nature Materials. 2010; 9(10): 797–802. https://doi.org/10.1038/nmat2826; Singh A., Pandey V., Kotnala R.K., Pandey D. Direct evidence for multiferroic magnetoelectric coupling in 0.9BiFeO3–0.1BaTiO3. Physical Review Letters. 2008; 101(24): 247602. https://doi.org/10.1103/PhysRevLett.101.247602; López I., Castaldini A., Cavallini A., Nogales E., Méndez B., Piqueras J. β-Ga2O3 nanowires for an ultraviolet light selective frequency photodetector. Journal of Physics D: Applied Physics. 2014; 47(41): 415101. https://doi.org/10.1088/0022-3727/47/41/415101; Li Y., Sun N., Liu J., Hao X., Du J., Yang H., Li X., Cao M. Multifunctional BiFeO3 composites: absorption attenuation dominated effective electromagnetic interference shielding and electromagnetic absorption induced by multiple dielectric and magnetic relaxations. Composites Science and Technology. 2018; 159: 240–250. https://doi.org/10.1016/j.compscitech.2018.02.014; Ca N.X., Lee M.Y., Nguyen H., Ba D.N., Tho P.T., Dang N.V., Tran N., Lee B.W., Ha L.T., Hue L.T., Chu X. Peculiar magnetism of Bi1-xDyxFeO3 ceramics at the morphotropic phase boundary. Journal of Alloys and Compounds. 2021; 869: 159331. https://doi.org/10.1016/j.jallcom.2021.159331; Karpinsky D.V., Troyanchuk I.O., Trukhanov A.V., Willinger M., Khomchenko V.A., Kholkin A.L., Sikolenko V., Maniecki T., Maniukiewicz W., Dubkov S.V., Silibin M.V. Structure and piezoelectric properties of Sm-doped BiFeO3 ceramics near the morphotropic phase boundary. Materials Research Bulletin. 2019; 112: 420–425. https://doi.org/10.1016/j.materresbull.2018.08.002; Pakalniškis A., Lukowiak A., Niaura G., Głuchowski P., Karpinsky D.V., Alikin D.O., Abramov A.S., Zhaludkevich A., Silibin M.V., Kholkin A.L., Skaudžius R., Strek W., Kareiv A. Nanoscale ferroelectricity in pseudo-cubic sol-gel derived barium titanate-bismuth ferrite (BaTiO3–BiFeO3) solid solutions. Journal of Alloys and Compounds. 2020; 830: 154632. https://doi.org/10.1016/j.jallcom.2020.154632; Reetu R., Agarwal A., Sanghi S., Ashima A. Rietveld analysis, dielectric and magnetic properties of Sr and Ti codoped BiFeO3 multiferroic. Journal of Applied Physics. 2011; 110(7): 073909. https://doi.org/10.1063/1.3646557; Liu H., Yang X. Structural, dielectric, and magnetic properties of BiFeO3–SrTiO3 solid solution ceramics. Ferroelectrics. 2016; 500(1): 310–317. https://doi.org/10.1080/00150193.2016.1230445; Tang L., Zhou X., Habib M., Zou J., Yuan X., Zhang Y., Zhang D. Phase structure and electrical properties of BiFeO3–BaTiO3 ceramics near the morphotropic phase boundary. Ceramics International. 2023; 49(24): 31965–31974. https://doi.org/10.1016/j.ceramint.2023.07.160; Kim S., Khanal G.P., Nam H.-W., Fujii I., Ueno S., Moriyoshi C., Kuroiwa Y., Wada S. Structural and electrical characteristics of potential candidate lead-free BiFeO3–BaTiO3. Journal of Applied Physics. 2017; 122(16): 164105. https://doi.org/10.1063/1.4999375; Hlinka J., Pokorny J., Karimi S., Reaney I.M. Angular dispersion of oblique phonon modes in from micro-Raman scattering. Physical Review B. 2011; 83(2): 020101. https://doi.org/10.1103/PhysRevB.83.020101; Wang Y., Nan C.-W. Site modification in BiFeO3 thin films studied by Raman spectroscopy and piezoelectric force microscopy. Journal of Applied Physics. 2008; 103(11): 114104. https://doi.org/10.1063/1.2938080; Hermet P., Goffinet M., Kreisel J., Ghosez P. Raman and infrared spectra of multiferroic bismuth ferrite from first principles. Physical Review B. 2007; 75(22): 220102 (R). https://doi.org/10.1103/PhysRevB.75.220102; https://met.misis.ru/jour/article/view/547

  3. 3
    Academic Journal

    Contributors: This work was supported by the BRFFR (project Ф21РМ-18) and RFFR (project 20-58- 04003Бел_мол_а), Работа выполнена при поддержке БРФФИ (проект Ф21РМ-018) и РФФИ (проект 20-58- 04003Бел_мол_а)

    Source: Doklady of the National Academy of Sciences of Belarus; Том 67, № 4 (2023); 279-286 ; Доклады Национальной академии наук Беларуси; Том 67, № 4 (2023); 279-286 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2023-67-4

    File Description: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/1138/1138; Reversible phase transition induced large piezoelectric response in Sm-doped BiFeO3 with a composition near the morphotropic phase boundary / Z. Liao [et al.] // Phys. Rev. B. – 2017. – Vol. 95, N 21. – Art. 214101. https://doi.org/10.1103/physrevb.95.214101; Ferroelectric BiFeO3 X-ray and neutron diffraction study / J. M. Moreau [et al.] // J. Phys. Chem. Solids. – 1971. – Vol. 32, N 6. – P. 1315–1320. https://doi.org/10.1016/s0022-3697(71)80189-0; Interplay of multiple structural phase and magnetic response of Bi1–x Prx FeO3 ceramics / L. T. Ha [et al.] // Ceram. Int. – 2022. – Vol. 48, N 21. – P. 32027–32035. https://doi.org/10.1016/j.ceramint.2022.07.140; Mumtaz, F. Peculiar magnetism in Eu substituted BiFeO3 and its correlation with local structure / F. Mumtaz, G. H. Jaffari, S. I. Shah // J. Phys.: Condens. Matter. – 2018. – Vol. 30, N 43. – Art. 435802. https://doi.org/10.1088/1361-648x/aae10f; Tailoring the dielectric and magnetic properties of Eu-substituted BiFeO3 nanoparticles / J. C. Cyriac [et al.] // Mater. Today:. Proc. – 2020. – Vol. 25. – P. 134–139. https://doi.org/10.1016/j.matpr.2019.12.186; Transformation of BiFeO3 magnetic properties by Eu doping: magnetometry and Mössbauer studies / A. L. Zinnatullin [et al.] // J. Solid State Chem. – 2022. – Vol. 312. – Art. 123216. https://doi.org/10.1016/j.jssc.2022.123216; Arnold, D. C. Composition-driven structural phase transitions in rare-earth-doped BiFeO3 ceramics: a review / D. C. Arnold // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. – 2015. – Vol. 62, N 1. – P. 62–82. https://doi.org/10.1109/tuffc.2014.006668; Temperature and Composition-Induced Structural Transitions in Bi1−x La(Pr)xFeO3 Ceramics / D. V. Karpinsky [et al.] // J. Am. Ceram. Soc. – 2014. – Vol. 97, N 8. – P. 2631–2638. https://doi.org/10.1111/jace.12978; Mn doping-induced structural and magnetic transformations in the antiferroelectric phase of the Bi1−x NdxFeO3 perovskites / V. A. Khomchenko [et al.] // J. Appl. Phys. – 2012. – Vol. 112, N 6. – Art. 064105. https://doi.org/10.1063/1.4752277; Isothermal structural transitions, magnetization and large piezoelectric response in Bi1–x LaxFeO3 perovskites / I. O. Troyanchuk [et al.] // Phys. Rev. B. – 2011. – Vol. 83, N 5. – Art. 054109. https://doi.org/10.1103/physrevb.83.054109; Influence of isothermal structural transition on the magnetic properties of Cr doped Bi0.86Nd0.14FeO3 multiferroics / P. T. Phong [et al.] // J. Alloys Compd. – 2020. – Vol. 823. – Art. 153887. https://doi.org/10.1016/j.jallcom.2020.153887; Structural transformations and magnetic properties of Bi1–x LnxFeO3 (Ln = La, Nd, Eu) multiferroics / I. O. Troyanchuk [et al.] // Phys. Status Solidi B. – 2009. – Vol. 246, N 8. – P. 1901–1907. https://doi.org/10.1002/pssb.200945030; Rao, T. D. Enhanced magnetization and improved insulating character in Eu substituted BiFeO3 / T. D. Rao, R. Ranjith, S. Asthana // J. Appl. Phys. – 2014 – Vol. 115, N 12. – Art. 124110. https://doi.org/10.1063/1.4869775; Evolution of structure and magnetic properties in EuxBi1−xFeO3 multiferroics obtained under high pressure / I. I. Makoed [et al.] // J. Magn. Magn. Mater. – 2019. – Vol. 489. – Art. 165379. https://doi.org/10.1016/j.jmmm.2019.165379; https://doklady.belnauka.by/jour/article/view/1138

  4. 4
    Academic Journal

    Contributors: The work is supported by the RFBR (project № 20-58-04003Бел_мол_а) and BRFFR (project № Ф21РМ-018)., Работа выполнены при поддержке РФФИ (проект № 20-58-04003Бел_мол_а) и БРФФИ (проект № Ф21РМ-018).

    Source: Doklady of the National Academy of Sciences of Belarus; Том 66, № 4 (2022); 397-403 ; Доклады Национальной академии наук Беларуси; Том 66, № 4 (2022); 397-403 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2022-66-4

    File Description: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/1078/1083; Phase stability and structural temperature dependence in powdered multiferroic BiFeO3 / R. Haumont [et al.] // Phys. Rev. B. - 2008. - Vol. 78, N 13. - Art. 134108. https://doi.org/10.1103/physrevb.78.134108; Structural and electrical characteristics of potential candidate lead-free BiFeO3-BaTiO3 piezoelectric ceramics / S. Kim [et al.] // J. Appl. Phys. - 2017. - Vol. 122, N 16. - P 164105. https://doi.org/10.1063/L4999375; Temperature and Composition-Inducet Structural Transitions in Bi1 1–xLa(Pr)xFeO3 ceramics / D. V. Karpinsky [et al.] // J. Am. Ceram. Soc. - 2014. - Vol. 97, N 8. - P 2631-2638. https://doi.org/10.1111/jace.12978; The β-to-γ Transition in BiFeO3: A Powder Neutron Diffraction Study / D. C. Arnold [et al.] // Adv. Funct. Mater. - 2010. - Vol. 20, N 13. - P 2116-2123. https://doi.org/10.1002/adfm.201000118; Temperature-dependent structural and spectroscopic studies of (Bi1 1–xFex)FeO3 / A. Kirsch [et al.] // J. Phys. Chem. C. - 2018. - Vol. 122, N 49. - P 28280-28291. https://doi.org/10.1021/acs.jpcc.8b05740; Catalan, G. Physics and Applications of Bismuth Ferrite / G. Catalan, J. F. Scott // Adv. Mater. - 2009. - Vol. 21, N 24. - P 2463-2485. https://doi.org/10.1002/adma.200802849; The Ferroic Phase Transitions of BiFeO3 / S. M. Selbach [et al.] // Adv. Mater. - 2008. - Vol. 20, N 19. - P. 3692-3696. https://doi.org/10.1002/adma.200800218; Structural Stability and Magnetic Properties of Bi11–xLa(Pr)xFeO3 Solid Solutions / D. V. Karpinsky [et al.] // Solid State Communications. - 2011. - Vol. 151, N 22. - P. 1686-1689. https://doi.org/10.1016/j.ssc.2011.08.002; Integration of sputter-deposited multiferroic CoFe2O4-BiFeO3 nanocomposites on conductive La07Sr03MnO3 electrodes / S. H. Lee [et al.] // Nanotechnology. - 2019. - Vol. 30, N 10. - P 105601. https://doi.org/10.1088/1361-6528/aaf7cd; Priya, A. S. Investigation of multiferroic properties of doped BiFeO3-BaTiO3 composite ceramics / A. S. Priya, I. B. Shameem Banu, S. Anwar // Mater. Let. - 2015. - Vol. 142. - P 42-44. https://doi.org/10.1016/j.matlet.2014.11.111; Rodriguez-Carvajal, J. R. Recent advances in magnetic structure determination by neutron powder diffraction / J. R. Rodriguez-Carvajal // Physica B: Condensed Matter. - 1993. - Vol. 192, N 1-2. - P 55-69. https://doi.org/10.1016/0921-4526(93)90108-i; https://doklady.belnauka.by/jour/article/view/1078

  5. 5
    Academic Journal

    Contributors: Казанский (Приволжский) федеральный университет

    Relation: ИТОГОВАЯ НАУЧНО-ПРАКТИЧЕСКАЯ КОНФЕРЕНЦИЯ ПРОФЕССОРСКО-ПРЕПОДАВАТЕЛЬСКОГО СОСТАВА ИНСТИТУТА ФИЗИКИ КАЗАНСКОГО ФЕДЕРАЛЬНОГО УНИВЕРСИТЕТА; http://dspace.kpfu.ru/xmlui/bitstream/net/183762/-1/F_59_3___Tezisy_14_02_2023_fin_039___040.pdf; https://dspace.kpfu.ru/xmlui/handle/net/183762; 538.911

  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15