Showing 1 - 2 results of 2 for search '"стационарные характеристики производительности"', query time: 0.53s Refine Results
  1. 1
    Academic Journal

    Source: Informatics; Том 20, № 3 (2023); 50-60 ; Информатика; Том 20, № 3 (2023); 50-60 ; 2617-6963 ; 1816-0301

    File Description: application/pdf

    Relation: https://inf.grid.by/jour/article/view/1254/1060; Flatto L., Hahn S. Two parallel queues created by arrivals with two demands. SIAM Journal on Applied Mathematics, 1984, vol. 44, pp. 1041-1053.; Nelson R., Tantawi A. N. Approximate analysis of fork/join synchronization in parallel queues. IEEE Transactions on Computers, 1988, vol. 37, pp. 739-743.; Kim C., Agrawala A. K. Analysis of the fork-join queue. IEEE Transactions on Computers, 1989, vol. 38, pp. 250-255.; Qiu Z., Juan P., Harrison H. G. Beyond the mean in fork-join queues: Efficient approximation for response-time tails. Performance Evaluation, 2015, vol. 91, pp. 99-116.; Lui J. C.-S., Muntz R. R., Towsley D. Computing Performance Bounds for Fork-Join Queueing Models. Los Angeles, University of California, Computer Science Department, 1994, 38 р.; Varma S., Makowski A. M. Interpolation approximations for symmetric fork-join queues. Performance Evaluation, 1994, vol. 20, pp. 245-265.; Ko S.-S., Serfozo R. F. Response times in M/M/s fork-join networks. Advances in Applied Probability, 2004, vol. 36, pp. 854-871.; Ko S.-S., Serfozo R. F. Sojourn times in G/M/1 fork-join networks. Naval Research Logistics, 2008, vol. 55, pp. 432-443.; Thomasian A. Analysis of fork/join and related queueing systems. ACM Computing Surveys, 2014, vol. 47, pp. 1-71.; Wang W., Harchol-Balter M., Jiang H., Scheller-Wolf A., Srikant R. Delay asymptotics and bounds for multitask parallel jobs. ACM SIGMETRICS Performance Evaluation Review, 2018, vol. 46, pp. 2-7.; Lee K., Shah N. B., Huang L., Ramchandran K. TheMDS queue: analysing the latency performance of erasure codes. IEEE Transactions on Information Theory, 2017, vol. 63, pp. 2822-2842.; Rizk A., Poloczek F., Ciucu F. Stochastic bounds in fork-join queueing systems under full and partial mapping. Queueing Systems, 2016, vol. 83, pp. 261-291.; Baccelli F., Makowski A. M., Shwartz A. The fork-join queue and related systems with synchronization constraints: stochastic ordering and computable bounds. Advances in Applied Probability, 1989, vol. 21, pp. 629-660.; Balsamo S., Donatiello L., Van Dijk N. M. Bound performance models of heterogeneous parallel processing systems. IEEE Transactions on Parallel and Distributed Systems, 1998, vol. 9, pp. 1041-1056.; Neuts M. F. Matrix-Geometric Solutions in Stochastic Models. Baltimore, The Johns Hopkins University Press, 1981, 352 p.; Dudin A. N., Klimenok V. I., Vishnevsky V. M. The theory of queuing systems with correlated flows. Springer, 2020, 430 р.; Graham A. Kronecker Products and Matrix Calculus with Applications. Ellis Horwood, Cichester, 1981, 130 р.; Ozawa T. Sojourn time distributions in the queue defined by a general QBD process. Queueing Systems, 2006, vol. 53, pp. 203–211.; https://inf.grid.by/jour/article/view/1254

  2. 2