Εμφανίζονται 1 - 20 Αποτελέσματα από 33 για την αναζήτηση '"статическая обменная емкость"', χρόνος αναζήτησης: 0,63δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
    Academic Journal

    Πηγή: Izvestiya. Non-Ferrous Metallurgy; № 1 (2024); 5-13 ; Izvestiya Vuzov. Tsvetnaya Metallurgiya; № 1 (2024); 5-13 ; 2412-8783 ; 0021-3438

    Περιγραφή αρχείου: application/pdf

    Relation: https://cvmet.misis.ru/jour/article/view/1579/716; https://cvmet.misis.ru/jour/article/view/1579/723; Лебедь А.Б., Набойченко С.С., Шунин В.А. Производство селена и теллура на ОАО «Уралэлектро-медь». Екатеринбург: УрФУ, 2015. 112 с.; Yang S., Li Z., Yan K., Zhang X., Xu Z., Liu W., Liu Z., Liu H. Removing and recycling mercury from scrubbingsolution produced in wet nonferrous metal smelting flue gas purification process. Journal of Environmental Sciences. 2021;(103):59—68. https://doi.org/10.1016/j.jes.2020.10.013; Fabre E., Rocha A., Cardoso S.P., Brandão P., Vale C. Lopes C.B., Pereira E., Silva C.M. Purification of mercury-contaminated water using new AM-11 and AM-14 microporous silicates. Separation and Purification Technology. 2020;(239):116438. https://doi.org/10.1016/j.seppur.2019.116438; Ponomarev A.V., Bludenko A.V., Makarov I.E., Pikaev A.K., Kim D.K., Kim Y., Han B. Combined electronbeam and adsorption purification of water from mercury and chromium using materials of vegetable origin as sorbents. Radiation Physics and Chemistry. 1997;49(4):473—476. http://dx.doi.org/10.1016/S0969-806X(96)00148-X; Zhang B., Petcher S., Gao H., Yan P., Cai D., Fleming G., Parker D.J., Chong S.Y., Hasell T. Magnetic sulfur-doped carbons for mercury adsorption. Journal of Colloid and Interface Science. 2021;(603):728—737. https://doi.org/10.1016/j.jcis.2021.06.129; Pang X., Liu W., Xu H., Hong Q., Cui P., Huang W., Qu Z., Yan N. Selective uptake of gaseous sulfur trioxide and mercury in ZnO—CuS composite at elevated temperatures from SO2-rich flue gas. Chemical Engineering Journal. 2022;(427):132035. https://doi.org/10.1016/j.cej.2021.132035; Xin F., Xiao R., Zhao Y., Zhang J. Surface sulfidation modification of magnetospheres from fly ash for elemental mercury removal from coal combustion flue gas. Chemical Engineering Journal. 2022;(436):135212. http://dx.doi.org/10.1016/j.cej.2022.135212; Teng H., Altaf A.R. Elemental mercury (Hg 0 ) emission, hazards, and control: A brief review. Journal of Hazardous Materials Advances. 2022;(5):100049. https://doi.org/10.1016/j.hazadv.2022.100049; Ji Z., Huang B., Gan M., Fan X., Wang Y., Chen X., Sun Z., Huang X., Zhang D., Fan Y. Recent progress on the clean and sustainable technologies for removing mercury from typical industrial flue gases: A review. Process Safety and Environmental Protection. 2021;(150):578—593. https://doi.org/10.1016/j.psep.2021.04.017; Jia T., Luo F., Wu J., Chu F., Xiao Y., Liu Q., Pan W., Li F. Nanosized Zn—In spinel-type sulfides loaded on facet-oriented CeO 2 nanorods heterostructures as Z-scheme photocatalysts for efficient elemental mercury removal. Science of the Total Environment. 2022;(813):151865. https://doi.org/10.1016/j.scitotenv.2021.151865; Meng F., Umair M.M., Iqbal K., Jin X., Zhang S., Tang B. Rapid fabrication of noniridescent structural color coatings with high color visibility, good structural stability, and self-healing properties. ACS Applied Materials Interfaces. 2019;11(13):13022—13028. https://doi.org/10.1021/acsami.9b01522; Anacleto A.L., Carvalho J.R. Mercury cementation from chloride solutions using iron, zinc and aluminium. Minerals Engineering. 1996;9(4):385—397. https://doi.org/10.1016/0892-6875(96)00025-8; Гладышев В.П., Левицкая С.А., Филиппова Л.М. Аналитическая химия ртути. М.: Наука, 1974. 231 с.; Shen F., He S., Li J., Liu C., Xiang K., Liu H. Formation of sulfur oxide groups by SO 2 and their roles in mercury adsorption on carbon-based materials. Journal of Environmental Sciences. 2022;(119):44—49. https://doi.org/10.1016/j.jes.2021.11.011; Wadi V.S., Mittal H., Fosso-Kankeu E., Jena K.K., Alhassan S.M. Mercury removal by porous sulfur copolymers: Adsorption isotherm and kinetics studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2020;(606):125333. http://dx.doi.org/10.1016/j.colsurfa.2020.125333; Lennie A.R., Charnock J.M., Pattrick R.A.D. Structure of mercury (II)—sulfur complexes by EXAFS spectroscopic measurements. Chemical Geology. 2003;199(3-4):199—207. https://doi:10.1016/S0009-2541(03)00118-9; Bell A.M.T., Charnock J.M., Helz G.R., Lennie A.R., Livens F.R., Mosselmas J.F.W., Pattrick R.A.D., Vaughan D.J. Evidence for dissolved polymeric mercury(II)-sulfur complexes. Chemical Geology. 2007; 243(1-2):122—127. https://doi.org/10.1016/J.CHEMGEO.2007.05.013; Al-Jibori S.A., Al-Doori L.A., Al-Janabi A.S.M., Alheety M.A., Wagner C., Karadag A. Mercury (II) mixed ligand complexes of phosphines or amines with 2-cyanoamino thiophenolate ligands formed via monodeprotonation and carbon—sulfur bond cleavage of 2-aminoben-zothiazole. X-ray crystal structures of [Hg(SC 6H4 NCN) (PPh 3)]2 and [Hg(SC 6H4 NCN)(Ph 2 PCH 2 PPh 2)]2 . Polyhedron. 2021;(206):115349. http://dx.doi.org/10.1016/j.poly.2021.115349; Шунин В.А., Соколова И.С., Лебедь А.Б. Сорбционная очистка продуктивных селеновых растворов от примесей тяжелых металлов. В сб.: Новые технологии обогащения и комплексной переработки труднообогатимого природного и техногенного минерального сырья (Плаксинские чтения 2011): Тезисы докладов международного совещания (Верхняя Пышма, 19—24 сент. 2011 г.). Екатеринбург: Форт Диалог-Исеть, 2011. С. 428—429.; Habashi F. Metallurgical plants: How mercury pollution is abated. Environmental Science and Technology. 1978; 23(13):1372—1376. https://doi.org/10.1021/ES60148A011; Hylander I.D., Herbert R.B. Global emission and production of mercury during the pyrometallurgical extraction of nonferrous sulfide ores. Environmental Science and Technology. 2008;42(16):5971—5977. https://doi.org/10.1021/es800495g; Yu M-H., Yang H-H., Gu Y-C., Wang B-H., Liu F-C., Lin I.J.B., Lee G-H. Formation of anionic NHC complexes through the reaction of benzimidazoles with mercury chloride. Subsequent protonation and transmetallation reactions. Journal of Organometallic Chemistry. 2019;(887):12—17. https://doi.org/10.1016/J.JORGANCHEM.2019.02.015; Tugashov K.I., Gribanyov D.A., Dolgushin F.M., Smol′yakov A.F., Peregudov A.S., Klemenkova Z.S., Matvienko O.V., Tikhonova I.A., Shur V.B. Coordination chemistry of anticrowns. Isolation of the chloride complex of the four-mercury anticrown {[(o,o′-C 6 F 4 C 6 F 4 Hg) 4 ]Cl}− from the reaction of o,o′-dilithiooctaf luorobiphenyl with HgCl 2 and its transformations to the free anticrown and the complexes with o-xylene, acetonitrile, and acetone. Organometallics. 2017;36(13): 2437—2445. https://doi.org/10.1021/ACS.ORGANOMET.7B00315; Al-Amri A-H.D., Fettouhi M., Wazeer M.I.M., Isab A.A. Synthesis, X-ray structure and 199 Hg, 77 Se CP MAS NMR studies on the first tris(imidazolidine-2-selone) mercury complex: {chloro-tris[N-methyl-2(3H)-imidazolidine-2-selone]mercury(II)}chloride. Inorganic Chemistry Communications. 2005;8(12):1109—1112. https://doi.org/10.1016/J.INOCHE.2005.09.010; Hadjikakou S.K., Kubicki M. Synthesis, characterisation and study of mercury (II) chloride complexes with triphenylphosphine and heterocyclic thiones. The crystal structures of [(benzothiazole-2-thionato)(benzothia-zole-2-thione)(bis-triphenylphosphine) chloro mercury (II)] and [(μ 2-dichloro){(bis-pyrimidine-2-thionato) mercury (II)}{(bis-triphenylphosphine) mercury (II)}] at 100 K. Polyhedron. 2000;19(20-21):2231—2236. https://doi.org/10.1016/S0277-5387(00)00533-7; Pazderski L., Szlyk E., Wojtczak A., Kozerski L., Sitkowski J., Kamieński B. The crystal and molecular structures of catena[bis(μ 2-chloro)-(μ 2-pyridazine-N,N′)] cadmium (II) and catena[bis(μ 2-chloro)-(μ 2 -pyridazine-N,N′)]mercury (II) and the solid-phase 13 C, 15 N NMR studies of Zn(II), Cd(II), Hg(II) chloride complexes with pyridazine. Journal of Molecular Structure. 2004;697(1-3): 143—149. https://doi.org/10.1016/j.molstruc.2004.03.048; Королев А.А., Шунин В.А., Тимофеев К.Л., Мальцев Г.И., Воинков Р.С. Сорбционная очистка от ртути растворов селенистой кислоты. Химия в интересах устойчивого развития. 2022;(30):372—382.; https://cvmet.misis.ru/jour/article/view/1579

  7. 7
  8. 8
  9. 9
    Academic Journal

    Πηγή: Технічні науки та технології; № 2(12) (2018): Технічні науки та технології; 236-244
    Technical sciences and technology; No. 2(12) (2018): Technical sciences and technologies; 236-244
    Технические науки и технологии; № 2(12) (2018): Технические науки и технологии; 236-244

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: http://tst.stu.cn.ua/article/view/143049

  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
    Academic Journal
  15. 15
    Academic Journal

    Πηγή: Technology and Technique of Typography (Tekhnolohiia i Tekhnika Drukarstva); No. 1(43) (2014); 62–69 ; Технологія і техніка друкарства; № 1(43) (2014); 62–69 ; 2414-9977 ; 2077-7264

    Περιγραφή αρχείου: application/pdf

  16. 16
  17. 17
    Academic Journal

    Πηγή: Bulletin of Dnipropetrovsk University. Series Chemistry; Vol 24, No 2 (2016): Bulletin of Dnipropetrovsk University. Series Chemistry; 88-93
    Вестник Днепропетровского университета. Серия химия; Vol 24, No 2 (2016): Bulletin of Dnipropetrovsk University. Series Chemistry; 88-93
    Вісник Дніпропетровського університету. Серія хімія; Vol 24, No 2 (2016): Bulletin of Dnipropetrovsk University. Series Chemistry; 88-93
    Journal of Chemistry and Technologies; Том 24, № 2 (2016): Bulletin of Dnipropetrovsk University. Series Chemistry; 88-93
    Journal of Chemistry and Technologies; Том 24, № 2 (2016): Вестник Днепропетровского университета. Серия химия; 88-93
    Journal of Chemistry and Technologies; Том 24, № 2 (2016): Вісник Дніпропетровського університету. Серія хімія; 88-93

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: http://chemistry.dnu.dp.ua/article/view/081612

  18. 18
  19. 19
  20. 20